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Editorial 

Photoacoustics special issue ‘Photoacoustic image reconstruction: Theory and practice’ 

Photoacoustic imaging is a coupled-physics imaging modality that 
exploits the spatially-varying optical absorption within biological tissue 
for contrast [1–3]. When biological tissue is illuminated by a short pulse 
of light, the light is scattered and eventually absorbed by light-absorbing 
molecules, chromophores, each type of which will have a characteristic 
optical absorption spectrum. The absorbed energy is typically thermal-
ised, generating increases in pressure in regions of high optical ab-
sorption (often blood vessels). This excess pressure is known as the initial 
acoustic pressure distribution and it acts as a pulsed, distributed, acoustic 
source. This optically-generated acoustic pulse travels through the tissue 
and can be detected at the tissue surface: this is the data that is used to 
generate photoacoustic images. Many different arrangements of acoustic 
sensors have been proposed for photoacoustic imaging, but two broad 
categories are worth highlighting here. When the measurements are 
made with an array, or synthesised array, of sensors that are sensitive to 
waves incident from a wide range of angles, and a numerical algorithm 
must be used to generate the photoacoustic image, this is known as 
photoacoustic tomography (PAT). When the measurements are made with 
a sensor that is focussed along a line (albeit imperfectly) such that the 
measured time series can be used directly to form an image, this is 
known as photoacoustic microscopy [4] (PAM). (When the light is unfo-
cussed this is known as acoustic resolution PAM). 

In photoacoustic imaging, the optical pulse must be short for there to 
be efficient acoustic generation, and this allows the problems of 
modelling the optical propagation and the acoustic propagation to be 
decoupled. The output of the optical modelling (including, for sake of 
argument, the thermalisation step) is the initial acoustic pressure dis-
tribution, and it is this which is the input to the acoustic model. There 
are therefore two related inverse problems: first, an acoustic inversion 
from the measured acoustic time series to the initial acoustic pressure 
distribution [5,6], and, second, an optical inversion from the initial 
acoustic pressure distribution to the distributions of the chromophores 
[7]. The former is what is usually referred to as photoacoustic image 
reconstruction, and the latter as quantitative or spectroscopic photoacoustic 
reconstruction. For some applications, the optical inversion is an 
important problem to solve because it is the chromophore distributions, 
and not the initial acoustic pressure distributions, which give direct 
information about the tissue and which can therefore facilitate molec-
ular [8], genetic [9] and functional imaging [10] using photoacoustics. 
The essential task in this regard is to estimate the (wave-
length-dependent) light fluence in the tissue, which is complicated by 
the fact it is affected by the unknown chromophore distributions. 
However, for many practical applications it is sufficient to solve just the 
acoustic inversion. Many different ways to do this have been proposed, 
including analytical formulas, in particular backprojection formulas, 

and schemes based on computational models such as time reversal and 
iterative approaches. Despite this progress, in almost all practical cases 
these methods are only approximate because (1) the measurement data 
is incomplete, and (2) the forward operator - the acoustic model – relies 
on approximations. The measured data can be incomplete because for 
some applications it is not possible for the sensor array to surround the 
object of interest, and real-world sensors are not sensitive to all di-
rections or frequencies. It may also be too expensive or too 
time-consuming to record complete data, eg. when a high image 
frame-rate is essential. One reason why most forward models are 
approximate is because the speed of sound in soft tissue is heterogeneous 
[11], although there can also be other issues to deal with, especially in 
vivo, such as absorption and tissue motion. One approach to amelio-
rating these problems is to incorporate additional prior information into 
the reconstruction, but this can lead to computationally intensive, 
time-consuming, reconstructions, which can restrict their practical us-
ability. There is a need, therefore, for novel approaches to photoacoustic 
image reconstruction that can mitigate the incomplete knowledge of the 
data and the forward operator, without sacrificing reconstruction speed. 
The framework of Deep Learning, and data-driven approaches more 
generally, seem to offer great potential in this regard [12–14], but bring 
their own challenges, not least how to ensure accuracy and 
generalisability. 

The papers in this Special Issue touch on all aspects of photoacoustic 
image reconstruction. Pattyn et al. [1] tackle problems in both the 
acoustic and optical reconstructions: the heterogeneity of the sound 
speed, and the problem of the unknown light fluence. Zuo et al. [2] are 
also interested in both the acoustic and optical reconstructions; they 
study how wavelength-dependent errors in the acoustic reconstruction 
affect the spectroscopic optical reconstruction, a problem they call 
spectral crosstalk. Continuing the concern with quantitative PAT, Zhang 
et al. [3] propose an iterative approach for fluence correction scheme. 
Four of the papers in this Special Issue are concerned with how Deep 
Learning can be brought to bear on photoacoustic image reconstruction 
problems. Hsu et al. [4] examine different Deep Learning approaches for 
PAT reconstruction, specifically comparing learned post-processing 
steps with learned model-based reconstructions. Feng et al. [5] 
demonstrate the use of Deep Learning for deconvolving the point- 
spread-function of an acoustic resolution PAM imaging system to 
improve the image resolution. Two papers [6,7] address the speed with 
which image reconstruction can be performed: Lan et al. [6] use a 
learned approach to facilitate image reconstruction from a low channel 
count measurement system and demonstrate its real-time performance, 
and Hsu et al. [7] use a learned model to replace the conventional nu-
merical model of the physics in an iterative reconstruction in order to 
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speed it up. 

1. Abstracts of the papers in the special issue 

[1] Alexander Pattyn, Zackary Mumm, Naser Alijabbari, Neb Duric, 
Mark A. Anastasio, Mohammad Mehrmohammadi. Model-based optical 
and acoustical compensation for photoacoustic tomography of hetero-
geneous mediums. Photoacoustics, 100275, 2021. 

Photoacoustic tomography (PAT) is a non-invasive, high-resolution 
imaging modality, capable of providing functional and molecular in-
formation of various pathologies, such as cancer. One limitation of PAT 
is the depth and wavelength dependent optical fluence, which results in 
reduced PA signal amplitude from deeper tissue regions. These factors 
can therefore introduce errors into quantitative measurements such as 
oxygen saturation (sO2) or the localization and concentration of various 
chromophores. The variation in the speed-of-sound between different 
tissues can also lead to distortions in object location and shape. 
Compensating for these effects allows PAT to be used more quantita-
tively. We have developed a proof-of-concept algorithm capable of 
compensating for the heterogeneity in speed-of-sound and depth 
dependent optical fluence. Speed-of-sound correction was done by using 
a straight ray-based algorithm for calculating the family of iso-time-of- 
flight contours between the transducers and every pixel in the imaging 
grid, while fluence compensation was done by utilizing the graphics 
processing unit (GPU) accelerated software MCXCL for Monte Carlo 
modeling of optical fluence variation. This algorithm was tested on a 
polyvinyl chloride plastisol (PVCP) phantom, which contained cyst 
mimics and blood inclusions to test the algorithm under relatively het-
erogeneous conditions. Our results indicate that our PAT algorithm can 
compensate for the speed-of-sound variation and depth dependent flu-
ence effects within a heterogeneous phantom. The results of this study 
will pave the way for further development and evaluation of the pro-
posed method in more complex in-vitro and ex-vivo phantoms, as well as 
compensating for the wavelength-dependent optical fluence in spec-
troscopic PAT. 

[2] Hongzhi Zuo, Manxiu Cui, Xuanhao Wang, Cheng Ma. Spectral 
crosstalk in photoacoustic computed tomography. Photoacoustics, 
100356, 2022. 

Multispectral photoacoustic (PA) imaging faces two major chal-
lenges: the spectral coloring effect, which has been studied extensively 
as an optical inversion problem, and the spectral crosstalk, which is 
basically a result of non-ideal acoustic inversion. So far, there is no 
systematic work to analyze the spectral crosstalk because acoustic 
inversion and spectroscopic measurement are always treated as decou-
pled. In this work, we theorize and demonstrate through a series of 
simulations and experiments how imperfect acoustic inversion induces 
inaccurate PA spectrum measurement. We provide detailed analysis to 
elucidate how different factors, including limited bandwidth, limited 
view, light attenuation, out-of-plane signal, and image reconstruction 
schemes, conspire to render the measured PA spectrum inaccurate. We 
found that the model-based reconstruction outperforms universal back- 
projection in suppressing the spectral crosstalk in some cases. 

[3] Shuangyang Zhang, Jiaming Liu, Zhichao Liang, Jia Ge, Yanqiu 
Feng, Wufan Chen, Li Qi. Pixel-wise reconstruction of tissue absorption 
coefficients in photoacoustic tomography using a non-segmentation 
iterative method. Photoacoustics, 100390, 2022. 

In Photoacoustic Tomography (PAT), the acquired image represents 
a light energy deposition map of the imaging object. For quantitative 
imaging, the PAT image is converted into an absorption coefficient (μa) 
map by dividing the light fluence (LF). Previous methods usually assume 
a uniform tissue μa distribution, and consequently degrade the LF 
correction results. Here, we propose a simple method to reconstruct the 
pixel-wise μa map. Our method is based on a non-segmentation-based 
iterative algorithm, which alternately optimizes the LF distribution 
and the μa map. Using simulation data, as well as phantom and animal 
data, we implemented our algorithm and compared it to segmentation- 

based correction methods. The results show that our method can obtain 
accurate estimation of the LF distribution and therefore improve the 
image quality and feature visibility of the μa map. Our method may 
facilitate efficient calculation of the concentration distributions of 
endogenous and exogenous agents in vivo. 

[4] Ko-Tsung Hsu, Steven Guan, Parag V. Chitnis. Comparing Deep 
Learning Frameworks for Photoacoustic Tomography Image Recon-
struction. Photoacoustics, 100271, 2021. 

Conventional reconstruction methods for photoacoustic images are 
not suitable for the scenario of sparse sensing and geometrical limita-
tion. To overcome these challenges and enhance the quality of recon-
struction, several learning-based methods have recently been 
introduced for photoacoustic tomography reconstruction. The goal of 
this study is to compare and systematically evaluate the recently pro-
posed learning-based methods and modified networks for photoacoustic 
image reconstruction. Specifically, learning-based post-processing 
methods and model-based learned iterative reconstruction methods are 
investigated. In addition to comparing the differences inherently 
brought by the models, we also study the impact of different inputs on 
the reconstruction effect. Our results demonstrate that the reconstruc-
tion performance mainly stems from the effective amount of information 
carried by the input. The inherent difference of the models based on the 
learning-based post-processing method does not provide a significant 
difference in photoacoustic image reconstruction. Furthermore, the re-
sults indicate that the model-based learned iterative reconstruction 
method outperforms all other learning-based post-processing methods 
in terms of generalizability and robustness. 

[5] Fei Feng, Siqi Liang, Jiajia Luo, Sung-Liang Chen. High-fidelity 
deconvolution for acoustic-resolution photoacoustic microscopy 
enabled by convolutional neural networks. Photoacoustics, 100360, 
2022. 

Acoustic-resolution photoacoustic microscopy (AR-PAM) image 
resolution is determined by the point spread function (PSF) of the im-
aging system. Previous algorithms, including Richardson–Lucy (R–L) 
deconvolution and model-based (MB) deconvolution, improve spatial 
resolution by taking advantage of the PSF as prior knowledge. However, 
these methods encounter the problems of inaccurate deconvolution, 
meaning the deconvolved feature size and the original one are not 
consistent (e.g., the former can be smaller than the latter). We present a 
novel deep convolution neural network (CNN)-based algorithm 
featuring high-fidelity recovery of multiscale feature size to improve 
lateral resolution of AR-PAM. The CNN is trained with simulated image 
pairs of line patterns, which is to mimic blood vessels. To investigate the 
suitable CNN model structure and elaborate on the effectiveness of CNN 
methods compared with non-learning methods, we select five different 
CNN models, while R–L and directional MB methods are also applied for 
comparison. Besides simulated data, experimental data including tung-
sten wires, leaf veins, and in vivo blood vessels are also evaluated. A 
custom-defined metric of relative size error (RSE) is used to quantify the 
multiscale feature recovery ability of different methods. Compared to 
other methods, enhanced deep super resolution (EDSR) network and 
residual in residual dense block network (RRDBNet) model show better 
recovery in terms of RSE for tungsten wires with diameters ranging from 
30 µm to 120 µm. Moreover, AR-PAM images of leaf veins are tested to 
demonstrate the effectiveness of the optimized CNN methods (by EDSR 
and RRDBNet) for complex patterns. Finally, in vivo images of mouse 
ear blood vessels and rat ear blood vessels are acquired and then 
deconvolved, and the results show that the proposed CNN method 
(notably RRDBNet) enables accurate deconvolution of multiscale 
feature size and thus good fidelity. 

[6] Hengrong Lan, Daohuai Jiang, Feng Gao, Fei Gao. Deep learning 
enabled real-time photoacoustic tomography system via single data 
acquisition channel. Photoacoustics, 100270, 2021. 

Photoacoustic computed tomography (PACT) combines the optical 
contrast of optical imaging and the penetrability of sonography. In this 
work, we develop a novel PACT system to provide real-time imaging, 
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which is achieved by a 120-elements ultrasound array only using a 
single data acquisition (DAQ) channel. To reduce the channel number of 
DAQ, we superimpose 30 nearby channels’ signals together in the analog 
domain, and shrinking to 4 channels of data (120/30 = 4). Furthermore, 
a four-to-one delay-line module is designed to combine these four 
channels’ data into one channel before entering the single-channel DAQ, 
followed by decoupling the signals after data acquisition. To reconstruct 
the image from four superimposed 30-channels’ PA signals, we train a 
dedicated deep learning model to reconstruct the final PA image. In this 
paper, we present the preliminary results of phantom and in-vivo ex-
periments, which manifests its robust real-time imaging performance. 
The significance of this novel PACT system is that it dramatically re-
duces the cost of multi-channel DAQ module (from 120 channels to 1 
channel), paving the way to a portable, low-cost and real-time PACT 
system. 

[7] Ko-Tsung Hsu, Steven Guan, Parag V. Chitnis. Fast Iterative 
Reconstruction for Photoacoustic Tomography Using Learned Physical 
Model: Theoretical Validation. Photoacoustics, ??, 2023. 

Iterative reconstruction has demonstrated superior performance in 
medical imaging under compressed, sparse, and limited-view sensing 
scenarios. However, iterative reconstruction algorithms are slow to 
converge and rely heavily on hand-crafted parameters to achieve good 
performance. Many iterations are usually required to reconstruct a high- 
quality image, which is computationally expensive due to repeated 
evaluations of the physical model. While learned iterative reconstruc-
tion approaches can reduce the number of iterations through convolu-
tional neural networks, it still requires repeated evaluations of the 
physical models at each iteration. Therefore, the goal of this study is to 
develop a Fast Iterative Reconstruction (FIRe) algorithm that in-
corporates a learned physical model into the learned iterative recon-
struction scheme to further reduce the reconstruction time while 
maintaining robust reconstruction performance. The results demon-
strate comparable reconstruction performance to learned iterative 
reconstruction methods with a 9x reduction in computation time and a 

620x reduction in computation time compared to variational 
reconstruction. 
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