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The coronavirus disease 19 (COVID-19) has turned out to be a pandemic in short period of

time due to the high transmissibility of its causative agent, severe acute respiratory syn-

drome coronavirus 2. Various reports have suggested the promising link between overex-

pression of angiotensin converting enzyme 2 (ACE2) and COVID-19 pathogenesis. The

severity of COVID-19 pathophysiology is greatly depended on several comorbidities, like

hypertension, diabetes mellitus (DM), respiratory and cardiovascular disease, out of which

DM has emerged as a major risk factor. The current review focuses on the link among the

expression of ACE2, use of ACE inhibitors (ACEIs) and angiotensin II type 1 receptor blockers

(ARBs), and risk of COVID-19 pathogenesis in DM. The review also emphasizes on synergis-

tic detrimental effect of DM and COVID-19 on the immune system in provoking uncon-

trolled cytokine storm which eventually leads to lethal consequences. Finally, several
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Angiotensin converting enzyme 2

(ACE2)

Cytokine storm
possible therapeutic strategies have been highlighted to reduce the excess of risk associ-

ated with COVID-19 in people with DM.
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1. Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is an enveloped, single stranded, positive sense RNA

bearing novel coronavirus of genus Batacoronavirus, family

Conornaviridae which also involves other two coronaviruses

such as severe acute respiratory syndrome coronavirus

(SARS-CoV) and Middle Eastern respiratory syndrome coron-

avirus (MERS-CoV). An outbreak of severe acute respiratory

syndrome (SARS) which was triggered by SARS-CoV appeared

from mammals such as bat and palm civet [1,2] in southern

China in 2002–2003 and killed approximately 800 people. After

a decade, MERS-CoV brought about an epidemic of Middle

Eastern respiratory syndrome (MERS) in Soudi Arabia and

caused 858 deaths [3]. In December 2019, a zoonotic outbreak

of coronavirus disease 19 (COVID-19) which is caused by

SARS-CoV-2 emerged in Wuhan, Hubei province, China [4-6].

Like, SARS and MERS, COVID-19 is expected as an air borne

disease and spreads human to human through microdroplets

which are released during exhalation, talking, and coughing

[7]. As it spread worldwide rapidly, WHO announced COVID-

19 as a pandemic. COVID-19 had been spread across the

world, affected more than 100 million people, and caused a

fatality more than 2 million individuals as of 1 February

2021 [8]. The high pathogenicity and virulence of SARS-CoV-

2 may be gained due to antigenic drift and/or antigenic shift

during the transfection of hosts’ cells. The usual indications

of COVID-19 are fever, dry cough, tiredness, complication in

breathing and sometimes pneumonia and multi-organ failure

[9]. The severity of clinical manifestation is escalated with
comorbidities of diabetes mellitus (DM), hypertension, cardio-

vascular diseases, and pulmonary disease.

DM, characterised by higher blood sugar resulting from

impaired insulin secretion and/or insulin resistance, is a

metabolic disorder which is associated with the higher risk

of acquiring infectious diseases [10–12] due to impaired func-

tion of immune system [13]. Hyperglycemia and diabetes mel-

litus have been proved as independent prognosticator of

morbidity and fatality in patients with SARS [14] as well as

MERS [15]. Likewise, DM has emerged as a major risk factor

which increases severe illness and death of patients with

COVID-19 [16–18]. Some studies suggest that pre-existing

DM is linked with the higher risk of acquiring COVID-19;

nonetheless, a meta-analysis has shown that pre-existing

DM does not rise the risk of SARS-COV-2 infection [19]. How-

ever, the outcome of COVID-19 may be exacerbated due to

prior incidence of uncontrolled DM. The present review sheds

light on the probable molecular mechanism of severity’s esca-

lation of pathophysiology in COVID-19 patients associated

with DM. The review emphasises on the relationship between

the expression of virus’ cell surface receptors like ACE2 and

TRPRSS2 and the risk of SARS-CoV-2 infection. This review

also aims to provide possible molecular mechanisms of

abnormal cytokine storm which is generated in COVID-19

patients associated with dysregulation of glucose metabolism

and potential therapeutics thereof. In addition, a number of

probable therapeutics has been discussed to reduce the ele-

vated risk associated with COVID-19 in subjects with DM.



Table 1 – COVID-19 patients with comorbidity of diabetes mellitus.

No. of patients Comorbidity of diabetes mellitus Refs

Total Severe/ICU care/ Non-Survivor Non-severe/Non-ICU care/Survivor

191 36 (19%) 17 (31%) 19 (14%) [16]
1099 81 (7%) 28 (16%) 53 (6%) [17]
138 14 (10%) 8 (22%) 6 (6%) [20]
140 17 (12%) 8 (14%) 9 (11%) [21]
201 22 (11%) 16 (19%) 6 (5%) [22]
187 28 (15%) 16 (31%) 12 (9%) [23]
1590 130 (8%) 45 (21%) 85 (6%) [24]
41 8 (19%) 1 (8%) 7 (25%) [25]
52 9 (17%) 7 (22%) 2 (10%) [26]
355 126 (35%) 126 (35.5%) NA [28]
1561 153 (10%) 122 31 [29]
4103 614 (15%) 176 (27%) 438 (14%) [30]
7337 952 (13%) NA NA [31]
5700 1808 (34%) NA NA [32]
1082 235 (21%) 65(28%) NA [33]
135 12 (9%) 9 (23%) 3 (3%) [34]
3481 566 (16%) NA NA [35]
19,256 3524 (18%) NA NA [36]
377 118 (31%) 45 (40%) 73 (28%) [37]
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2. Prevalence of DM comorbidity in COVID-19
patients

The epidemiological and clinical manifestations of patients

with COVID-19 have shown that the comorbidities including

DM, hypertension, and cardiovascular disease, and other com-

plications are very common in the patients [16,17,20–26].

Among these comorbidities, DM has emerged as a critical risk

factor to the COVID-19 patients. A retrospective and

multicentre cohort study has reported that 36 (19%) patients

showed DM as second highest comorbidity among 191

patients with COVID-19, of whom 17 (31%) patients with DM

died due to COVID-19 in hospital [16]. In a clinical investigation

of 1099 patients with COVID-19, 173 patients were severely

infectedwho exhibited comorbidities of DM (16.2%), hyperten-

sion (23.7%), and cardiovascular disease (5.8%) [17]. A retro-

spective study of 138 COVID-19 positive patients has

demonstrated that 36 severely affected patients had hyperten-

sion (58.3%), cardiovascular disease (25.0%), and diabetes mel-

litus (22.2%) [20]. Another investigation has done on 58 severe

COVID-19 patients who suffered from hypertension (37.9%)

and diabetes mellitus (13.8%) [21]. The risk of diabetes in

respect to poor early outcomes, like requirement of admission

to ICU, mechanical ventilation, and death within 14 days after

providing critical facilities was studied in 450 COVID-19 hospi-

talized patients. The study reported significantly higher

requirement of ICU (42.1% vs 29.8%), mechanical ventilation

and greater proportion of death in patientswith diabetes com-

pared to non-diabetes [27]. Surprisingly, the case-fatality rate

study of a subsample with 355 patients who died due to

SARS-CoV-2 infection reported that 126 (35.5%) patients had

diabetes which was found as highest comorbid disease in

the sample [28]. In addition, COVID-19 patients with DM

showed higher percentage of severe abnormalities [16,17,20–

24,26,28–31]. The numbers of COVID-19 patients along with

comorbidity of DM are summarized in Table 1.
3. Expression of angiotensin converting
enzyme 2 (ACE2) in DM and severity of COVID-19
pathophysiology

The spike glycoproteins (SG) on the surface of SARS-CoV-2

interact with the human ACE2 [38] to enter into cells of lung

epithelium, pancreas, kidney, intestine and vascular system

(Fig. 2). The viral SG is a trimeric integral membrane protein,

and its extracellular domain S1 has a serine protease cleavage

site. The SG is activated by humans’ transmembrane pro-

tease, serine 2 (TMPRSS2) is allowed to bind to ACE2, [39] per-

mitting the entry of viral genome or entire virus (Fig. 2).

TMPRSS2 is a serine protease and widely collocated with

ACE2 on various human tissues (Fig. 1) [40].

Angiotensin converting enzyme (ACE) 2, a monocar-

boxypeptidage, is highly expressed on oral mucosa, respira-

tory tract, lung, kidney, pancreas, cardiovascular system,

intestine, cerebral neuron, and immune cells (Fig. 1) [40–42].

ACE2 converts angiotensin II (Ang II) to angiotensin (1–7)

[Ang (1–7)] and maintains a balance between them. Ang (1–7)

interacts with Mas receptor (MasR) which facilitates the func-

tions like vasodilation and anti-inflammationwhich are oppo-

site to the angiotensin type 1 receptor (AT1R) mediated

functions done by Ang II [43]. Therefore, the higher expression

of ACE2 improves vasodilation and mitigates inflammation

and fibrosis of tissues (Fig. 2). The axis of ACE2/ Ang (1–7)/MasR

counteracts the functionswhich are accomplished by the ACE/

Ang II / AT1R axis in the renin-angiotensin system [44].

Sufficient studies have not been done yet to understand

the expression level of ACE2 in individuals with diabetes com-

pared to without diabetes. One cross-sectional investigation

identified the reduced expression of ACE2 in both the tubu-

lointerstitium and glomeruli in patients with diabetic kidney

disease compared to healthy control [45]. It has been sug-

gested that the expression of ACE2 is decreased in patients

with diabetes perhaps due to glycosylation [46]. However,



Fig. 1 – Schematic diagram of distribution of ACE2 and TMPRSS2 in human body. The RNA and protein expressions of ACE2

and TMPRSS2 in different organs are shown orange and red coloured bars respectively. The length of the bars indicates the

level of expression. L: low expression; M: medium expression; H: high expression. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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one observational clinical study reported the elevated protein

expression of ACE2 in alveolar tissues and bronchial epithe-

lium of COVID-19 patients with diabetes compared to those

without diabetes [47]. On the other hand, administration of

renin-angiotensin system (RAS) inhibitors, like lisinopril, an

ACE inhibitor (ACEI) and losartan, an angiotensin II type 1

(AT1) receptor blocker (ARB), to mice promoted the increase

in cardiac expression of ACE2 by 5 folds and 3 folds, respec-

tively [48]. In addition, another preclinical study has shown

that the use of ARBs improve the mRNA or protein expression

of ACE2 in tissues of experimental animals [49]. Although, the

effect of ACE inhibitors on the expression and activity of ACE2

in experimental animal models are not consistent [50], use of

RAS inhibitors seems to increase the expression of ACE2. That

is why, a recent speculation has suggested that the patients

who had comorbidities like DM, hypertension and cardiovas-

cular disease and were treated with ACEIs and ARBs, are more

prone to SARS-CoV-2 infection [51]. However, clinical investi-

gations did not find considerable association between use of
ACEIs and ARBs and risk of SARS-CoV-2 infection. According

to some case-control studies involving a large number of peo-

ple, previous treatment with ACEIs and ARBs did not raise the

risk of SARS-COV-2 infection [52,53]. It was also assumed that

the patients taking either ACEIs or ARBs may rise the expres-

sion of ACE2 in pulmonary blood vessels and thereby are at

high risk of aggravated consequences of COVID-19 [54]. How-

ever, the continuous treatment of these RAS inhibitors among

hospitalised COVID-19 patients did not affect the overall out-

come of COVID-19 severity in randomised clinical trials

[55,56]. In addition, the follow-up evaluation of those

COVID-19 patients who participated in continuous and dis-

continuous ACEIs and ARBs treatment showed no significant

difference in COVID-19 severity as well as blood pressure,

serum potassium and serum creatinine levels [55]. According

to current international society guidelines, the physicians can

recommend to continue these drugs for the hospitalised

COVID-19 patients if there is no clear medical conflict to con-

tinue the treatment.



Fig. 2 – Schematic representation of ACE2 and TMPRSS2-dependent cellular entry and multiplication of SARS-CoV-2 and

function of ACE/ Ang II / AT1R and ACE2/ Ang (1–7)/MasR axis. The interaction between SG and ACE2 is primed through the

action of TMPRSS2. Elevated expression of ACE2 and TMPRSS2 promotes severe infection. The binding of SG to ACE2 results

in non-functional ACE2 that leads to vasoconstriction, inflammation, and tissue fibrosis through ACE/ Ang II / AT1R axis.

High expression of ACE2 causes vasodilation and control inflammation and fibrosis via ACE2/ Ang (1–7)/MasR axis. NCP,

nucleocapsid phosphoprotein; SG, spike glycoprotein; MG, membrane glycoprotein; EG, envelope glycoprotein and HAG,

heamagglutinin-acetylesterase glycoprotein.
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3.1. Development of transient DM by SARS-CoV-2
infection

A recent in vitro and ex vivo study suggested the confirmed

expression of ACE2 on the pancreatic islets particularly on b

cells [57]. In other investigations, the expression ACE2 protein

was found in pancreatic ductal epithelium, exocrine capillar-

ies, and pericytes; however, no evidence of was found in a and

b cells [58,59]. The contradictory results may be obtained due

to differences in antibody reactivity level, epitope properties,

tissue section preparation, and immunodetection methodol-

ogy sensitivity [57]. The previous report suggested that the

spike glycoprotein of SARS-CoV binds to ACE2 which are situ-

ated on the surface of pancreatic islets and damage the islet

mass [60]. As a consequence, insulin production is hampered

significantly. In addition, the clinical study observed that

more than 50% of SARS-CoV infected hospitalised patients

developed diabetes. Furthermore, 5% of the patients who

recovered from SARS exhibited DM even after 3 years [60].

The COVID-19 patients were newly diagnosed with diabetes

after hospitalization as well; however, the overall percentage

of hospitalized COVID-19 patients with newly dragonised dia-

betes was lower in compare to SARS. According to a meta-

analysis involving 8 studies, approximately 14% of COVID-19

patients developed diabetes newly after hospitalization [61].

Furthermore, the clinical investigation reported that the
severity of diabetes mellitus was also amplified in the

hospital-admitted COVID-19 patients [62]. As a consequence,

the doses of glucose lowering drugs were increased in

patients with diabetes after SARS-CoV-2 infection and hospi-

talization. Among hospitalized COVID-19 individuals who had

DM, 29.2% patients whowere associatedwith previous insulin

therapy were treated with elevated dose of insulin. Addition-

ally, the new insulin therapy was initiated in 37.5% hospital-

ized patients who took oral anti-diabetic medicine.

Moreover, the insulin dose was also elevated in COVID-19

patients with DM admitted to ICU for managing hyper-

glycemia [63]. However, the studies were conducted in small

sample size and in single centre which warrants additional

clinical evidences from multicentre cohorts. Overall, the use

of unwanted or elevated dose of insulin to maintain eugly-

caemia of the COVID-19 patients with DM may be the conse-

quences of more severe stress and inflammatory condition

exacerbating insulin resistance.

4. Impairment of immune response in DM and
COVID-19

It is not surprising that metabolism and immunity have

evolved very closely and are interdependent. Numerous com-

ponents of immune system are altered in metabolic disease

T2DM, and the overt alteration has been seen in adipose tis-



Fig. 3 – Proposed mechanism of pro-inflammatory cytokines

and chemokines production in DM. Chronic hyperglycemia

facilitates hyperlipidemia and upregulation of AGEs, HMGB-

1, and ROS production. Hyperlipidemia promotes the

elevation of triglyceride (TGR) and low density lipoprotein

(LDL) which increase FFA and oxi-LDL activating membrane

bound TLR2/4 of adipocytes and hepatocytes. The

upregulation of HMGB-1 triggers the activation of TLR2/4

and RAGE which intern increases the activity of

transcription factor NF-jb through the rise of IKKb (Ikb

kinase b). AGEs upsurges cellular level of NF-jb by

interacting RAGE. Hyperglycemia activates PLC and rises

DAG which trigger PKC activation resulting in generation of

NADPH oxidase and ROS. NF-jb is upregulated in presence

of ROS. HMGB-1 and ROS activate MAP kinase and thereby

phosphorylate JNK. NF-jb and activated JNK lead to

increased production of pro-inflammatory cytokines and

chemokines.
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sues, liver, islets of pancreas, and leucocytes [64]. The

immunological aberrations involve the change in the level

of cytokines, altered leukocyte population, and escalation of

tissue fibrosis and apoptosis [64]. In T2DM, the cellular stres-

ses like oxidative stress, endoplasmic reticulum stress, ecto-

pic lipid deposition in the liver, muscle and pancreas,

amyloid accumulation in the pancreas and lipotoxicity and

glycotoxicity, can provoke aggravated inflammatory

responses [65,66]. In COVID-19, the infection and destruction

of lung epithelial cells stimulate the local immune reactions

which recruit macrophages and monocytes, secrete cytoki-

nes, engage B and T lymphocytes to combat infection [67].

When patients with diabetes having the abovementioned cel-

lular stresses are infected with SARS-CoV-2, impaired
immune response may lead to serious lung and other patho-

genesis and often causes death.

4.1. Exaggerated inflammatory response

Inflammation, an essential part of the innate immune

response, is the immediate immune reaction to infection or

injury. Thus, the production of inflammatory mediators like

tumour necrosis factors (TNF)-a, interleukin (IL)-1, and IL-6

in appropriate amount is vital in response to infection. Never-

theless, overproduction of these cytokines can be harmful for

own immune system and may cause acute and chronic

inflammatory responses.

Hyperglycemia triggers numerous metabolic signalling

pathways that lead to chronic inflammatory disease, secre-

tion of cytokines, cell death and complications associated

with diabetes (Fig. 3) [68]. The studies have revealed that

hyperglycemia and DM promote elevated synthesis of diacyl-

glycerol (DAG) which triggers activation of protein kinase C

(PKC) pathway [69]. As a result, a dangerous metabolic path

i.e., production of ROS via NADPH-oxidase is activated in sub-

jects with DM. The rise in ROS generation facilitates protein

glycation resulting in elevation of advanced glycation end

products (AGEs) and NF-jb which leads to hyperproduction

of pro-inflammatory cytokines and chemokines (Fig. 3) [68].

The elevated productions of ROS and HMGB-1 activate MAP

kinase pathway leading to the phosphorylation of JNK, which

triggers the increased expression of pro-inflammatory media-

tors [70]. In vitro study has reported that high blood glucose

induces uncontrolled secretion of INF-a, other pro-

inflammatory cytokines and chemokines [71].

Hyperglycemia reduces the generation of anti-

inflammatory factors like IL4 and IL-10 [72]. The concentra-

tions of TNFa in patients with T1DM, IL-6 in patients with

T2DM, and IL-8 in patients with T1DM and T2DM were ele-

vated compared to subjects without diabetes [73]. In T2DM,

the prospective investigation and cross-sectional data have

reported that the circulatory levels of cytokines, C-reactive

protein (CRP), serum amyloid A, and fibrinogen are elevated

[74]. When SARS-CoV-2 infects patients with diabetes along

with pre-existed inflammation, the pathogenesis of COVID-

19 may reach to a new height (Fig. 4). The nascent report

has proved that the COVID-19 patients with DM and related

comorbidities secreted several folds higher inflammatory

mediators. The serum levels of some pro-inflammatory fac-

tors like IL-6, serum ferritin, CRP, and D-dimer were abnor-

mally higher in COVID-19 individuals with DM in

comparison with subjects without diabetes [62]. Moreover, a

considerable elevation of serum ferritin’s level activates

mononuclear phagocyte system, an integral part of cytokine

storm [62]. The evidence has suggested that the patients with

diabetes are more prone to develop cytokine storm which

eventually leads to severe complications in COVID-19

patients. On the other hand, the generation of exaggerated

inflammatory factors due to SARS-CoV-2 infection may be

managed by the patients without diabetes. Unfortunately,

the synergistic effect of COVID-19 and DM on immune system

interferes the recovery potential of body. The levels of CRP

and D-dimer were several folds higher in non-survivor

COVID-19 individuals with or without DM [29]. The comor-



Fig. 4 – Possible mechanism of exaggerated inflammatory response in COVID-19 and DM. Several pathways are associated to

induce hyperactivated inflammation COVID-19 patients with DM. In uncontrolled diabetes, hyperglycemia and high FFA

provoke pancreas, adipocytes and macrophages to secrete cytokines and chemokines likes IL-1b, IL-IRA, CCL2, CCL3, IL-8,

TNF, IL-6, and transforming growth factor (TGF). When SARS-CoV-2 infects lung epithelial cells, they release GM-CSF and

interferon which recruit macrophages, T lymphocyte and NK cells. Upon activation these cells secrete inflammatory

mediators like IL-6, IL-8, IL-1b, TNF and CXCL10. The exaggerated production of inflammatory factors in COVID-19 patients

with DM leads to cytokine storm that causes lethal complications.
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bidities of DM and other diseases like hypertension, cardio-

vascular disease in COVID-19 trigger abnormal cytokines

storms that lead to uncontrolled function in immune system.

As a consequence, the mortality rate of COVID-19 patients

associated with DM and/or hyperglycemia is considerably

greater than patients without diabetes [75]. The possible

mechanism of abnormal cytokine storm which is generated

in COVID-19 patients with diabetes has been illustrated in

Fig. 4.

SARS-CoV-2 infects the lung epithelium and can cause

virus mediated pyroptosis which leads to vascular seepage

as reported in COVID-19 patients [76]. Pyroptosis is a highly

inflammatory state of programme cell death which is

observed in cytopathic virus [77] like SARS-CoV-2, activating

subsequent inflammatory responses. As a result of pyropto-

sis, damaged epithelial cells release pathogen-associated

molecular patterns (PAMPs) like viral RNA and damage-

associated molecular patterns (DAMPs) such as host DNA,
ATP, and ASC oligomers, which are detected by lung epithelial

macrophages [67] Moreover, a wide range of pro-

inflammatory mediators such as granulocyte–macrophage

colony-stimulating factor (GM-CSF), Il-6, INF-c, IL-10, mono-

cyte chemoattractant protein-1 (MCP1) [25], CCL (chemokine

(C-C motif) ligand) 2, CCL5 and C-X-C motif chemokine 10

(CXCL10) [78] is secreted into blood of adversely affected

COVID-19 patients. Thus, diabetes mellitus causes rapid exac-

erbation of COVID-19 pathophysiology and often leads to

death of comorbid patients.

4.2. Elevation of neutrophil extracellular traps (NETs) in
DM and COVID-19

In the sites of infection, neutrophils are recruited at the early

onset to destroy pathogens including virus, bacteria and fungi

by well-known processes such as oxidative burst and phago-

cytosis [79]. In addition, neutrophils show another method of
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destroying pathogen by formation of neutrophil extracellular

traps (NETs), web-like structures of decondensed chromatin

and proteins which are expelled from the neutrophils [80].

Several enzymes are associated in NETosis, a cell death pro-

cess of NET formation. NETosis involves neutrophil elastase

(NE), which damages intracellular proteins and promotes

nuclear denaturation, peptidylarginine deiminase type 4

(PAD4), which citrullinates histones to induce the deconden-

sation and secretion of chromosomal DNA, and gasdermin

D that creates holes in the neutrophils’ plasma membrane

triggering the degradation of the cell boundary and the out-

burst of DNA and associated components [80]. NETs play a

vital role in host defense by killing pathogens; however, the

continuous formation of NETs during viral infection [79] facil-

itates the pathogenesis of several diseases such as inflamma-

tory diseases and some proposed diseases like

glomerulonephritis, chronic pulmonary disease, sepsis, and

vascular diseases [81]. Thus, NETs act as double-edge swords

of innate immunity in an individual [81]. Unfortunately, dia-

betes mellitus is associated with the exaggerated induction

and constitutive NETosis. It has reported that the expression

of PAD4 was abnormally high in neutrophils collected from

patients with DM [82]. Additionally, the citrullinated histone

H3 was elevated in wound, and the healing was delayed in

human and mice with diabetes [82]. Moreover, high blood glu-

cose and T2DM can trigger formation of NETs which leads to

delay in wound healing process [82]. NETs are also associated

several other complications such as acute respiratory distress

syndrome (ARDS), cystic fibrosis (CF), excessive thrombosis,

and cytokines storm which are very similar in the patients

with severe COVID-19 [80]. The mucous secretions, which

are common in CF, found in airways of patients with

COVID-19. The comorbidity with DM and COVID-19 seems

to facilitate the excessive NETosis which may results in thick

and viscous mucous in lung alveoli due to increased NE. This

deposition of mucous not only impairs ventilation but also

allows the colonization pathogenic bacteria [80]. Thus, the

combination of two diseases seems to exacerbate the

immune-pathophysiology in the patients with DM and

COVID-19.

4.3. Abnormal response of Tand B lymphocytes in DM and
COVID-19

CD4 + T lymphocyte have two major subsets cells, pro-

inflammatory cells like T helper (Th) type 1 and Th17 and

anti-inflammatory cells like Th2 and Foxp3 + T regulatory

(Treg), which maintain an appropriate balance to avoid

inflammatory disease in healthy individual [83]. In T2DM,

however, number of Th1 and Th17 cells were elevated

whereas Treg cells were decreased [83]. Th1 cells that are

raised in specifically SARS-CoV and MERS, were observed to

secrete some inflammatory factors such as IFN-c, TNF-a,

and IL-2 [84]. Similarly, the COVID-19 individuals exhibited

elevated production of IL-2 and IFN-c [85]. In COVID-19

patients with uncontrolled DM, intensified production of

these cytokines by CD4 + T lymphocytes may lead to severe

immune complications. The elevated immune response of
CD4 + T cells was reported in COVID-19 convalescent

individuals [85]. B lymphocytes secreted an elevated level of

IL-8 and reduced level of the anti-inflammatory factor like

IL-10 in patients with T2DM [86]. In addition, the researchers

reported that the altered activity of Toll-like receptors (TLR) in

B lymphocytes was responsible for exaggerated inflammatory

response. The elevated pro-inflammatory response from T

and B lymphocyte among patients with diabetes may pro-

mote additional inflammation in COVID-19, often leading to

lethal complications.

5. Possible therapeutic strategies to manage
COVID-19 associated with DM

Hyperglycemia increases the severity of pathogenesis in

COVID-19, resulting in several lethal complications and often

fatality. However, some therapeutic agents have been sug-

gested to manage the exacerbation of COVID-19 complication

in patients with diabetes mellitus. Firstly, glucagon-like

peptide-1 (GLP-1) receptor agonists which manage blood

sugar level by provoking insulin secretion, reducing appetite,

and decreasing plasma glucagon, have shown significant

anti-diabetic and anti-inflammatory effects [87]. Moreover,

inflammatory response and insulin resistance can also be

lowered by reducing the macrophage infiltration in lesion site

through the GLP-1 dependent M1/M2 macrophage polariza-

tion [88].

Secondly, dipeptidyl peptidase IV (DPP4) inhibitors resist

the action of DPP4 which is expressed ubiquitously on the

diverse tissues including immune cells [89] and degrades

GLP-1 leading to impaired glucose metabolism. Beside the

regulation of glucose metabolism, higher expression of DPP4

also promotes adipocyte inflammation and hepatic insulin

resistance [89]. The administration of the soluble DPP4 has

shown elevated secretion of pro-inflammatory mediators

such as IL-6, IL-8 and MCP-1. The soluble DPP4 induces

inflammation through nuclear factor (NF)-jb pathways, and

the inflammation can be prevented inhibition of DPP4 [90].

Human DPP4 knock-in mice which were developed to under-

stand the mechanism of interaction between DPP4 and coro-

navirus, facilitate the proliferation of MERS-CoV in the lung

upon inoculation [91]. Therefore, DPP4 is promising target

for alleviating chronic T2DM and inflammation. The use of

DPP4 inhibitor blockade the activity of DPP4, and as a result

the function of GLP-1 will restore for long time which may

lead the better glycemic control in COVID-19 patients with

DM. In a multicentre, retrospective clinical trial of hospital-

ized COVID-19 individuals with type 2 diabetes, sitagliptin, a

highly selective DPP4 inhibitor, was treated to the patients

for two months and the outcome was linked to lower fatality

rate [92]. The findings were consistent with a single centred

comparative study of COVID-19 patients affected by type 2

diabetes. The use of DPP inhibitor reduced the mortality rate

whereas treatment of other antidiabetic drugs did not show

such efficacy [93]. However, a few studies reported the neutral

effect of DPP4 inhibitor. The treatment of DPP4 inhibitor prior

to hospitalization did not improve the primary consequence

of COVID-19 patients [94]. In another study, previous use of
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DPP4 inhibitor neither reduce risk of hospitalization of

COVID-19 patients nor improve the outcome of COVID-19

patients with diabetes when compared with SGLT inhibitors

treatment [95]. However, an observational cohort study

involving numerous individuals with type 2 diabetes reported

a slightly higher risk of COVID-19 relatedmortality due to pre-

prescribed DPP4 inhibitor therapy [96]. The limitation of the

case-control studies is the small sample size. Therefore,

large-size retrospective trials are recommended to conclude

the efficacy of DPP4 inhibitor.

On the other hand, use of metformin, a popular hypo-

glycemic agent, provides promising outcome among the

SARS-CoV-2 infected T2D patients in terms of survivability

and resilience against hyperglycemia induced COVID-19 mor-

bidity. In particular, metformin helps to alleviate diabetic con-

dition by stimulating insulin responsiveness and metabolic

control of glucose and lipid metabolism [97,98]. As per some

clinical investigations conducted among T2D patients who

were hospitalized following the diagnosis of COVID-19, it

was reported that individuals who used to take metformin

prior to get tested positive for novel corona virus showed less

severity and mortality as compared to the non-metformin

users [99,100]. The uninterrupted metformin therapy to the

hospitalized patients with diabetes after they diagnosed with

COVID-19, effectively promoted overall health and survivabil-

ity [101]. However, some discrepancies exist among the avail-

able evidences where the efficacy profile of metformin in this

regard remained unsatisfactory [102,103]. Supportive evi-

dence has been found from a nationwide observational inves-

tigation in England. The study clearly demonstrated a

statistically reduced risk of COVID-19-associated fatality in

type 2 diabetic subjects who used metformin before SARS-

CoV-2 infection [96]. In addition, other glucose-lowering med-

ications like sulfonylureas and SGLT2 inhibitors showed lower

risk of fatality. Two clinical examinations depicted the reduc-

tion of death risk only in female T2D patients but not in male

as an outcome of metformin use [104,105]. Moreover, in depth

molecular mechanism behind the ameliorating role of met-

formin in the prognosis of aggravated COVID-19 susceptibility

in diabetic subjects is largely unknown and the existing study

reports are found to be observational only. Furthermore,

future studies are required to dissect the post COVID-19 com-

plications if any among the metformin using survivor T2D

patients.

As virus may alter the conformation of their surface pro-

teins which are responsible for antigenicity, it is better to

modulate host response to SARS-CoV-2. Thirdly, inhibitor

for host serine protease like TMPRSS2 could be a good choice

to curb the SARS-CoV-2 infection. Fourthly, administration of

inhibitors of NF-jb like CAPE and parthenolide, caused higher

expression of pro-inflammatory cytokines in lungs and even-

tually increased the survival rate of SARS-CoV infected mice

[78]. Therefore, inhibitors of TMPRSS2 and NF-jb may be

potential antivirals in SARS-CoV-2 treatment. Fifthly, the

plasma samples of convalescent COVID-19 patients have

seemingly shown encouraging result in SARS-CoV-2 infected

individuals without any severe adverse effect [106]. Therefore,

the convalescent plasma could be a potential boost for recov-

ering COVID-19 patients [107]. However, the critical evalua-
tion with control trial remains to be explored in large

number of patients.

As both DM and COVID-19 exaggerate inflammatory mark-

ers in circulation of patients, the antidiabetic drugs which

have anti-inflammatory property can be good players in this

respect. One review has systematically elaborated the anti-

inflammatory efficacy of a number of antidiabetic agents

which can be used to reduce hyperactivated inflammatory

response of SARS-CoV-2 infected patients [108]. Considering

all, concrete validation is very much necessary in addressing

particular drug to combat major challenges in COVID-19

infected diabetic patients.

Finally, some COVID-19 vaccines have shown promising

results with satisfactory safety profile and considerable

immune response. However, immunogenicity, safety, and effi-

cacy of COVID-19 vaccines particularly to the patients with

diabetes are needed to be optimised well.

6. Conclusion

Diabetes mellitus is one of the major comorbidities in COVID-

19 patients. The pre-existing diabetes mellitus seems not to a

risk factor for SARS-CoV-2 infection; however, the severity of

COVID-19 pathogenesis and fatality cases are elevated due to

the pre-existing uncontrolled diabetes mellitus. On the other

hand, COVID-19 is associated with poor glycemic control in

patients with DM. The serious pathophysiology of COVID-19

patients with DM is governed by a plethora biochemical fac-

tors including key peptides such as Ang II, cytokines, and

other effector proteins which facilitate complex network

pathways and eventually leads to lethal complications. As

mentioned, DM is a multi-factorial metabolic disease which

impairs the immune system in such a way that SARS-CoV-2

infection results in over activated and uncontrolled immune

response. The cellular internalization of viral particles not

only destructs the host cells but also aggravates the pro-

inflammatory responses such as secretion of cytokines and

chemokines in COVID-19 patients with DM. Thus, aggravation

of COVID-19 pathophysiology is strongly associated with

hyperactivation of immune system. The paucity of detail

investigation on the interplay between DM and COVID-19

pathogenesis demands further studies to unveil the precise

etiology underlying the heightened immune response in

patients with diabetes.
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