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Abstract

Clonidine operates through agonism at the alpha-2A receptor, a specific subtype of the alpha-2-

adrenergic receptor located predominantly in the prefrontal cortex. By inhibiting the release of 

norepinephrine, which is responsible for withdrawal symptoms, clonidine effectively addresses 

withdrawal-related conditions such as anxiety, hypertension, and tachycardia. The groundbreaking 

work by Gold et al. demonstrated clonidine’s ability to counteract the effects of locus coeruleus 

stimulation, reshaping the understanding of opioid withdrawal within the field. In the 1980s, 

the efficacy of clonidine in facilitating the transition to long-acting injectable naltrexone was 

confirmed for individuals motivated to overcome opioid use disorders (OUDs), including 

physicians and executives. Despite challenges with compliance, naltrexone offers sustained 

blockade of opioid receptors, reducing the risk of overdose, intoxication, and relapse in motivated 

patients in recovery. The development of clonidine and naltrexone as treatment modalities for 

OUDs, and potentially other addictions, including behavioral ones, underscores the potential for 
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translating neurobiological advancements from preclinical models (bench) to clinical practice 

(bedside), ushering in innovative approaches to addiction treatment.

Keywords

Behavioral addictions; Clonidine; Opioid use disorder; Substance use disorder; Naltrexone; Locus 
coeruleus

1. Introduction

Clonidine is a well-researched molecule patented in 1961 but was not used medically until 

1966.1 Catapres is a brand name for clonidine, which is used to treat high blood pressure, 

as well as, off-label, attention deficit hyperactivity disorder (ADHD),2,3 withdrawal from 

substances such as opioids, alcohol and nicotine, menopausal flushing, and selected painful 

conditions.2,3 Administration of clonidine can be oral, transdermal, or by injection with an 

onset of action within 1 h. Most side-effects are reversible when withdrawn.4

To design a comprehensive review, our team searched PubMed, MEDLINE, Cochrane 

Library, and references from relevant articles for publications dating from June 1, 2014, 

to August 1, 2020. We searched for the Medical Subject Headings terms “Opioid-Related 

Disorders,” or “Analgesics, Opioid” and “Substance Withdrawal Syndrome.” This work is 

worthy of a thorough review as current reviews of clonidine often overlook much of the 

laboratory and clinical discovery work focusing on 2014 – 2020.5

2. Pharmacokinetics and pharmacodynamics of clonidine

Importantly, clonidine crosses the blood-brain barrier.6 Gold et al.7 demonstrated that 

clonidine’s molecular mechanism of action occurs due to its agonism at the alpha-2A 

receptor, a subtype of the alpha-2 adrenergic receptor, found primarily within the prefrontal 

cortex (PFC). Alpha-2A adrenergic receptors inhabit the presynaptic cleft of the neuron 

and, when activated by an agonist, inhibit downstream neurons. The stimulation of alpha-2 

receptors arrests the secretion of the neurotransmitter norepinephrine (NE).

While usually not severe, common side effects of clonidine include dry mouth, dizziness, 

headaches, and sleepiness. However, in rare cases, severe adverse effects include heart 

arrhythmias, confusion, and even hallucinations. Clonidine should be avoided during 

pregnancy or breastfeeding because it crosses the placental barrier and is present in breast 

milk. Moreover, if abruptly stopped, withdrawal reactions could occur. Clonidine, first 

patented in 1961, was the 79th most commonly prescribed pharmacologic agent in the 

United States and by 2017, with over 10 million prescriptions.8

Following oral ingestion, the drug is absorbed into the bloodstream very promptly and 

almost completely, with peak concentrations in human plasma within 60 – 90 min.9 It 

is important to emphasize that clonidine is lipid-soluble to some extent. The partition 

coefficient logarithm (log P) is equal to 1.6.10 It is well-known that the optimal log P for a 

drug to enter the central nervous system through the blood-brain barrier is 2.0.11
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Approximately one-fifth of an oral dose will not be absorbed and is excreted in the feces, 

while under half of the absorbed dose will be metabolized by the hepatic tissue into inactive 

metabolites, with the rest excreted unchanged by the kidneys. Moreover, the half-life of 

clonidine varies widely, between 6 and 23 h, depending on kidney function.11

2.1. The off-label use of clonidine to treat opioid withdrawal syndrome

The off-label use of clonidine to ease symptoms associated with abrupt withdrawal from 

long-term use of opioids, alcohol, benzodiazepines, and nicotine12,13 is the main topic 

of this review. Clonidine can alleviate opioid withdrawal symptoms by reducing the 

sympathetic nervous system response, including tachycardia, hypertension, sweating, hot 

and cold flashes, anxiety, and general restlessness. These sedating effects of clonidine may 

also aid smokers in quitting. However, side effects can include insomnia, exacerbating an 

already common feature of opioid withdrawal.14 Clonidine induces a reduction in blood 

pressure in both normotensive and hypertensive patients but may also induce hypotension 

and postural hypotension during opioid withdrawal. Notably, clonidine may also reduce 

the severity of neonatal abstinence syndrome for infants with maternal substance use 

disorder.15,16 Although off-label clonidine has been replaced clinically by buprenorphine 

and other treatments,16 it may improve the Network Neurobehavioral Score in neonatal 

intensive care units for neonatal withdrawal syndrome.17

2.2. Better outcomes for impaired health professionals: Why?

Opioid use disorder (OUD) is common and generally untreated. Medications and 

medication-assisted recovery have gained support as it is evidence-based, safe, and useful.18 

Nevertheless, most adults with OUD do not receive outpatient treatment to address their 

addiction and remain untreated.19 At present, outcomes for impaired health professionals20 

and others with OUD are markedly different, even when receiving the same treatments. 

Relapse to OUD and treatment discontinuation are common among most patients but not 

among impaired physicians.21 The fear of overdose, slip, or relapse, which can result 

in death, may differ due to the fear of losing licensure requirements as professional 

and mandated requirements to be drug-free.22 The treatment procedures, follow-up, and 

case management available to physicians through impaired health professional programs, 

including group therapy, caduceus meetings, medication, and particularly random urine 

testing, contribute to their successful recovery.22 The usual goal of treatment for OUD is 

being alive and taking the opioid agonist or antagonist medication. Urine testing confirmed 

OUD outcomes for impaired physicians at 80%, with most tested drug-free and functioning 

at premorbid levels at 5-year follow-ups.23 These outcomes are significantly better than 

those reported for non-health professionals, who are rarely studied for at least 6 months. The 

characterization of OUD treatment outcomes includes treatment discontinuation, dropouts, 

relapses, overdoses, and numbers of hospital visits.24 Return to premorbid functioning 

socially, jobwise, and in other spheres are not investigated as thoroughly as it is for 

physicians. Physician outcomes focus on full recovery and return to work.25 Thus, OUD 

treatment tends to replace opioids with medications such as buprenorphine and methadone.

Physicians and other health professionals are likely to opt for detoxification from opioids 

and placement on long-acting injectable naltrexone.26 The frequent choice of clonidine may 
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be related to licensure and drug-free job regulations. Clonidine’s choice may also relate 

to changes in perception and cognitive functioning felt on chronic opioids compared to 

the effects of detoxification and abstinence or detoxification and naltrexone. In the highest-

risk group of physicians with OUDs, such as anesthesiologists, the decision to treat with 

naltrexone may be directed by the physician health program itself.27 In this case, clonidine 

may be incorporated in post-assessment detoxifications.

Clonidine is widely used today as an adjunct treatment for opioid withdrawal, OUD-related 

craving, and anxiety, and in the transition to naltrexone for treating physicians, executives, 

and other patients with OUDs.28 The neurochemical mechanisms of clonidine, especially 

related to catecholaminergic activity involving NE and dopamine, provide promising 

treatments to reverse opioid-induced changes in the locus coeruleus (LC) and boost 

dopaminergic recruitment across this brain region to attenuate NE hyperactivity.28,29

Although the United States Food and Drug Administration (FDA) approved lofexidine,30 

which has a higher affinity and specificity for alpha-2A adrenergic receptors, induces less 

hypotension and other serious side effects than clonidine, and does not reinforce opioid 

dependence, the high cost of lofexidine has kept clonidine ahead of lofexidine prescriptions 

for OUD detoxification.31

2.3. Opioid withdrawal: Clinical syndrome and pathophysiology

Despite effective treatment for opioid addiction, including buprenorphine (suboxone) and 

methadone, most patients still relapse into opioid misuse, often resulting in overdoses during 

these slips and relapses. Acute precipitants, such as stress, exposure to drug-associated cues, 

or the use of an initially small amount or priming dose of a drug, can trigger relapses, shorter 

lapses, and episodes of craving. Treatments that buffer the effects of these acute triggers 

might improve buprenorphine maintenance outcomes.

2.4. Definitions of withdrawal

Withdrawal from a substance is characterized in the Diagnostic and Statistical Manual 

for Mental Disorders, 5th edition (DSM-5), as “a substance-specific problematic 

behavioral change, with physiological and cognitive concomitants, that is due to the 

cessation of, or reduction in, heavy and prolonged substance use.” The International 

Classification of Diseases, 10th edition, defines withdrawal as “a group of symptoms 

of variable clustering and severity occurring on absolute or relative withdrawal of 

a psychoactive substance after persistent use of that substance.” The characteristic 

clinical signs of opioid withdrawal syndrome include hypertension, tachycardia, mydriasis, 

piloerection (goosebumps), lacrimation, rhinorrhea, yawning, insomnia, nausea, vomiting, 

and diarrhea.32 The progression of opioid withdrawal is primarily influenced by the half-life 

of the specific opioid involved. Opioids characterized by short half-lives, such as heroin 

(with a half-life of 3 – 5 h), prompt the onset of withdrawal symptoms within approximately 

12 h after the last dose. Conversely, discontinuation of opioids with longer half-lives, such as 

methadone (with a half-life of up to 96 h), may lead to withdrawal symptoms emerging 1 – 

3 days following the last dose. Moreover, the duration of the withdrawal syndrome typically 

aligns with the half-life of the opioid. For instance, heroin withdrawal typically spans 4 – 5 
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days, while methadone withdrawal can extend from 7 to 14 days and, in certain cases, persist 

for several weeks. Other than alpha-2 receptor agonists, other agents, such as pro-dopamine 

regulators, may be useful adjuncts to intervene in heightened NE activity during opioid 

withdrawal.

2.5. Development of the locus coeruleus noradrenergic hyperactivity theory

In 1977, Gold’s group tested clonidine in humans with OUD after opioid discontinuation 

and the emergence of withdrawal signs and symptoms as a test of the LC noradrenergic 

hyperactivity theory.33,34 These clinical scientists chose clonidine over other available 

alpha-2 adrenergic agonists because clonidine was widely used worldwide and considered 

safe, effective, and approved by the FDA for hypertension. During that period, the 

WHO was concerned about any medication that reversed opioid withdrawal in laboratory 

investigations. In the experiments, clonidine acutely reversed opioid withdrawal, including 

neonatal opioid withdrawal distress, reduced naloxone-precipitated withdrawal distress, 

facilitated rapid and ultra-rapid opioid detoxification, and provided an option for impaired 

health professionals and others interested in a drug-free treatment. Clonidine also improved 

the transition from opioid agonist to naltrexone and enhanced treatment outcome success 

rates for both naltrexone and buprenorphine.35–38

Gold’s group conducted a series of studies on LC stimulation and ablation in rodents 

at the College of Medicine, University of Florida, in the early 1970s, and later at 

Yale in the late 1970s and early 1980s. These studies led Gold and his associates 

to hypothesize that the nucleus LC might be responsible for some opioid withdrawal 

syndrome symptoms. They continued this work with rats and non-human primates at 

Yale in the Aghajanian and Redmond laboratories. Specifically, they stimulated the LC 

and produced hypertension, tachycardia, and other signs of opioid withdrawal, including 

piloerection (bristling) in animals that had never been exposed to opioids.39 This LC 

electrical stimulation produced signs, symptoms, and behaviors similar to those induced 

by the alpha-2 adrenergic antagonists yohimbine and piperoxane.40 They could reverse the 

effects of electrical stimulation with morphine, and this effect could be reversed again with 

the opioid antagonist naloxone.41 Moreover, these researchers could reverse the effects of 

yohimbine and piperoxane with clonidine.42 They were also able to pre-empt the effects of 

these agents by lesioning the nucleus LC.39

As a known alpha-2 adrenergic receptor agonist, clonidine was first tested in rodents and 

non-human primates and ultimately in humans in cases of both precipitated and naturally 

occurring opioid withdrawal by Gold’s group in the 1970s. This work (Gold et al., 1982), 

recognized by the American Psychiatric Association with the Foundations Fund Annual 

Award and Prize, represents the first true translation of basic science into discoveries that 

help patients in psychiatry.43

2.6. Mechanisms in withdrawal symptomatology

The noradrenergic hyperactivity theory for opioid withdrawal changed the field in many 

ways.34,42 First, it provided the first neuroanatomy of opioid withdrawal, which could be 

tested, and identified the roles of alpha-2 adrenergic and opioid inputs. This allowed for 
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a better understanding of both opioid and non-opioid treatments or withdrawal reversal 

methods. Second, it enabled physicians to explore and develop new opioid, mixed opioid, 

and non-opioid treatments, including pharmaceuticals and nutraceuticals.44,45–50 Third, it 

introduced a new class of treatments, such as lofexidine, guanfacine, and others, which use 

the same mechanism of action–alpha-2 adrenergic agonist stimulation and inhibition of the 

nucleus LC.31,43,51 These treatments could potentially exhibit better side effect profiles and 

other advantages.36,52

2.7. Summary of empirical research

Several behavioral and biochemical studies53 support Gold’s hypothesis that naloxone-

precipitated withdrawal can be attenuated by targeting the LC. Subsequent studies 

demonstrated that clonidine reduced morphine withdrawal-induced increases in regional 

cerebral metabolic rates for glucose, irrespective of the distribution of alpha-2 adrenergic 

receptors. Clonidine acts primarily at the LC and central amygdala, and it may also have 

importance in other regions.54

Research conducted on non-human primates has revealed that the noradrenergic LC may 

play a role in various aspects of the brain’s alarm function, encompassing attentiveness, 

arousal, anxiety, fear, and terror, along with their physiological manifestations. These 

investigations involved comparing the outcomes of electrically stimulating the LC with 

minute electrodes to the effects induced by other agents or conditions capable of modulating 

LC activity. The findings suggested that endogenous morphine-like substances and opioids 

serve to inhibit the activation of the LC system, and the onset of opioid withdrawal 

syndrome arises from the reactivation of this LC-noradrenergic system.35 Clonidine, which 

suppressed noradrenergic LC activity in low doses, was therefore postulated to suppress 

opioid withdrawal signs and symptoms. Many signs of opioid withdrawal produced through 

electrical or chemical stimulation of the nucleus LC increase noradrenergic activity and the 

concentration of the noradrenergic metabolite 3-methoxy-4-hydroxyphenyl glycol within the 

brain. Clonidine, an alpha-2 adrenergic agonist, can inhibit signs of opioid withdrawal in 

animals and humans.55

Clonidine likely attenuates opioid withdrawal syndrome due to the reduction of 

noradrenergic neuronal activity originating in the LC. However, alpha-2 adrenergic receptors 

located throughout the body and other mechanisms may also play a role. In a series 

of studies, Gold’s group explored the LC alpha-2 adrenergic receptor selectivity and 

the neuroanatomical and pharmacological anti-withdrawal action of clonidine (Table 1). 

Confirmation of this hypothesis in rats, monkeys, and human subjects has added to the 

understanding of the mechanisms of opioid action and withdrawal.

Moreover, a double-blind, placebo-controlled, and cross-over trial from Taylor et al.53 found 

that clonidine eliminated the symptomology of opioid withdrawal for 240 – 360 min in 

11 hospitalized OUD subjects. In the longer term, the same patients, in an open pilot 

study of the effects of clonidine taken for 1 week, also experienced the elimination of 

opioid abstinence symptoms. These data suggest that opioid withdrawal is due to increased 

neuronal activity in areas regulated by alpha-2 adrenergic and opioid receptors, like the 

LC. The early clinical studies, combined with more direct observations in rodents and 
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non-human primate studies, are consistent with the hypothesis that in humans, brain NE 

systems become hyperactive during opioid withdrawal and that clonidine suppresses this 

hyperactivity of NE systems.29

3. Modern architectural analysis of treatment for OUD: Inducing 

“dopamine homeostasis” to treat protracted withdrawal

In the United States, a national opioid epidemic4 has prompted the recommendation of 

three FDA-approved medications for the prevention and treatment of OUD: methadone, 

buprenorphine, or naltrexone. There is ample evidence of their efficacy; however, these 

medications are under-prescribed.18 The objective here is to briefly review and synthesize 

data from the available medical literature on these FDA-approved medications and provide a 

framework to demonstrate the optimal approach for outpatient management of OUD.

Clonidine and lofexidine have improved and refined the medical approach to opioid 

withdrawal states while transitioning opioid-dependent adults to extended-release injection 

naltrexone.56 Opioid agonists like methadone, mixed agonists like buprenorphine, and 

the combination of buprenorphine with naltrexone and clonidine are now used to 

treat OUD.57 The authors assessed the efficacy of two outpatient opioid detoxification 

methods and relapse prevention in a trial transition induction to extended-release (XR)-

naltrexone. A 7-day detoxification regimen utilizing naltrexone with a single day of 

buprenorphine administration was followed by a gradual increase in oral naltrexone doses, 

supplemented with clonidine and other medications. Similarly, a buprenorphine-assisted 

detoxification protocol involved a 7-day tapering of buprenorphine, followed by a week-long 

interval before initiating XR-naltrexone, in accordance with official prescribing guidelines. 

The combination of naltrexone treatment and adjunctive clonidine facilitated complete 

withdrawal for 38 out of 40 methadone-dependent patients within a span of 4 – 5 days. 

Naltrexone dosing typically commenced at 1 mg/day and was incrementally raised to 50 

mg/day over a 4-day period for most patients. Clonidine administration helped mitigate 

the intensity of naltrexone-induced withdrawal symptoms. Significant reductions in blood 

pressure were observed without instances of syncope, and although certain symptoms 

persisted, including anxiety, anorexia, insomnia, restlessness, and muscular aching, they 

were either substantially alleviated or resolved entirely by the time of discharge. The use of 

clonidine for opioid detoxification may pave the way for naltrexone maintenance in many 

clinical settings and might also succeed with patients receiving methadone doses up to 50 

mg/day.56

This development of clonidine and naltrexone as a treatment for opioid addiction 

demonstrates the translation of neurobiological advances into new and effective clinical 

approaches. Naltrexone provides a chronic opioid receptor blockade, which prevents opioid 

intoxication and subsequent re-addiction in recovery. This sequential use of naltrexone for 

opioid receptor blockade, in conjunction with clonidine to treat withdrawal symptomatology 

during rehabilitation, represents a viable and effective treatment for opioid addiction in 

motivated patients.
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3.1. Summary of the clonidine/naltrexone approach to opioid withdrawal

Gold et al.58 summarized experiences with the clonidine/naltrexone approach in motivated 

OUD patients. Clonidine hydrochloride, an alpha-adrenergic agonist, is a non-opioid 

medication that, when used in detoxification from opioids, exhibits rapid suppression of 

the signs and symptoms associated with opioid withdrawal. Studies have demonstrated that 

clonidine is useful in detoxifying for withdrawal from methadone maintenance patients, 

achieving zero dosage in <14 days with a high success rate, compared to the usual 3 – 6 

months. In a clinical investigation, clonidine suppressed opioid withdrawal symptomatology 

in patients on doses of up to 75 mg of methadone daily, and shorter-acting narcotics 

withdrawn in less than a week. To prevent relapse, post-detoxification counseling and the 

use of the narcotic antagonist, naltrexone, are recommended.37

Clonidine’s ability to reverse opioid withdrawal syndrome in acute withdrawal and anti-

craving studies supported the NE hypothesis and suggested a new use for clonidine.32,55,59–

63 The effectiveness of lofexidine provided further validation for the noradrenaline (NA) 

hypothesis. Clonidine has been demonstrated to be a potent emergency intervention for acute 

opioid withdrawal, facilitating detoxification from methadone, heroin, and other opioids. 

By reversing cognitive, affective, and physiological manifestations of withdrawal, clonidine 

not only alleviates immediate symptoms but also maintain suppression of their reoccurrence 

when administered over a period of 10 – 14 days within a detoxification regimen.55,59

Clonidine appears most appropriate for clinical application as a transitional intervention 

bridging opioid dependence and naltrexone therapy. A 10-day outpatient detoxification 

regimen involving clonidine has proven highly successful in enabling patients to cease 

opioid use abruptly and maintain abstinence long enough to commence naltrexone 

treatment. However, the sedative and hypotensive side effects associated with clonidine 

have constrained its clinical utility, particularly among outpatients, prompting exploration 

into alternative alpha-2 noradrenergic agonists that may offer similar anti-withdrawal 

efficacy without the undesirable side effects of clonidine. Initial outpatient evaluations of 

lofexidine, a structural analog of clonidine, suggest that it could be equally effective for 

opioid detoxification and potentially more suitable for outpatient management if it lacks the 

sedation and hypotension occasionally observed with clonidine.64

Blum et al.65 developed a protocol that included the neuronutrient KB220Z and other 

anti-withdrawal agents, such as clonidine, to investigate initial detoxification from OUD in 

treatment centers, with particularly heavily dependent OUD subjects. Among the 17 subjects 

in the study, only three were administered buprenorphine/naloxone (Bup/Nx) alongside 

KB220Z. Initially, in this pilot phase, five patients received 6 days of KB220Z at a dosage 

of 2 oz twice daily before meals, in conjunction with clonidine, benzodiazepines, and 

other adjunctive medications such as gabapentin to manage nausea and sleep disturbances. 

Subsequently, the second protocol involved 12 patients receiving a higher dose of 4 oz every 

6 h for 6 days. Only three individuals experienced relapse within the initial 2 weeks, while 

the remaining 14 subjects remained on KB220Z without requiring additional Bup/Nx for 

periods ranging from 120 to 214 days.

Gold et al. Page 9

INNOSC Theranostics Pharmacol Sci. Author manuscript; available in PMC 2024 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Due to the inclusion of standard detoxification agents, definitive conclusions regarding 

the effects of KB220Z cannot be drawn. However, the fact that only three out of 17 

subjects needed Bup/Nx is notable. If corroborated by larger, more comprehensive studies, 

this opioid/opioid detoxification approach could offer a novel strategy for managing 

withdrawal without relying on addictive opioids. Combining alpha-2 agonist therapy with 

KB220Z, a pro-dopamine regulator, may emerge as a frontline option alongside other 

treatment modalities. Notably, neuroimaging studies comparing KB220Z and placebo have 

demonstrated robust and specific blood oxygen level-dependent dopamine activation in 

animal models66 and abstinent heroin addicts,67 suggesting putative induction of “dopamine 

homeostasis.”

Previously, Blum et al. published several articles arguing against the long-term utilization of 

opioid agonists such as methadone and buprenorphine, except for harm reduction, but did 

not favor their prophylaxis use.66–90

In terms of post-withdrawal treatment options, many articles discuss opioid agonists 

and narcotic antagonism, including alpha-2 stimulation with agents such as clonidine 

and lofexidine. While some of these articles may be somewhat cryptic, they expand 

understanding of this important topic.60–62,91,92 Other important novel therapeutic 

modalities include repetitive transcranial magnetic stimulation,93–101 exercise,102–107 and 

precision addiction management, which couples genetic addiction risk testing67,69,73,73,76–

79,81,82,88,89,108–113 with pro-dopamine regulation.65,72,72,82,111–121

4. Long-term use of opioid agonists engendering antireward

Physicians treat opioid-dependent patients with an office-based maintenance program 

using buprenorphine, a partial mu-opioid receptor agonist. Basic science predicted122 

and clinical experiences have confirmed that buprenorphine effectively controls opioid 

withdrawal in OUD treatment, especially in fentanyl use disorders. Patients often prefer 

opioid replacement with detoxification and abstinence or detoxification and naltrexone. 

Buprenorphine is more effective than abstinence or placebo for managing opioid addiction; 

however, if high doses are needed, it may not be superior to methadone. Treatment phases 

include induction, stabilization, and maintenance. The treatment outcome is comparable 

to lower doses of methadone. However, the current “standard of care” necessitates the 

initiation of buprenorphine therapy at the onset of withdrawal symptoms, adjusted to 

address symptoms and craving severity. The advantages of buprenorphine include some 

reversal of anhedonia, good availability for office use, and somewhat lower abuse potential. 

Disadvantages include lack of effectiveness and high cost in patients who would require high 

methadone doses.

However, as a cautionary note, while short-term therapy with buprenorphine appears very 

appropriate, this may not be the case for prolonged maintenance therapy. The Bup/Nx 

combination has acute benefits for the treatment of heroin use disorder (HUD) but not 

for relapse prevention and may increase the probability of relapse.123–125 Specifically, 

opioid agonists, such as methadone and buprenorphine, are clinically effective in reducing 
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withdrawal and craving during heroin detoxification but fail to reduce the likelihood of 

relapse after detoxification.

Neuroimaging studies have significantly enhanced our comprehension of why methadone or 

buprenorphine often fall short in reducing the likelihood of relapse. These findings, widely 

recognized for their reliability, shed light on the neurobiological mechanisms underlying 

relapse and aid in the development of more effective therapeutic strategies. Mei et al.126 

conducted research investigating the immediate impacts of buprenorphine on neurological 

responses to cues associated with heroin. The functional magnetic resonance imaging 

(fMRI) investigation provided insights into the neurobiological mechanisms underlying 

addiction and relapse, as well as the therapeutic effects of buprenorphine. While under 

the influence of buprenorphine, neurological responses to cues associated with heroin 

diminished notably in regions including the amygdala, hippocampus, ventral tegmental 

area, and thalamus. However, no significant changes were observed in the ventral striatum, 

orbital-prefrontal-parietal cortices, or the cingulate gyrus. This absence of response in the 

cingulate gyrus underscores its partial role in the process of relapse.

Neuropsychological and functional neuroimaging evidence converges to indicate that the 

dorsal anterior cingulate cortex (dACC) is dysfunctional in substance abuse. Yücel et 
al.127 investigated the biochemical and physiological properties of the dACC. Using 

fMRI and proton magnetic resonance spectroscopy (1H-MRS), researchers investigated the 

biochemistry and physiological activity of the dorsal anterior cingulate cortex (dACC) 

during a behavioral control task in 24 individuals with opioid dependence. This group was 

compared to 24 gender-, intelligence-, age-, and performance-matched healthy subjects. 

While both groups exhibited comparable levels of activation in the dACC during the 

task, the opioid-dependent group showed heightened task-related activation in frontal, 

parietal, and cerebellar regions, alongside reductions in concentrations of N-acetyl aspartate 

and glutamate/glutamine in the dACC. Moreover, the opioid-dependent group failed to 

demonstrate the anticipated correlations between dACC activation and behavioral measures 

of cognitive control. These findings suggest that long-term opioid dependence may result in 

biochemical and physiological abnormalities in the dACC.

Individuals with OUD may necessitate increased activation of the frontoparietal and 

cerebellar networks involved in behavioral regulation to achieve normal levels of task 

performance and behavioral control. Tailoring treatment to the specific needs of patients 

who are most susceptible to the effects of chronic opioid administration appears prudent. In 

addition, Mei et al.126 observed an unaltered fMRI response to heroin-related cues in various 

brain regions, including the ventral striatum, orbital, parietal, lateral, and PFC, indicating 

a lack of modulation by buprenorphine. This lack of buprenorphine effect on these key 

brain regions linked to relapse may explain its limited therapeutic effects on relapse.128 

For a review of the effects of opioid agonists on dACC function, see Lin et al.,129 who 

found positive effects on emotional reactivity but not reward activity in treatment-resistant 

mid- and late-life depression. Verdejo-García et al.130 demonstrated a beneficial role of 

high-dose methadone on dACC biochemistry and linked elevated myoinositol levels to 

depressive symptoms following buprenorphine treatment. Seah et al.,131 showed in a small 

sample (N = 4) that group-level analyses revealed buprenorphine significantly activated 
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brain regions, including the thalamus, striatum, frontal, and cingulate cortices, compared 

to a saline vehicle in awake non-human primates. It is noteworthy that animal studies 

involving the incubation of cocaine craving have indicated that a novel target for withdrawal 

is the GluR2-lacking AMPA receptors in the ventral striatum.132 This notion has received 

support in humans, whereby Hermann et al.133 revealed a positive correlation between 

glutamate levels and previous withdrawals, and an increase in glutamate/glutamine with age 

in contrast to a decrease in controls, indicating a destabilization of the glutamate system in 

opioid-dependent patients and supporting the glutamate hypothesis of addiction.

There are several limitations to the long-term utilization of methadone and buprenorphine 

(with and without naloxone) and their associated side effects.90,109,134–137 Moreover, 

Chalhoub and Kalivas138 reviewed the limitations and challenges of the current maintenance 

and medication-assisted withdrawal strategies commonly used to treat OUD. Using 

animal models of opioid addiction, they noted the roles of endocannabinoid, orexin, and 

glutamatergic signaling in the expression and maintenance of addiction-like behaviors and 

suggested these systems as potential targets to expand therapeutic options for treating OUD. 

One important aspect related to the effects of chronic buprenorphine use concerns brain 

glucose metabolism. Walsh et al.139 compared the effect of buprenorphine to a placebo and 

found that buprenorphine significantly reduced the cerebral glucose metabolism rate and 

regional cerebral metabolic rate for glucose in 19 of 22 bilateral and four midline regions by 

up to 32%.

4.1. Locus coeruleus: Beyond drug withdrawal

The locus coeruleus is a compact nucleus situated deep within the brainstem, serving 

as a pivotal hub for the extensive noradrenergic neurotransmitter system of the brain. 

The seminal work of Dahlströem and Fuxe140 in 1964, which unveiled the presence 

of monoamine-containing neurons in the central nervous system, laid the foundation for 

subsequent systematic investigations into the structure and functionality of the LC. Recent 

research has harnessed an impressive array of advanced neuroscience techniques to delve 

into and understand the intricacies of this enigmatic nucleus, unearthing novel layers of 

organization and function, particularly pertaining to human behavior. Although all neurons 

within the LC receive inputs associated with autonomic arousal, subsets of these neurons can 

encode distinct cognitive processes, potentially through more specialized inputs originating 

from forebrain regions. As highlighted by Poe et al.,141 the LC exhibits specific patterns, 

diversity in receptor distributions, and innervation of target areas, suggesting that stimulation 

(activation) of the LC can exert more nuanced influences on target networks than previously 

thought.

4.2. Stress

Stressors activate the locus coeruleus-NA (LC-NA) system through corticotropin-releasing 

factor (CRF), leading to an inclination toward high-tonic activity in LC neurons while 

reducing their responsiveness to discrete stimuli.142 Chemogenetic LC activation might 

mimic acute stress, increasing brain-wide functional connectivity, especially in salience 

and amygdala networks. Moreover, activation initiates reduced exploratory and enhanced 

anxiogenic behavior.143 Interestingly, enkephalin-containing axon terminals converge on 

Gold et al. Page 12

INNOSC Theranostics Pharmacol Sci. Author manuscript; available in PMC 2024 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some of the same LC dendrites as CRF-containing axon terminals.144 Furthermore, these 

enkephalin-type neurons have opposing effects on LC discharge during stress,145 implying 

that enkephalin afferents to the LC (acting at mu-opioid receptors) are part of the stress 

coping and recovery from the opioid system.146 Importantly, gender is a determinant of LC 

sensitivity to stress. In animals, the LC neurons of females are more sensitive to CRF and 

less sensitive to enkephalin than males.147 Indeed, Brady et al.148 recommended that the 

higher prevalence of stress-induced psychiatric disorders in females may be partly due to the 

molecular effects of sex hormones. The interaction of CRF and other neurotransmitters like 

dopamine may yield anti-stress effects due to the blocking effect on NE. This interaction 

may have particular relevance for both substance and non-substance behavioral addictions.

4.3. Summary

Clonidine has played a pivotal role in the history of addiction medicine for many reasons. 

It was the first medication-assisted treatment (MAT) to be discovered and translated from 

science to practical use in rats, monkeys, and humans. The discovery of clonidine’s anti-

opioid withdrawal efficacy resulted from understanding LC hyperactivity or release from 

LC chronic opioid inhibition.42 Kleber et al.37 demonstrated that clonidine is the first non-

opioid medication to reverse opioid withdrawal. Clonidine reduced detoxification distress 

to the point that naltrexone149 became a viable alternative to methadone and, ultimately, 

buprenorphine.

Today’s treatment of OUDs often begins with an overdose intervention in an emergency or 

hospital department, followed by a rapid transition to buprenorphine. Although treatment 

algorithms for OUD have been well described,18 they are often one-size-fits-all. Many 

patients not engaged in this transition from active use to treatment are lost to follow-up, drop 

out, or continue receiving buprenorphine or methadone for years. Some patients who want 

to detoxify or switch to monthly naltrexone injections can benefit from using non-opioid 

medications, such as clonidine or lofexidine, to treat withdrawal symptoms. Non-opioid 

treatment options are essential for physicians and those at risk for OUDs. Clonidine is 

important in the transition of physicians from OUDs to naltrexone and the transition of 

thousands of patients maintained on methadone and buprenorphine to naltrexone. MAT 

discontinuation is an important overdose risk factor, and clinicians often recommend 

naltrexone after long-term agonist maintenance for OUDs. Clonidine may have additional 

roles in reducing withdrawal distress from other drug cravings during MAT maintenance and 

in neonates.

An intriguing concept is that receptor tolerance entails the enhancement of receptor 

regulation mechanisms, such as desensitization and internalization. Furthermore, as 

suggested by Christie,150 the adaptations leading to cellular tolerance are multifaceted, 

involving several significant processes, including upregulation of cAMP/PKA and cAMP 

response element-binding signaling, as well as mitogen-activated protein kinase cascades in 

opioid-sensitive neurons. These mechanisms have implications not only for tolerance and 

withdrawal but also for synaptic plasticity during cycles of intoxication and withdrawal. 

Such adaptations could potentially impact the likelihood of relapse.
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It is also important to point out that some early experiments suggested that the LC 

might not be a primary site for opioid-induced withdrawal. However, a complete lesion 

of catecholaminergic nerve cell bodies in the LC, achieved by intracerebroventricular 

injection of 6-hydroxydopamine, resulted in the total abolition of SS14-specific binding in 

the structure. Specifically bound [125I] [Tyr0],D-Trp8]SS14 and TH+ cell density overlapped 

with SS14. Furthermore, it is known that tyrosine hydroxylase is the rate-limiting enzyme 

involved in the synthesis of catecholamines, especially dopamine. Gagne et al.151 revealed 

that somatostatin binding sites are uniformly localized on all noradrenergic neurons of 

the LC. There is abundant evidence supporting the role of catecholamines, especially in 

opioid-induced withdrawal and LC.152

The shift to long-term or perpetual use of powerful and addictive opioids such as 

buprenorphine and methadone is a logical response to an OUD crisis and opioid overdose 

epidemic. Detoxification and abstinence are associated with more deaths, overdoses, and 

medical problems. It is of interest that the combination of clonidine and long-acting 

naltrexone maybe as effective and comparable in some cases to just using buprenorphine 

alone, to detoxify patients for opioid treatment (X: BOT). However, work be Lee et al. 
in an attempt to determine the potential effectiveness of naltrexone versus buprenorphine 

did not provide definitive results. As suggested by Lee et al.153 except for health and 

other professionals, successful outcomes are not generally the case. This prompts the 

question: What are the logical short- and longer-term outcomes to be achieved for OUD 

patients? Typically, a positive OUD outcome is defined by not dying, attending clinics to 

receive opioid maintenance medication, or avoiding overdoses and emergency room visits. 

In physicians, outcomes are distinctly different, focusing on returning to full premorbid 

function. These include negative urine tests, attending Caduceus meetings, following a 

detailed psychosocial post-evaluation treatment plan, and achieving positive social, job 

return-performance, and spouse-partner ratings.

While extensive research is required, it is necessary to revisit the issues of depression, 

suicide, and despair associated with chronic iatrogenic opioid administration using MATs. 

Treatment without a focus on recovery and without addressing “dopamine homeostasis” 

may contribute to a revolving door, where many patients with OUD relapse and overdose, 

repeatedly receiving the same treatment without long-term success.70,154

5. Locus coeruleus therapeutics: Applications to other areas – behavioral 

addictions

As discussed in the current article, dysfunction of the LC-NA system affects many 

neuropsychiatric and neurological diseases, including opioid and other drug withdrawal 

symptomatology, Parkinson’s disease, depression, anxiety, post-traumatic stress disorder, 

ADHD, and Alzheimer’s disease. It has become evident that even in cases where the LC 

is not directly involved in the disorder, manipulating LC activity could improve health 

outcomes. Disruption of the feedback loop supporting the dysfunction could re-establish a 

healthy physiological response, moving the patient toward normal daily activity.141 There 

are selective NA reuptake inhibitors, such as atomoxetine, used for opioid withdrawal.155 
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NA agonistic agents are used for ADHD,156 and for Parkinson’s disease, the alpha-2 

adrenergic receptor antagonist lofexidine157 is used for cognitive dysfunction158,159 and 

reboxetine for depression.160 Emerging evidence suggests the possibility of minimally 

invasive procedures for manipulating the LC, such as regulating the circuit from the 

suprachiasmatic nucleus to the LC through a relay in the dorsomedial hypothalamus.161 

Another potential method is transcutaneous vagus nerve stimulation, a non-invasive 

procedure reported to possess positive effects on psychiatric and neurological disorders, 

such as depression.162

Despite the potential benefits, noradrenergic compounds are not frequently administered 

as a frontline therapeutic modality. NA dysfunction contributes to many aspects of brain 

disorders, but many human clinical trials have not distinguished specific NA effects from 

dopamine effects. Indeed, more is known about the specific effects of dopamine and 

associated neuron degeneration and other physiological and psychiatric effects.163

To investigate the involvement of the noradrenergic system in pathological gambling (PG), 

Pallanti et al.164 measured the neuroendocrine growth hormone (GH) response to the alpha-2 

adrenergic receptor agonist clonidine and placebo in PG individuals and controls. One 

hypothesized mechanism, as proposed by these authors, is that clonidine’s net effects 

entail reducing neurotransmission by suppressing LC activity and stimulating GH secretion 

through activation of post-synaptic alpha-2 adrenergic receptors in the hypothalamus. 

The area under the curve for GH response to clonidine was found to be significantly 

lower in the PG group compared to controls. Notably, individuals with PG exhibited 

significantly blunted GH responses relative to controls at 120 and 150 min post-clonidine 

administration. These findings support the notion that the diminished sensitivity of post-

synaptic alpha-2 receptors may be linked to elevated noradrenergic secretion in PG. This 

peripheral noradrenergic dysfunction aligns with attenuated corticofrontal noradrenergic 

function observed in positron emission tomography (PET) studies of PG.17

In an interesting study, Saddichha et al.165 demonstrated that clonidine was effective in 

reducing compulsive soap eating, known as sapophagia, but not feeding behavior, suggesting 

an effect on compulsive behavior rather than on eating disorders. Another study by 

Cazala166 demonstrated that clonidine specifically stimulates alpha-noradrenergic receptors 

and has two distinct effects on intracranial self-stimulation (ICSS) behavior: it acutely 

depresses ventral hypothalamic ICSS at low doses, while it causes a discrete increase in 

dorsal ICSS. In addition, evidence indicates that chronic clonidine administration affects 

conflict behavior in rats, increasing punished responding in the conflict test. The authors 

suggest that clonidine may have some potential as an anti-panic drug.167 Experiments in 

Blum’s laboratory clearly pointed out that a reduction in serotonin levels in the brains 

of rodents resulted in an enhanced fear reaction, potentially implicating clonidine in 

serotonergic transmission.168

Some researchers consider smoking behavior, not just nicotine dependence, to be related 

to oral fixation and potentially a behavioral addiction.169 Moreover, combined data from 

nine double-blind placebo-controlled trials (N = 813) revealed that the smoking quit rate 

with clonidine was significantly greater than with placebo. Moreover, the in-depth analysis 
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suggested that clonidine potentiates the effect of individual behavior therapy and may be 

more beneficial for female smokers compared to male smokers.170 Current standards of care 

for medically supervised withdrawal include treatments with mu-opioid receptor agonists 

such as methadone, partial agonists like buprenorphine, and alpha-2 adrenergic receptor 

agonists such as clonidine and lofexidine. Newer agents also utilize these pharmacological 

mechanisms, including tramadol for mu-opioid receptor agonism and tizanidine for alpha-2 

agonism.5 To explore the initiation of detoxification in individuals addicted to opioids/

opioids, Blum’s laboratory developed a protocol for use in treatment centers, particularly 

for heavily dependent opioid/opioid subjects.171,172 Moreover, future research endeavors 

encompass managing withdrawal while stabilizing patients with OUD on extended-release 

naltrexone, transitioning patients from methadone to buprenorphine for OUD treatment, and 

tapering opioids in patients with chronic, non-cancer pain. However, compliance remains 

a challenge that could potentially be addressed through the addition of a pro-dopamine 

regulator.173

6. Limitations

While this article takes a narrative approach rather than a systematic review, we 

acknowledge the potential for bias in our overall perspective on this topic. It is important 

to recognize that some studies present alternative views, suggesting that regions proximal to 

the LC, such as the periaqueductal gray, as well as other brain structures independent of the 

LC noradrenergic system, may play a more significant role in the manifestation of opioid 

withdrawal syndrome.174

In a study by Christie,174 intracellular recordings of membrane potassium current were 

conducted from rat LC in vitro. The researchers observed tolerance to the opioid-

induced increase in potassium conductance, with a more pronounced effect observed 

for normorphine compared to [Met5]enkephalin and [D-Ala2,MePhe4,Gly5-ol]enkephalin. 

Experiments using the irreversible receptor blocker beta-chlornaltrexamine indicated that 

normorphine exhibited lower intrinsic efficacy than [Met5]enkephalin and [D-Ala2, MePhe4, 

Gly5-ol]enkephalin. This adaptation was not attributed to any changes in the properties of 

the potassium conductance mediated by mu-receptors, as both full and partial agonists at 

alpha-2 adrenergic receptors, which are linked to the same potassium conductance, remained 

unchanged in their effectiveness. In addition, no association was found between this 

adaptation and any alterations in the affinity of mu-receptors for the antagonist naloxone.

We believe that other sites besides the LC are certainly involved in opioid-induced 

withdrawal. However, the preponderance of available literature supports the role of the LC, 

as evidenced by a plethora of clinical data, with at least 80 articles suggestive of the LC’s 

role in opioid withdrawal.175

7. Conclusion

To assist the readership’s comprehension, a summary schematic is provided (Figure 1). 

Clonidine operates through agonism at the alpha-2A receptor, a subtype of the alpha-2 

adrenergic receptor predominantly located within the PFC. In the PFC, it inhibits the 
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release of NE, which is implicated in withdrawal symptoms. Consequently, clonidine is 

effective in alleviating withdrawal-related anxiety, hypertension, and tachycardia. Gold 

et al. demonstrated the ability of clonidine to reverse the effects of LC stimulation, 

thereby propelling the noradrenergic hypothesis for opioid withdrawal into the forefront 

of research. In the 1980s, the efficacy of clonidine in facilitating the transition to long-

acting injectable naltrexone was confirmed for physicians, executives, and other motivated 

individuals with OUDs. Despite its challenges with compliance, naltrexone offers sustained 

blockade of opioid receptors, mitigating the risk of overdose, intoxication, and subsequent 

re-addiction in motivated patients. The development of clonidine and naltrexone as treatment 

modalities for OUDs, as well as other addictions, underscores the potential for translating 

neurobiological advancements from rodent models (bench) to non-human primates and 

ultimately to humans (bedside), leading to novel and efficacious clinical interventions (Table 

1).
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Figure 1. 
A summary schematic of this review

Abbreviations: ADHD: Attention deficit hyperactivity disorder; OUD: Opioid use disorder.

Gold et al. Page 28

INNOSC Theranostics Pharmacol Sci. Author manuscript; available in PMC 2024 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gold et al. Page 29

Ta
b

le
 1

.

K
ey

 f
ac

ts

C
lo

ni
di

ne
.

L
oc

us
 c

oe
ru

le
us

 s
tim

ul
at

io
n 

pr
om

ot
es

 th
e 

re
le

as
e 

of
 n

or
ep

in
ep

hr
in

e.

R
ed

uc
es

 th
e 

se
ve

ri
ty

 o
f 

w
ith

dr
aw

al
 f

ro
m

 o
pi

oi
d 

us
e.

N
ar

co
tic

 r
ep

la
ce

m
en

t t
he

ra
py

 
M

et
ha

do
ne

-s
yn

th
et

ic
 o

pi
oi

d 
an

d 
bu

pr
en

or
ph

in
e 

(S
ub

ut
ex

) 
ar

e 
ag

on
is

ts
.

 
Su

bo
xo

ne
; b

up
re

no
rp

hi
ne

/n
al

ox
on

e 
is

 a
n 

ag
on

is
t/a

nt
ag

on
is

t.

 
B

up
re

no
rp

hi
ne

 a
nd

 m
et

ha
do

ne
 m

ai
nt

en
an

ce
 a

re
 e

qu
al

ly
 e

ff
ec

tiv
e 

in
 r

et
ai

ni
ng

 p
at

ie
nt

s 
in

 s
ub

st
an

ce
 a

bu
se

 tr
ea

tm
en

t a
nd

 in
 r

ed
uc

in
g 

ill
ic

it 
op

io
id

 u
se

.

 
N

ar
co

tic
 r

ep
la

ce
m

en
t t

he
ra

pi
es

 h
av

e 
hi

gh
 tr

ea
tm

en
t c

om
pl

ia
nc

e.

 
R

ed
uc

e 
ov

er
do

se
s 

an
d 

E
m

er
ge

nc
y 

D
ep

ar
tm

en
t t

re
at

m
en

t-
se

ek
in

g.

 
Su

bu
te

x 
an

d 
su

bo
xo

ne
 in

du
ct

io
n 

an
d 

m
ai

nt
en

an
ce

 a
re

 a
va

ila
bl

e 
in

 o
ut

pa
tie

nt
 o

r 
ph

ys
ic

ia
n 

of
fi

ce
s.

D
is

ad
va

nt
ag

es
 b

up
re

no
rp

hi
ne

 
C

hr
on

ic
 b

lo
ck

ad
e 

of
 o

pi
oi

d 
re

ce
pt

or
s 

ha
s 

an
ti-

re
w

ar
d 

ef
fe

ct
s,

 in
cr

ea
si

ng
 r

el
ap

se
 p

ot
en

tia
l w

he
n 

co
up

le
d 

w
ith

 a
 n

ar
co

tic
 a

nt
ag

on
is

t

 
D

oe
s 

no
t a

ct
iv

at
e 

th
e 

ar
ea

s 
of

 th
e 

br
ai

n 
as

so
ci

at
ed

 w
ith

 r
el

ap
se

 in
 s

om
e 

st
ud

ie
s.

 
Po

ss
ib

le
 la

ck
 o

f 
ef

fe
ct

iv
en

es
s 

in
 p

at
ie

nt
s 

w
ho

 r
eq

ui
re

 h
ig

h 
m

et
ha

do
ne

 d
os

es
.

 
L

oc
ks

 p
eo

pl
e 

in
to

 a
dd

ic
tio

n 
an

d 
al

so
 c

au
se

s 
a 

“z
om

bi
e”

 li
ke

 e
ff

ec
t.

 
T

he
re

 is
 e

vi
de

nc
e 

of
 p

ot
en

tia
l s

ui
ci

de
 id

ea
tio

n 
an

d 
ac

co
m

pa
ni

ed
 d

ep
re

ss
io

n.

 
E

ve
n 

in
 th

e 
in

je
ct

ab
le

 f
or

m
 o

f 
de

liv
er

y,
 th

er
e 

is
 p

oo
r 

co
m

pl
ia

nc
e.

N
al

tr
ex

on
e

 
N

al
tr

ex
on

e 
is

 a
n 

op
io

id
 a

nt
ag

on
is

t.

 
Pr

ov
id

es
 c

hr
on

ic
 o

pi
oi

d 
re

ce
pt

or
 b

lo
ck

ad
e 

an
d 

pr
ev

en
ts

 o
ve

rd
os

e 
an

d 
op

io
id

 in
to

xi
ca

tio
n.

 
A

go
ni

st
s 

ar
e 

be
tte

r 
at

 th
is

 th
an

 a
nt

ag
on

is
ts

 u
nl

es
s 

in
 m

an
da

te
d 

im
pa

ir
ed

 p
hy

si
ci

an
 p

ro
gr

am
s 

w
ith

 m
on

ito
rs

.

 
T

he
 m

ai
n 

is
su

e 
w

ith
 n

al
tr

ex
on

e 
is

 p
oo

r 
co

m
pl

ia
nc

e,
 b

ut
 it

 c
an

 b
e 

as
si

st
ed

 w
ith

 P
ro

-d
op

am
in

e 
re

gu
la

tio
n 

lik
e 

K
B

22
0 

va
ri

an
ts

 o
r 

ot
he

r 
m

od
al

iti
es

 li
ke

 r
T

M
S.

Po
si

tiv
e 

ef
fe

ct
s 

of
 tr

ea
tm

en
t

 
A

ll 
fo

rm
s 

of
 tr

ea
tm

en
t a

re
 s

ig
ni

fi
ca

nt
ly

 le
ss

 c
os

tly
 a

nd
 m

or
e 

ef
fe

ct
iv

e 
th

an
 n

o 
tr

ea
tm

en
t.

 
R

ed
uc

tio
n 

or
 a

bs
tin

en
ce

 in
 il

lic
it 

op
io

id
 u

se
.

 
R

ed
uc

tio
n 

in
 th

e 
se

ve
ri

ty
 o

f 
w

ith
dr

aw
al

 f
ro

m
 o

pi
oi

d 
us

e.

 
R

et
en

tio
n 

in
 tr

ea
tm

en
t f

or
 p

er
so

ns
 e

nr
ol

le
d 

in
 o

pi
oi

d 
w

ith
dr

aw
al

 o
r 

op
io

id
 c

es
sa

tio
n 

pr
og

ra
m

s.

H
ar

m
 r

ed
uc

tio
n

Su
m

m
ar

y 
Po

in
ts

INNOSC Theranostics Pharmacol Sci. Author manuscript; available in PMC 2024 August 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gold et al. Page 30

•
T

he
 a

dv
er

se
 e

ff
ec

ts
 o

f 
O

U
D

 in
cl

ud
e 

(f
at

al
 o

ve
rd

os
e,

 in
fe

ct
io

us
 d

is
ea

se
 tr

an
sm

is
si

on
, e

le
va

te
d 

he
al

th
 c

ar
e 

co
st

s,
 p

ub
lic

 d
is

or
de

r, 
an

d 
cr

im
e)

 a
nd

 th
e 

av
ai

la
bl

e 
tr

ea
tm

en
ts

.

•
T

he
 a

lp
ha

-2
-a

dr
en

er
gi

c 
re

ce
pt

or
 a

 s
ub

ty
pe

 o
f 

th
e 

al
ph

a-
2-

ad
re

ne
rg

ic
 r

ec
ep

to
r 

se
cr

et
es

 n
or

ep
in

ep
hr

in
e 

(N
E

).

•
N

E
 c

au
se

s 
th

e 
sy

m
pt

om
s 

of
 w

ith
dr

aw
al

.

•
W

ith
dr

aw
al

-s
ym

pt
om

s 
in

cl
ud

e 
hy

pe
rt

en
si

on
, t

ac
hy

ca
rd

ia
, a

nd
 a

nx
ie

ty
.

•
C

lo
ni

di
ne

 is
 a

 m
ol

ec
ul

ar
 a

go
ni

st
 o

f 
th

e 
al

ph
a-

2A
 r

ec
ep

to
r.

•
G

ol
d 

et
 a

l.[7
]  f

ou
nd

 th
at

 c
lo

ni
di

ne
 c

an
 r

ev
er

se
 th

e 
ef

fe
ct

s 
of

 lo
cu

s 
co

er
ul

eu
s 

st
im

ul
at

io
n.

•
T

hi
s 

no
ra

dr
en

er
gi

c 
hy

po
th

es
is

 f
or

 o
pi

oi
d 

w
ith

dr
aw

al
 c

ha
ng

ed
 th

e 
fi

el
d.

•
Su

cc
es

sf
ul

 c
om

pr
eh

en
si

ve
 tr

ea
tm

en
t p

ro
gr

am
s 

th
at

 u
se

d 
cl

on
id

in
e 

to
 tr

an
si

tio
n 

to
 lo

ng
-a

ct
in

g 
in

je
ct

ab
le

 n
al

tr
ex

on
e 

fo
r 

im
pa

ir
ed

 p
hy

si
ci

an
s 

an
d 

ot
he

r 
ve

ry
 m

ot
iv

at
ed

 p
at

ie
nt

s 
w

ith
 O

U
D

s 
w

er
e 

co
nf

ir
m

ed
 in

 th
e 

19
80

s.

•
T

he
 n

al
tr

ex
on

e,
 d

es
pi

te
 p

oo
r 

co
m

pl
ia

nc
e,

 p
ro

vi
de

s 
ch

ro
ni

c 
op

io
id

 r
ec

ep
to

r 
bl

oc
ka

de
 th

at
 p

re
ve

nt
s 

ov
er

do
se

, o
pi

oi
d 

in
to

xi
ca

tio
n,

 a
nd

 s
ub

se
qu

en
t r

e-
ad

di
ct

io
n 

in
 r

ec
ov

er
ed

 in
 m

ot
iv

at
ed

 
pa

tie
nt

s.

•
T

he
 d

ev
el

op
m

en
t o

f 
cl

on
id

in
e 

an
d 

na
ltr

ex
on

e 
as

 tr
ea

tm
en

t a
ge

nt
s 

fo
r 

O
U

D
 d

em
on

st
ra

te
s 

th
at

 n
eu

ro
bi

ol
og

ic
al

 a
dv

an
ce

s 
co

ul
d 

be
 tr

an
sl

at
ed

 f
ro

m
 r

od
en

ts
 to

 n
on

-h
um

an
 p

ri
m

at
es

 to
 m

an
 in

to
 

ne
w

 e
ff

ec
tiv

e 
cl

in
ic

al
 a

pp
ro

ac
he

s.

•
T

he
 tr

ad
iti

on
al

 n
ar

co
tic

 s
ub

st
itu

tio
n 

th
er

ap
ie

s,
 li

ke
 m

et
ha

do
ne

 m
ai

nt
en

an
ce

, p
ro

vi
de

 a
go

ni
st

ic
 a

ct
iv

ity
 b

ut
 d

o 
no

t t
ar

ge
t o

r 
bl

oc
k 

de
lta

 o
r 

m
u 

re
ce

pt
or

s.
 T

he
 c

om
bi

na
tio

n 
tr

ea
tm

en
t o

f 
na

rc
ot

ic
 a

nt
ag

on
is

m
 a

nd
 m

u 
re

ce
pt

or
 a

go
ni

st
 th

er
ap

y 
(e

ve
n 

at
 m

in
im

al
 d

os
es

 o
f 

na
lo

xo
ne

) 
se

em
s 

pa
rs

im
on

io
us

 b
ut

 m
ay

 in
du

ce
 a

nt
i-

re
w

ar
d

•
C

lin
ic

al
 s

tu
di

es
 in

di
ca

te
 th

at
 b

up
re

no
rp

hi
ne

 m
ai

nt
en

an
ce

 is
 a

s 
ef

fe
ct

iv
e 

as
 m

et
ha

do
ne

 b
ut

 le
ss

 c
ar

di
ac

 a
dv

er
se

 e
ff

ec
ts

 m
ai

nt
en

an
ce

 in
 r

et
ai

ni
ng

 p
at

ie
nt

s 
in

 s
ub

st
an

ce
 a

bu
se

 tr
ea

tm
en

t a
nd

 in
 

re
du

ci
ng

 il
lic

it 
op

io
id

 u
se

.

•
C

lin
ic

al
 s

tu
di

es
 in

di
ca

te
 th

at
 b

up
re

no
rp

hi
ne

 m
ai

nt
en

an
ce

 is
 a

s 
ef

fe
ct

iv
e 

as
 m

et
ha

do
ne

 m
ai

nt
en

an
ce

 in
 r

et
ai

ni
ng

 p
at

ie
nt

s 
in

 s
ub

st
an

ce
 a

bu
se

 tr
ea

tm
en

t a
nd

 in
 r

ed
uc

in
g 

ill
ic

it 
op

io
id

 u
se

.

•
T

he
 n

eg
at

iv
e 

ef
fe

ct
 o

n 
re

w
ar

d 
ci

rc
ui

tr
y 

is
 th

at
 c

hr
on

ic
 b

lo
ck

ad
e 

of
 o

pi
oi

d 
re

ce
pt

or
s,

 e
ve

n 
w

ith
 p

ar
tia

l o
pi

oi
d 

ag
on

is
t a

ct
io

n,
 m

ay
 u

lti
m

at
el

y 
bl

oc
k 

do
pa

m
in

er
gi

c 
ac

tiv
ity

, c
au

si
ng

 a
nt

i-
re

w
ar

d 
ef

fe
ct

s 
an

d 
in

cr
ea

si
ng

 r
el

ap
se

 p
ot

en
tia

l.

•
B

as
ed

 o
n 

in
iti

al
 r

es
ul

ts
 w

ith
 la

rg
e 

po
pu

la
tio

ns
 r

ec
ei

vi
ng

 D
2 

ag
on

is
t t

he
ra

py
 w

ith
 K

B
22

0,
 a

 s
af

e,
 n

on
-a

dd
ic

tin
g,

 n
at

ur
al

 d
op

am
in

er
gi

c 
re

ce
pt

or
 a

go
ni

st
 th

at
 p

ot
en

tia
lly

 u
p-

re
gu

la
te

s 
in

st
ea

d 
of

 d
ow

n-
re

gu
la

tin
g 

do
pa

m
in

er
gi

c 
re

ce
pt

or
s 

co
ul

d 
be

 a
 c

o-
th

er
ap

y 
fo

r 
lo

ng
-t

er
m

 tr
ea

tm
en

t t
o 

pr
ev

en
t r

el
ap

se
 r

at
he

r 
th

an
 th

e 
co

m
bi

na
tio

n 
of

 b
up

re
no

rp
hi

ne
/n

al
ox

on
e 

al
on

e.

•
Fu

tu
ri

st
ic

 f
ro

nt
lin

e 
m

od
al

iti
es

 s
ho

ul
d 

in
cl

ud
e 

ge
ne

tic
 a

dd
ic

tio
n 

ri
sk

 te
st

in
g,

 w
hi

ch
 c

ou
ld

 le
ad

 to
 p

re
ci

si
on

 m
ed

ic
in

e 
by

 m
at

ch
in

g 
po

ly
m

or
ph

is
m

s 
in

 r
is

k 
al

le
le

s 
w

ith
 m

ed
ic

at
io

ns
 o

r 
nu

tr
ac

eu
tic

al
s.

A
bb

re
vi

at
io

ns
: r

T
M

S:
 r

ep
et

iti
ve

 tr
an

sc
ra

ni
al

 m
ag

ne
tic

 s
tim

ul
at

io
n;

 O
U

D
: O

pi
oi

d 
us

e 
di

so
rd

er
.

INNOSC Theranostics Pharmacol Sci. Author manuscript; available in PMC 2024 August 08.


	Abstract
	Introduction
	Pharmacokinetics and pharmacodynamics of clonidine
	The off-label use of clonidine to treat opioid withdrawal syndrome
	Better outcomes for impaired health professionals: Why?
	Opioid withdrawal: Clinical syndrome and pathophysiology
	Definitions of withdrawal
	Development of the locus coeruleus noradrenergic hyperactivity theory
	Mechanisms in withdrawal symptomatology
	Summary of empirical research

	Modern architectural analysis of treatment for OUD: Inducing “dopamine homeostasis” to treat protracted withdrawal
	Summary of the clonidine/naltrexone approach to opioid withdrawal

	Long-term use of opioid agonists engendering antireward
	Locus coeruleus: Beyond drug withdrawal
	Stress
	Summary

	Locus coeruleus therapeutics: Applications to other areas – behavioral addictions
	Limitations
	Conclusion
	References
	Figure 1.
	Table 1.

