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Long non-coding RNAs (lncRNAs†) constitute the largest class of non-coding transcripts in the human 
genome. Results from next-generation sequencing and bioinformatics advances indicate that the human 
genome contains more non-coding RNA genes than protein-coding genes. Validated functions of lncRNAs 
suggest that they are master regulators of gene expression and often exert their influences via epigenetic 
mechanisms by modulating chromatin structure. Specific lncRNAs can regulate transcription in gene 
clusters. Since the functions of protein-coding genes in clusters are often tied to specific pathways, 
lncRNAs constitute attractive pharmacological targets. Here we review the current knowledge of lncRNA 
functions in human cells and their roles in disease processes. We also present forward-looking perspectives 
on how they might be manipulated pharmacologically for the treatment of a variety of human diseases, in 
which regulation of gene expression by epigenetic mechanisms plays a major role.
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EPIGENETICS: CHROMATIN-MEDIATED 
EFFECTS ON GENE REGULATION

In 1942, Conrad Waddington coined the term ‘epi-
genetics’ and defined it as “the study of the causal inter-
actions between genes and their products, which leads to 
phenotype changes during development” [1,2]. Today, 
epigenetics is a rapidly growing field of research and is 
now broadly defined as mechanisms leading to changes 
in gene expression that do not involve changes in DNA 
sequences per se. At a molecular level, epigenetic mech-
anisms are primarily mediated by alterations of chroma-

tin structures and changes (especially in DNA methyla-
tion and post-translational modifications (PTMs) placed 
upon nucleosomal histones) can lead to alterations of the 
expression of genes presented in or near epigenetically 
modified nucleosomes. Epigenetic regulation is rooted in 
chromatin structures, which can be divided into two ma-
jor classes: euchromatin and heterochromatin. Euchro-
matin is transcriptionally active and consists of DNA that 
is loosely associated with nucleosomes and thus is acces-
sible to RNA polymerases. Heterochromatin, in contrast, 
is highly condensed and not readily transcribed, resulting 
in silenced gene states.
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Long Non-coding RNAs 
One of the major types of epigenetic regulation 

utilizes functionally untranslated RNA species. Long 
non-coding RNAs (lncRNAs) are non-coding RNAs with 
a length greater than 200 nucleotides. lncRNAs play ver-
satile roles in many aspects of gene regulation, includ-
ing transcription, mRNA splicing, translation, epigenetic 
silencing, genomic imprinting, X-chromosome inactiva-
tion, and the processing of small ncRNAs [3,4]. Many 
lncRNAs regulate gene expression by recruiting chroma-
tin complexes by means of DNA methylation and histone 
PTMs, which are described below.

Roles of lncRNAs in the Regulation of DNA 
Methylation

The interaction between lncRNAs and DNA meth-
ylation enzymes plays a key role in epigenetic regu-
lation. DNA methylation at position 5 within cytosine 
bases present in CpG dinucleotides plays a critical role 
in key biological functions, including embryonic devel-
opment, genomic imprinting, X-chromosome inactiva-
tion, the silencing of transposable elements, and many 
others. Genomic imprinting is an epigenetic mechanism 
where certain genes are expressed from only one of the 
two parental chromosomes. Some imprinted genes are 
maternally expressed (e.g. IGF2R and H19), and others 
paternally expressed (e.g IGF2) [5]. Xist is transcribed 
from the X-inactivation center (Xic) and coats the inac-
tive X-chromosome in females in cis, leading to silencing 
of hundreds of X-linked genes [6]. The Air lncRNA (An-
tisense Igf2r RNA) has been shown to silence imprinted 
genes [7]. H19 functions as a lncRNA but it has also been 
reported by Cai et al. that “H19 functions as a primary 
microRNA precursor decreasing the post-transcriptional 
down-regulation of mRNAs during development” [8]. 

Some lncRNAs are known to regulate DNA meth-
ylation through physical interactions with DNA meth-
yltransferases (DNMTs). Ruscio et al. have reported 
that a lncRNA called Extra-coding CEBPA (ecCEBPA) 
physically interacts with DNMT1 (the primary mainte-
nance cytosine methyltransferase) and prevents methyl-
ation of the CEBPA gene locus in cis [9]. lncRNA Dali 
physically interacts with DNMT1 protein and modulates 
DNA methylation of CpG island-associated promoters in 
trans [10]. The lncRNA Dum causes promoter methyla-
tion of developmental pluripotency associated 2 (Dppa2) 
gene through interactions with DNMT1, and the de novo 
methyltransferases DNMT3A, and DNMT3B [11]. ln-
cRNAs can thus modulate DNA methylation in cis and 
trans through interactions with all three DNMTs. Hence, 
it is possible that dysregulated lncRNAs may be in-
volved in epigenetic changes leading to human diseases. 

Histone Modifications
Histone modifications are also known to epigeneti-

cally regulate gene transcription as well as DNA repair 
and replication, chromosome condensation, and alterna-
tive splicing [12]. A vertebrate nucleosome consists of 
an octamer of core nucleosomal histones (two each of 
histones H2A, H2B, H3, and H4) and a linker histone 
H1, which binds short stretches of DNA between nucle-
osomes leading to chromatin compaction. All of the core 
histones undergo covalent PTMs, which include acetyl-
ation, methylation, phosphorylation, ubiquitylation, and 
sumoylation at specific amino acid residues, mostly with-
in their N-terminal histone tails [13]. Transcriptional ac-
tivation is mediated by histone acetyltransferases (HATs) 
and transcriptional repression is mediated by the action 
of histone deacetylases (HDACs). The polycomb repres-
sive complexes (PRC1 and PRC2) contain both histone 
methyltransferases leading to H3K27Me3 and histone 
monoubiquitination, which results in gene silencing, 
respectively [14]. In contrast, trithorax group (TrxG) 
complexes methylate H3K4Me3, which facilitates gene 
transcription [15]. Therefore, histone PTMs are centrally 
involved in epigenetic regulation at the level of chroma-
tin structure, and this notion is revisited frequently in the 
remainder of this review. 

EPIGENETIC MECHANISMS OF DISEASE

Together, histone PTMs, CpG methylation, and ln-
cRNAs regulate gene expression and are exquisitely in-
volved in a wide range of biological processes, includ-
ing development and the epigenetic regulation of genes. 
However, when errors in the maintenance of epigenetic 
states occur in somatic cells, a variety of human diseases 
and conditions can occur. 

Beckwith-Wiedemann syndrome (BWS), an im-
printing disorder of the KCNQ1OT gene, is mediated epi-
genetically, and at least 50 percent of patients have loss 
of DNA methylation and loss of histone H3K9Me2 on 
the maternal KCNQ1OT differentially methylated region 
(DMR) [16]. He at al. reported that a microdeletion in the 
human H19 DMR can result in loss of insulin-like growth 
factor 2 (IGF2) imprinting and BWS [16]. lncRNAs can 
thus lead to the development of complex diseases through 
epigenetic mechanisms. 

Perturbations in DNA methylation are common in 
many cancers and global alterations involving DNA hy-
pomethylation are common in cancer, often typified by a 
20 to 60 percent reduction in 5-methyl-cytosine content 
[12]. DNA hypomethylation at the promoter regions of 
oncogenes can activate their expression, and DNA hyper-
methylation at the promoters of tumor suppressor genes 
can lead to their silencing. Loss of imprinting of IGF2 



Prabhakar et al.: Targeting lncRNAs for human disease 75

and H19 genes by demethylation can lead to carcino-
genesis and tumor progression [17]. The lncRNA LET 
is repressed by histone deacetylase 3 (HDAC3), which 
is reported to contribute to hypoxia-mediated cancer cell 
invasion [18]. The lncRNA ANRASSF1 reduces the ex-
pression of Ras association domain family 1 isoform A 
(RASSF1A) protein by recruiting PRC2 to the RASSF1A 
promoter region, thereby increasing cellular proliferation 
and inhibiting cell death [19]. These and other examples 
too numerous to cite firmly establish altered DNA meth-
ylation and histone modification as being intimately in-
volved in carcinogenesis, and often in conjunction with 
lncRNA actions.

lncRNAs in Detail
Recent advances in next generation sequencing and 

bioinformatics show that much of the mammalian ge-
nome is transcribed into RNA, and that much of this RNA 
is functional. This new view constitutes a paradigm shift 
in our view of the genome as a whole and the regulation 
of protein-coding genes. The ENCODE project consor-
tium reported that at least 93 percent of human genomic 
DNA is transcribed [20]. After completion and analysis 
of the human genome, it was found that there are only 
20,000 to 25,000 protein coding genes in the genome, 
corresponding to less than 2 percent of the genome [21]. 
The remaining 98 percent was originally thought to be 
“junk DNA” [22], but it is now known that much of this 
DNA encodes functional non-coding RNAs (ncRNAs) 
[23] and hence, cannot be interpreted simply as ‘tran-
scriptional noise’ [24].

lncRNAs make up the majority of the ncRNA tran-
scripts in the genome [25], and yet the functions of most 
lncNRAs are unknown. lncRNA lengths can range from 
200 nucleotides to over 50 kilobases [26]. Various ge-
nomic consortiums and databases including GENCODE 
[27] have assisted in the task of computational identifica-
tion, annotation, and interpretation of expansive ncRNA 
datasets. lncRNAs, such as XIST and H19, were initially 
identified from cDNA libraries [28]. Iyer et al. curated 
7,256 RNA sequencing libraries and identified 58,648 
lncRNA genes from the human transcriptome totaling 
91,013 expressed genes [29]. lncRNAs have been discov-
ered by a variety of methods including RNA immunopre-
cipitation (RIP), microarray and tiling array screens, and 
RNA-sequencing. All these approaches have limitations. 
For instance, isolating lncRNAs though RIP methods 
relies upon the specificity of antibodies. Although these 
studies have provisionally identified a large number of 
lncRNAs, their functions cannot be fully evaluated un-
til each of these lncRNAs is experimentally validated. 
Nonetheless, these studies show that the human genome 
likely contains more lncRNA genes than protein-coding 

genes. 
lncRNAs have been classified into different catego-

ries and have been extensively reviewed by Laurent et 
al. [30]. Briefly, lncRNAs are classified based on their 
locations in the genome, their lengths, proximity to 
protein-coding genes, association with DNA elements, 
mechanisms of action, and sub-cellular localization (nu-
cleus or cytoplasm). lncRNA genes can regulate adja-
cent protein-coding genes near their sites of synthesis, 
and these are known as cis-acting lncRNAs. lncRNAs 
can also regulate genes in distant genomic locations (on 
other chromosomes), and these are called trans-acting ln-
cRNAs. lncRNA genes often reside near protein-coding 
genes (often presented in gene clusters) and they can be 
divided into sense lncRNAs, natural antisense lncRNAs 
(NATs), and long intronic ncRNAs (linRNAs). Sense ln-
cRNAs are transcribed from the sense strand with respect 
to regulated protein-coding genes, while NAT lncRNAs 
are transcribed from the antisense strand with respect to 
adjacent protein-coding genes (e.g. APOA1-AS) [31]. 
linRNAs reside within introns of protein-coding genes 
[32]. Genes for intergenic lncRNAs (located between 
protein-coding genes) are called long intergenic noncod-
ing RNAs (lincRNAs), and these include the well-studied 
lncRNAs XIST, H19, and an antisense non-coding RNA 
in the INK4 locus (ANRIL) [33]. Some lncRNAs are of 
extraordinary length; these are called very long intergenic 
noncoding RNAs (vlincRNA) and they consist of tran-
scripts over 50 kilobases (e.g. HELLP) [34]. Based on 
subcellular localization, lncRNAs can be divided into nu-
clear or cytoplasmic classes. Most lncRNAs are nuclear 
(eg. XIST and maternally expressed gene 3; MEG3) but 
some, like H19, are located in the cytoplasm [23]. Ge-
nome-wide physical interactions of lncRNAs with DNA 
have been determined by biochemical approaches, includ-
ing Chromatin Isolation by RNA Purification (ChIRP) 
[35] and Capture Hybridization Analysis of RNA Targets 
(CHART) [36]. Through these methods, some lncRNAs 
associate with enhancers (enhancer-associated lncRNA, 
or elncRNAs) [37], promoters (promoter-associated 
lncRNAs, or PLARS) [38], or telomeres (telomeric re-
peat-containing RNA, or TERRA) [39]. Other lncRNAs 
include transcribed ultraconserved regions (T-UCR) [40], 
which are so called due to their sequence conservation 
across species (e.g. PTENP1) [41]. The existing sys-
tems of classification have limitations, since individual 
lncRNAs can fit into multiple classifications. Annota-
tion and classification nomenclature of lncRNAs are still 
coalescing; hence, new classification strategies that can 
consider lncRNA properties, functions, and relationships 
are desirable. 

lncRNAs are generally transcribed by RNA poly-
merase II and undergo post-transcriptional modifications 
including 5’-capping, polyadenylation, and splicing [23]. 
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but is not found in non-mammals [48]. Polyadenylated 
RNA (PAN RNA) is produced and retained in the nucleus 
during Kaposi’s sarcoma-associated herpesvirus (KSHV) 
lytic infection. PAN RNA has an expression and nuclear 
retention element (ENE), which enables the formation of 
a triple helical structure. The triple helix renders lncRNA 
stability and also its nuclear retention [49]. The lncRNA 
thyroid cancer-associated transcript 126 (THCAT126) is 
presented in nearly all vertebrates [29]. Thus, not all ln-
cRNAs are poorly conserved across species, and Iyer et 
al. identified 597 intergenic lncRNAs, which contained 
regions of ultraconserved elements (UCEs) (regions 
greater than 200 nucleotides that are highly conserved 
across species) [29]. 

lncRNAs typically have lower expression levels in 
tissues as compared to protein-coding genes. Computa-
tional analysis of RNA sequencing data from 16 human 
tissues obtained from the Illumina Human Body Map 
Project revealed that lncRNAs in general had lower ex-
pression in all tissues than protein-coding genes, except in 
the testis [50]. lncRNAs also have higher tissue-specifici-
ty as compared to coding genes. Custom microarray stud-
ies on 9,747 lncRNA transcripts from GENCODE ver-
sion 3c annotation, which assayed lncRNA content from 
human tissues and cell lines, also suggest that lncRNAs 
have far lower levels of expression relative to mRNAs 
[23,50]. lncRNA expression profiles are not identical for 
polyadenylated and non-polyadenylated RNAs. Djebali 
et al. reported that lncRNA gene expression ranged over 
six orders of magnitude (10−2 to 104 reads per kilobase 
per million reads (RPKM)) for polyadenylated lncRNAs 
and five orders of magnitude (10−2 to 103 (RPKM) for 
non-polyadenylated lncRNAs) [51]. It has thus been 
shown by different studies that most lncRNAs have low-
er expression and higher tissue specificity of expression 
than protein-coding genes.

lncRNAs are often more unstable than mRNAs. Two 
independent studies determined the range of lncRNA sta-
bility and reported that their half-lives varied from un-
stable to highly stable [52,53]. Clark et al. used custom 
microarray studies in a mouse cell line to identify the 
half-lives of approximately 800 lncRNAs and 1,200 mR-
NAs in the mouse Neuro-2a. Most of the lncRNAs were 
stable, with half-lives greater than 16 hours, and approx-
imately 240 lncRNAs were unstable, with half-lives less 
than 2 hours. The mean half-life of lncRNAs was found to 
be 4.8 hours and this was less than mRNAs, which had a 
mean half-life of 7.7 hours [53]. It has been observed that 
the nuclear paraspeckle assembly transcript 1 (Neat1) is 
highly unstable, but is functional and required for the nu-
clear localization and dynamic regulation of paraspeckles 
at the Neat1 locus [53]. Several pathways are known to be 
involved in the degradation of lncRNAs, including nucle-
olytic degradation by nuclear exosomes and cytoplasmic 

RNA polymerase III, which is primarily involved in the 
transcription of tRNAs and 5S rRNA, also transcribes 
a neuronal lncRNA, BC200 [42]. More than 25 percent 
of lncRNAs are alternatively spliced to produce two or 
more related isoforms [23]. Some lncRNAs, however, are 
non-polyadenylated [23]. lncRNA promoters exhibit spe-
cific histone marks, including methylated H3K4, H3K27, 
H3K36, and acetylated H3K9 and H3K27, suggesting 
that they too undergo epigenetic regulation similar to pro-
tein-coding genes [23]. 

The presence of well-defined open reading frames 
(ORFs) distinguishes protein-coding genes from ln-
cRNAs. The FANTOM consortium assumes that genes 
containing long ORFs are likely protein-coding genes in 
the mouse transcriptome [43]. However, some lncRNAs 
have ORFs consisting of over 100 codons, including Xist, 
H19, and KCNQ1OT, yet these are not translated into 
proteins [44]. In a surprising ribosome profiling study by 
Guttman et al, it was found that the ribosome occupancy 
on many lincRNAs is detectable, but was similar to small 
ncRNAs (including small nuclear RNAs, small nucleolar 
RNAs, microRNA precursors, and lncRNAs) and other 
non-coding regions, including 5’-untranslated regions 
(UTRs). This demonstrates that the presence of ribosome 
occupancy alone is insufficient to determine the coding 
potential of lncRNAs. However, they defined a method 
to accurately distinguish protein-coding transcripts from 
all classes of non-coding transcripts based on the release 
of translating ribosomes from translated RNAs upon en-
countering a bona fide stop codon [45]. 

lncRNAs sequences are generally less conserved 
across species than protein-coding genes, implying that 
they undergo evolutionary changes much more rapidly. 
Even though some lncRNAs are poorly conserved, they 
are functional, which suggests that recently evolved ln-
cRNAs can still be of functional consequence. Human 
accelerated regions (HARs) are regions where increased 
rates of nucleotide substitution occur between the human 
and chimpanzee. The 118-nucleotide HAR1 region is a 
part of the HAR1F lncRNA, which is highly expressed in 
developing human brain. The HAR1 region is folded into 
an organized RNA secondary structure and mutations in 
this region in human were shown to stabilize the second-
ary structure as compared to the chimpanzee [46]. Lack 
of conservation is a limiting factor for the use of animal 
models of human diseases, and it is possible that some 
of the species-specific differences might be due to diver-
gence in lncRNA conservation. However, some lncRNA 
sequences are conserved across species. lncRNA promot-
er regions are more conserved than the exonic sequences 
and exhibit levels of sequence conservation comparable 
to protein-coding genes in the mouse genome [23,29,47]. 
lncRNA metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT-1) is highly conserved in mammals 
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regulates its target gene protein kinase cAMP-activated 
catalytic subunit beta (PRKACB) [4,65]. Decoy lncRNAs 
thus inhibit the function of the effector transcription fac-
tors and microRNAs by sequestration, and thereby nega-
tively regulate transcription.

Scaffold lncRNAs: Scaffold lncRNAs are structural 
in nature and provide a framework upon which one or 
more proteins can simultaneously assemble within differ-
ent lncRNA domains and regulate chromatin modifica-
tions [66]. HOTAIR acts as a scaffold and simultaneously 
binds to two different protein complexes. The 5' domain 
of HOTAIR binds to the PRC2 complex (involved in 
H3K27 methylation and gene silencing) and the 3' do-
main of HOTAIR binds to LSD1-CoREST complex to 
mediate H3K4Me2 demethylation [67]. ANRIL binds 
to both PRC1 and PRC2, leading to repression of the 
INK4b/ARF/INK4a gene locus [68]. KCNQ1OT1 serves 
as a scaffold by binding both PRC2 and G9a in order to 
mediate H3K27 and H3K9 trimethylation and conse-
quent gene silencing [69]. lincRNA functional intergenic 
repeating RNA element (Firre) acts as a scaffold through 
its 156-bp repeating RNA domain (RRD). Firre interacts 
with the nuclear-matrix factor hnRNPU through the Firre 
RRD for nuclear localization of Firre transcripts and for 
binding to different chromosomal locations [70]. Thus, 
scaffold lncRNAs form a binding platform for tethering 
one or more chromatin-modifying complexes and en-
zymes to mediate RNA-protein interactions.

Guide lncRNAs: Guide lncRNAs act a guide for 
the localization of regulatory protein complexes, such as 
trithorax group proteins, polycomb group proteins, and 
transcription factors to their target DNA sites in cis or in 
trans [57]. Xist [71,72] and Air [73] act in cis to regulate 
syntenic genes that are either subject to dosage compen-
sation or imprinting, respectively. The lncRNA HOXA 
transcript at the distal tip (HOTTIP) acts functionally as 
both a signal and guide lncRNA to regulate the HOXA 
locus, by recruiting the adaptor protein WD repeat do-
main 5 (WDR5) and mixed lineage in leukemia-1 (MLL-
1) protein, which in turn mediate histone methylation and 
gene transcription in the HOXA locus [74]. Trans-acting 
lincRNAs like HOTAIR [75] and Jpx also regulate gene 
expression and chromatin modification upon other chro-
mosomes [76]. Guide lncRNAs can thus regulate gene 
expression through complex epigenetic mechanisms. 

lncRNAs can regulate mRNA stability both posi-
tively and negatively [77]. Antisense lncRNA BACE1-
AS is known to increase the stability of BACE1 mRNA. 
BACE1-AS forms a RNA-RNA duplex with BACE1 
mRNA. BACE1-AS competes with miR 485-5p for the 
same binding site in the BACE1 mRNA. This abro-
gates miRNA-induced repression and thus stabilizes the 
BACE1 mRNA. BACE1-AS expression is increased in 
the brains of Alzheimer’s patients [78]. Alu elements are 

nonsense-mediated decay [54]. lncRNAs thus regulate 
key cellular functions irrespective of their stability within 
the cellular compartment (nucleus or cytoplasm).

Mechanisms of lncRNA Action 
lncRNAs play a critical role in many cellular and 

biological processes, including early embryonic devel-
opment, embryonic stem cell (ESC) pluripotency and 
differentiation, cell cycle regulation, proliferation, apop-
tosis, and senescence [3,4,55]. The molecular mecha-
nisms whereby lncRNAs exert their regulatory impacts 
on protein-coding genes have been extensively reviewed 
[56-59]. Individual lncRNAs can operate as a signal, de-
coy, scaffold, and guide lncRNAs [56,57]. These classes 
of lncRNAs are discussed below:

Signal lncRNAs: lncRNAs can act as molecular sig-
nals to regulate transcription in response to different stim-
uli. Transcription of some lncRNAs is both tissue-specif-
ic and temporally specific. It has been noted by Wang et 
al. that some signal lncNRAs have regulatory functions 
while others are triggered by transcriptional events [57]. 
Wang et al. have reported that “lncRNAs act as signals 
marking space, time, developmental stage, and expres-
sion for gene regulation” [57]. lncRNA KCNQ1OT1 acts 
as a signal lncRNA and induces transcriptional repression 
by recruiting G9a histone methyltransferases and PRC2 
to the genes both in cis and in trans [60]. Thus, they serve 
as a marker of transcriptional activity. lncRNAs that are 
transcribed from the four human homeobox transcription 
factors (HOX) clusters exhibit specific spatial and tem-
poral patterns of gene expression during development. 
For example, HOTAIR regulates sequential Hox gene ex-
pression during mouse embryogenesis, thus serving as a 
signal of anatomic position during development [57,61]. 
lncRNAs also respond to environmental stimuli, such as 
cold, which triggers their action (e.g., COLDAIR and 
COOLAIR) [62]. Signal lncRNAs thus serve as sensors 
that regulate important biological functions.

Decoy (sponge) lncRNAs: Some lncRNAs serve to 
sequester key cellular components. lncRNAs can bind to 
transcription factors and microRNAs, where they seques-
ter these factors, thus preventing their action. lncRNA 
GAS5 acts as a decoy glucocorticoid response element 
(GRE) and binds to the DNA-binding domains of the 
glucocorticoid receptor, thereby preventing its associa-
tion with DNA, downstream effects on the cell cycle and 
apoptosis [3,63]. lncRNAs also act as decoys (sponges) 
for miRNAs and splicing factors [4,57]. Pseudogene 
lncRNA PTENP1 acts as a sponge and sequesters mi-
croRNAs that bind the 3’-UTR of the tumor-suppressor 
gene PTEN, thus indirectly influencing translation of 
PTEN mRNA [64]. The lncRNA hepatocellular carcino-
ma upregulated long non-coding RNA (HULC) acts as 
an endogenous miRNA sponge for miR-372 and down-
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Thus, as more and more lncRNAs are being function-
ally validated, there is increasing evidence for the role 
of dysregulated or mutated lncRNAs in the etiology and 
prognosis of various neurodegenerative, cardiovascular, 
metabolic diseases, and cancer of various organs.

lncRNAs as Drug Targets: Future Strategies
Existing pharmaceutical agents to treat diseases 

through epigenetic mechanisms are nonspecific. Epigen-
etic drugs, such as the DNA methyltransferase (DNMT) 
inhibitor 5-aza-2’-deoxycytidine, and histone deacetyl-
ase (HDAC) inhibitors, such as sodium valproate, dep-
sipeptide, tetrapeptide suberoylanilide hydroxamic acid 
(SAHA), and CI-994 (N-acetyldinaline) [92], have all 
been used to treat various types of cancer; however, their 
modes of action alter chromatin structure throughout the 
genome. Histone- or DNA-modifying enzymes attached 
to gene-specific zinc finger proteins may in the future lead 
to targeted treatments that will specifically bind to target-
ed epimutation sites [93]. However, since these are pro-
teins, they must be delivered by venous injection. Since 
lncRNAs normally regulate relatively small sets of genes, 
often with related functions, the ability to target lncRNAs 
pharmacologically should result in improved specificity 
and lowered incidence of side effects. Gene clusters often 
contain genes with similar functions (i.e. they function 
in a shared pathway), and these gene clusters are typical-
ly regulated by one or few specific lncRNAs. Therefore, 
lncRNAs constitute attractive and potentially highly spe-
cific drug targets. 

A number of opportunities and challenges exist for 
the future pharmacological manipulation of lncRNAs. 
RNA therapeutics can take advantage of various lncRNA 
cellular functions and target those pathways through gene 
silencing and structure disruption mechanisms. lncRNAs 
are functional molecules that can be detected in the body 
fluids; hence, they can serve as diagnostic biomarkers for 
various diseases. Occasionally, a single lncRNA can tar-
get several mRNAs, and in such situations, manipulat-
ing the lncRNA can help to modulate multiple genes and 
their functions. Extensive secondary structures and long 
lncRNA size may hinder the design of effective small 
interfering RNAs (siRNAs) and small molecule inhibi-
tors. Toxicity might be observed with siRNA or antisense 
oligonucleotide (ASO)-mediated knockdown strategies 
designed to disrupt lncRNA functions. Single-stranded 
ASOs are highly unstable in cells and subject to nucleas-
es. Other difficulties encountered with ASOs include low 
target affinity and low potency, which may require the use 
of higher concentrations that in turn could lead to off-tar-
get effects. Chemical modifications to ASOs, such as 
phosphorothioate modifications, heterocyclic modifica-
tions, 2’-O-methyl modifications, and 5′-, 3′-end-locked 
nucleic acid (LNA) modifications, are known to increase 

primate-specific repeat elements. lncRNAs containing 
Alu repeats can destabilize mRNA through Staufen me-
diated decay (SMD). SMD is a process by which mRNA 
degradation is mediated by the binding of Staufen 1 
(STAU1) (a protein that binds to double-stranded RNA) 
to STAU1-binding sites (SBS) within the 3'-UTR of the 
target mRNA. Alu elements within the 3’-UTR of ln-
cRNAs imperfectly base-pair with the mRNA 3’-UTR 
Alu elements, creating a double stranded SBS. STAU-1 
binds to this site and destabilizes the target mRNA. Gong 
et al. have shown that lncRNA-AF087999 base-pairs 
with the SERPINE1 mRNA at its 3'-UTR Alu element 
sequence and facilitates the binding of STAU1 protein to 
mRNAs leading to SMD [79]. In summary, lncRNAs are 
involved in various aspects of mRNA stability.

lncRNAs in Human Disease 
Dysregulated or mutated lncRNAs play a critical 

role in the etiology and pathogenesis of many diseases 
(Table 1). Many different types of cancers and syndromes 
are associated with mutations in lncRNA genes [3]. Ge-
nome-wide array studies show differential lncRNA ex-
pression patterns in comparisons between normal and 
tumor cells [80-82]. Transcribed ultraconserved regions 
(T-UCRs) are highly conserved sequences between or-
thologous regions of human, rat, and mouse genomes 
located in intra- and intergenic regions. Genome-wide 
microarray profiling studies of T-UCRs indicate that they 
are differentially expressed in human leukemias and car-
cinomas and are regulated by miRNAs both in vitro and 
in vivo [83]. HOTAIR is associated with multiple types of 
cancer (reviewed by Hajjari et al.), [84] where it interacts 
with PRC2 and LSD1 to repress target gene transcription 
[85]. ANRIL binds to chromobox 7 (CBX7), which is a 
component of the PRC1 complex, to induce gene silenc-
ing, and both ANRIL and CBX7 are upregulated in pros-
tate cancer [86]. lincRNA-p21 is a p53 repressor and is 
associated with the development and progression of pros-
tate cancer, chronic lymphocytic leukemia, atheroscle-
rosis, and rheumatoid arthritis [87,88]. A chromosomal 
translocation involving the lncRNA gene DISC2 on chro-
mosome 1 (1;11) (q42.1;q14.3) is associated with schizo-
phrenia and psychiatric disorders in a large Scottish fam-
ily [89]. Genome-wide association studies (GWAS) have 
shown that germline deletion (403 kb) of INK4b/ARF 
locus including the ANRIL gene is associated with hered-
itary cutaneous malignant melanoma (CMM) and neural 
system tumors (NST) syndrome [90]. Expansion of CTG 
trinucleotides in the primary sequence of lncRNA gene 
ATXN8OS produces a toxic RNA that alters RNA splic-
ing of spinocerebellar ataxia type 8 (SCA8) mRNA [91]. 
BWS is an imprinting disorder associated with abnormal 
imprinting of the KCNQ1OT and IGF2 genes resulting in 
congenital malformation and tumor predisposition [16]. 
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mRNAs. SINEUPs are known to enhance protein synthe-
sis of their target mRNA and function post-transcription-
ally [95,96]. SINEUPs contain two functional domains: 
a Binding Domain (BD), which provides specificity (via 
base-pairing) to the targeted mRNA, and an Effector Do-
main (ED) that acts as an activator of translation. The BD 
consists of 72 nucleotides, which include sequences that 
are complimentary to the 5’-UTR, the translation initia-
tion codon and initial codons. The ED contains repetitive 
SINEB2 sequences. The SINEUP lncRNA base-pairs 
with the mRNA, and the SINEB2 element facilitates as-
sociation of the mRNA with polysomes, thus increasing 
the rate of translational initiation [96]. 

The use of synthetic SINEUPs to increase protein 

affinity and cellular uptake and decrease toxicity [94]. 
The low expression of lncRNAs may permit the use of 
lower doses, which may alleviate some toxicities. Off-tar-
get hybridization effects can be minimized by careful 
bioinformatics selection of ASO sequences. Some of the 
possible pharmacological approaches to target lncRNAs 
are discussed below and are summarized in Figure 1.

SINEUPs: Short interspersed nuclear elements 
(SINEs) are short (< 500 bp) non-coding repetitive se-
quences that can transpose into new parts of the genome by 
means of an RNA intermediate and reverse transcriptase. 
SINEUPs are a new class of natural antisense lncRNAs 
that contain an embedded SINEB2 (SINE of B2 family 
element), and these can Up-regulate translation of target 

Affected organ system Disease Associated lncRNAs References
Autoimmune Diseases Psoriasis PRINS [122]

Rheumatoid arthritis HOTAIR [123]
Cardiovascular diseases Cardiac hypertrophy 7SK; CHRF [124,125]

Myocardial infarction MIAT; KCNQ1OT1; ANRIL [126,127]
Digestive system  
disorders

Barrett's AFAP1-AS1 [128]

Crohn's DQ786243 [129]
Endocrine & metabolic 
disorders

Pseudohypoparathyroidism 
type Ib

GNAS-AS1 [130]

Genetic disorder Fragile X syndrome FMR4; FMR5; FMR6 [131,132]
HELLP syndrome HELLPAR [34]

Infectious diseases Leishmania 7SL [133]
Musculoskeletal system 
disorders

Duchenne muscular dystrophy KUCG1; linc-MD1 [134,135]

Facioscapulohumeral  
muscular dystrophy

D4Z4; DBE-T [136]

Neurological diseases Angelman syndrome UBE3A-AS1 [137]
Parkinson's naPINK1 [138]
West syndrome BX118339 [139]

Reproductive system 
diseases

Mullerian aplasia H19 [140]

Cancer Adenocarcinoma HNF1A-AS1; ZXF1 [141,142]
Breast cancer GAS5 [143,144]
Colorectal cancer MALAT1; H19; HOTAIR [145-147]
Esophageal squamous cell 
cancer

ANRIL; SPRY4-IT1 [148,149]

Gastric cancer GHET1 [150]
Kaposi's PAN [151]
Liver HULC [152,153]
Lung MALAT1; LincRNA-p21 [154,155]
Testicular cancer BOK-AS1 [156]

Table 1. lncRNAs associated with human diseases
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[98]. More research into efficient in vivo delivery systems 
may enable the use of SINEUPs as a therapeutic agent to 
treat a wide variety of diseases caused by reduced mRNA 
translation.

RNA interference (RNAi): RNA interference is a 
mechanism for inducing gene silencing by double strand-
ed RNA. siRNAs are 21-23 nucleotide long RNAs with 
3'-dinucleotide overhangs produced by cleavage of dou-
ble-stranded RNAs by the enzyme Dicer. siRNAs are 
incorporated into a protein-RNA complex, the RNA-in-
duced Silencing Complex (RISC). The siRNA then binds 
to the target mRNA and degrades it through perfect se-
quence complementarity, leading to the recruitment of 
ribonucleases. siRNAs are highly potent and generally do 
not require any chemical modifications for activity. siR-
NA drugs designed to disrupt mRNAs involved in cancer 
are currently in clinical trials [99]. Similar siRNA strate-

synthesis has been demonstrated both by in vitro and in 
vivo studies. Uchl1 (ubiquitin carboxyterminal hydrolase 
L1) is a gene associated with Parkinson’s disease and 
other neurodegenerative diseases. AS Uchl1 is a natural 
anti-sense lncNRA that targets Uchl1 mRNA. Under con-
ditions of cellular stress, AS Uchl1 shuttles to the cyto-
plasm, where it induces Uchl1 mRNA to become highly 
loaded with ribosomes, thereby increasing its translation 
[97]. Mutations in subunit 7B of cytochrome C oxidase 
(cox7B) result in microphthalmia with linear skin defects 
(MLS) syndrome. In an in vivo study conducted on me-
dakafish (Oryzias latipes), MLS (microphthalmia and 
microcephaly) was induced by downregulating cox7B 
using morpholinos that targets cox7B. A synthetic (SINE-
UP-cox7B) reversed the microphthalmia and micro-
cephaly in MLS Cox7B morphants in a dose-dependent 
manner, without any increase in the Cox7B mRNA levels 

Figure 1. An Overview of pharmacological strategies to modulate lncRNA functions. A. A diagram of a 
typical gene cluster regulated by a lncRNA. lncRNA genes produce a pool of lncRNAs, which then interact with 
nearby genes. Since a gene cluster often contains genes that function in the same pathways, a single lncRNA can 
coordinately regulate the locus and consequently a pathway of interest. B. Pharmacological targeting strategies can 
be designed whose mode of action is the direct destruction of lncRNAs. Examples include antisense oligonucleotides, 
siRNA approaches, and ribozymes. C. Pharmacological strategies can also be devised whose mode of action is 
the competitive inhibition of interactions between lncRNAs and their target genes or interacting ribonucleoproteins. 
Examples include small molecule inhibitors and synthetic stabilized oligonucleotides.
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by the chemical modification of the phosphate and sugar 
moieties. Incorporation of four phosphorothioate linkag-
es at the 5′- end of the ribozymes and 2′-O-Me nucleo-
tides in place of the 2′- hydroxyl group has been shown to 
stabilize ribozymes without altering their catalytic activ-
ity [114,115]. Targeted delivery of ribozymes to specific 
cellular compartments where lncRNAs are located using 
liposomes or peptide-based delivery systems provides an 
alternative to RNAi [116]. Synthetic ribozymes against 
VEGF mRNA administered in vivo decreased growth 
and metastasis of solid tumors, and the same methodolo-
gy can be adapted to target specific lncRNAs [112,117]. 
Thus, ribozymes are an exciting future therapeutic tool 
that can be used to treat various lncRNA-associated dis-
eases. 

Small molecule inhibitors: Small molecule inhib-
itors can alter gene expression by perturbing the inter-
actions of lncRNAs with chromatin modifying proteins. 
lncRNAs are folded into secondary structures that often 
change conformation upon interaction with ribonuc-
leoproteins [118]. PAN RNAs produced by KSHV and 
MALAT-1 both have an ENE in their structure, which 
stabilizes these lncRNAs and retains them in the nucleus. 
ENEs are activated when the 3′-poly (A) tail hybridizes 
to the U-rich internal loop in the ENE to form a triple 
helical structure. This triple helix confers stability upon 
the lncRNA from rapid deadenylation-dependent decay 
[119]. Future small molecule inhibitors that can disrupt 
stable lncRNA secondary structure or inhibit lncRNA 
association with accessory proteins or target genes may 
provide other avenues to target dysregulated lncRNAs. 
Fatemi et al. used Amplified Luminescent Proximity Ho-
mogeneous Assay (ALPHA screen assay) to analyze the 
RNA-protein interactions and identified small molecules 
using high-throughput compound screening methods. 
They reported the specific and quantifiable binding of 
brain-derived neurotrophic factor antisense (BDNF-AS) 
lncRNA to protein EZH2 (component of PCR2) and 
also identified a small-molecule inhibitor Ellipticine that 
upregulated its downstream target genes [120,121]. In-
depth studies involving lncRNA secondary structures are 
necessary in the future to allow the possibility of identi-
fying new and efficient small molecule inhibitors that can 
specifically bind to the target lncRNAs.

CONCLUSIONS

An emerging paradigm in epigenetics research indi-
cates that lncRNAs regulate many genes in clusters and 
this is an active area of research, which needs more focus 
in the future. lncRNA dysregulation has recently been 
observed as a common feature in a wide range of human 
diseases and disorders. lncRNAs function by a variety of 
mechanisms, but typically they function to regulate the 

gies can be applied to target lncRNAs. Efficient delivery 
of siRNAs using nanoparticles and lipid-encapsulation 
will increase uptake and pharmacokinetic duration of 
drug delivery [100]. A siRNA directed against MALAT-1 
lncRNA in prostate cancer cells resulted in down-regu-
lation of MALAT-1, inhibited cell growth, invasion, mi-
gration, and induced cell cycle arrest [101]. siRNA-me-
diated knockdown of HOTAIR lncRNA inhibited matrix 
invasion in breast cancer cell lines [85], and injection of 
siRNA-transfected cells inhibited xenograft efficiency of 
gastric tumors and metastasis in peritoneal and non-small 
cell lung cancer [102,103]. Thus, RNAi is a robust and 
effective strategy to downregulate pathogenic lncRNAs. 

Antisense Oligonucleotides (ASO): Antisense oli-
gonucleotides and antisense drugs have been explored as 
RNA inhibitors in the past to treat various diseases and 
are currently in different phases of clinical trials. The use 
of ASO technology to target lncRNAs is a logical next 
step [104]. ASOs are single-stranded DNA sequences and 
can be made complementary to the target lncRNAs [105]. 
In the nucleus, they hybridize with targeted lncRNAs to 
form RNA:DNA heteroduplexes, which trigger cleavage 
of the RNA moiety by endogenous RNase H1 activity 
[106]. ASO blocking of MALAT-1 was shown to prevent 
lung cancer metastasis [107] and ASO blocking of ln-
cRNA APOA1-AS upregulated high-density lipoprotein 
particles (HDL) [31]. lncRNA lengths and complex sec-
ondary structures complicate ASO design, but systematic 
evolution of ligands by exponential enrichment (SEL-
EX)-based approaches can be used to identify the best 
target RNA sequences [108,109]. However, lncRNAs 
must fold properly in vitro in order for SELEX-based ap-
proaches to correctly identify target sequences. ASOs can 
be delivered in vivo and chemical modifications such as 
phosphorothioate and LNA modifications enable its en-
docytotic uptake by cell surface receptors. Thus, ASOs 
serve as an important platform to modulate gene expres-
sion, but more research is required to optimize the syn-
thesis of oligonucleotides to efficiently target lncRNAs, 
hopefully with high-potency and limited toxicity. 

Ribozymes: Hammerhead ribozymes are approx-
imately 30-nucleotide long, self-cleaving, and nucle-
ase-resistant catalytic RNA oligonucleotides that can 
bind to and attack the 2′-OH that is 5′- to the scissile bond 
(a covalent bond, which can be broken by enzymes) in 
specific RNA targets, resulting in destabilization of the 
phosphodiester backbone of the targeted RNA mole-
cule [110-112]. Once cleaved, the ribozymes dissociate 
from the products and may cleave other target RNAs. 
The cleavage is highly sequence-specific and is sensitive 
to single nucleotide mismatches; hence, toxicity due to 
off-target effects can be minimal [113]. Stability of short 
ribozyme sequences in the presence of endogenous ribo-
nucleases poses a problem, but this has been addressed 
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expression of protein-coding genes through epigenetic 
mechanisms, often by recruiting chromatin remodeling 
enzymes to gene clusters. Therefore, lncRNAs can be 
viewed as master regulators of gene expression and con-
stitute attractive targets for specific epigenetic pharma-
cological therapy. Tractable pharmacological approaches 
are now available that can either degrade overexpressed 
lncRNAs or competitively inhibit their function. Now, for 
the first time, it may be possible to develop drugs that 
target specific lncRNAs, thus offering the ability to epi-
genetically modulate specific biochemical pathways. If 
so, lncRNA drugs will offer significant improvements to 
the very low specificity of existing drugs that function as 
epigenetic modifiers. 
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