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a b s t r a c t 

Along the pathway from behavioral symptoms to the development of psychotic disorders sits the multivariate mediating brain. The functional organization and 
structural topography of large-scale multivariate neural mediators among patients with brain disorders, however, are not well understood. Here, we design a high- 
dimensional brain-wide functional mediation framework to investigate brain regions that intermediate between baseline behavioral symptoms and future conversion 
to full psychosis among individuals at clinical high risk (CHR). Using resting-state functional magnetic resonance imaging (fMRI) data from 263 CHR subjects, we 
extract an 𝜶 brain atlas and a 𝜷 brain atlas: the former underlines brain areas associated with prodromal symptoms and the latter highlights brain areas associated 
with disease onset. In parallel, we identify and separate mediators that potentially positively and negatively mediate symptoms and psychosis, respectively, and 
quantify the effect of each neural mediator on disease development. Taken together, these results paint a brain-wide picture of neural markers that are potentially 
mediating behavioral symptoms and the development of psychotic disorders; additionally, they underscore a statistical framework that is useful to uncover large-scale 
intermediating variables in a regulatory biological system. 
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. Introduction 

How does the human brain intermediate between behavioral symp-
oms and the development of brain diseases? Which brain areas are in-
olved in this process? Can we chart these areas’ functional character-
stics and structural organization? 

Researchers studying brain diseases often observe that brain signals
re on the one hand associated with behavioral symptoms, and on the
ther hand linked to disease status. Conventionally, the former is called
n independent variable, the latter is called a dependent variable (or
n outcome), and the brain areas interposed in-between are called me-
iators. A central problem in neural mediation analysis is to identify
hich brain regions are positioned along the pathway between behav-

oral symptoms and disease status. Equally important is to quantify the
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ffect of each identified brain area on developing the disease and to
etermine its relative prominence in the mediation system. 

Disorganization symptoms, such as bizarre thoughts and behaviors,
re considered to be associated with conversion to psychosis among in-
ividuals at clinical high risk (CHR); empirical studies have shown a
ignificantly higher hazard ratio for psychosis onset in CHR subjects
ith higher disorganization symptoms at baseline ( Cannon et al., 2008 ;
emjaha et al., 2012 ; Carrión et al., 2013 ). Yet, as properties associ-
ted with a mental disorder, the disorganization symptoms and disease
evelopment are reflected by the measured brain signals. Probing into
he neural basis of human behavior and disease development, media-
ion analysis can help us to understand the functional attributes and
tructural topography of the brain areas that potentially mediate behav-
oral symptoms and disease development. But it can only do so by first
harting the neural pathways that make brain mediation possible. 
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Fig. 1. The study layout of the neural mediation analysis. (a) We considered a sample of 263 subjects recruited from eight study sites across the United States and Canada 
who met criteria for a prodromal risk syndrome at the point of recruitment and had been clinically followed up for two years as part of the NAPLS-2 project. During 
the follow-up period, 25 subjects developed a full-blown psychotic disorder (CHR convertors); 238 did not (CHR non-convertors). (b) The behavioral symptoms 
of convertors were significantly more severe than those of non-convertors. (c) The neural mediation analysis investigated which brain regions were intermediating 
between psychosis symptoms and disease status. Once neural mediators were identified, one could further quantify the mediation effect of each mediator to determine 
its relative prominence in the mediation system. (d) Both convertors and non-convertors received an eyes-open resting-state functional magnetic resonance imaging 
(fMRI) scan at the point of recruitment. (e) Resting-state brain activities from both convertor and non-convertor samples were plotted along 130,992 brain areas. 
The red shade represented brain signals stacked across the convertor group along the whole-brain space and the blue shade represented those from the non-convertor 
group. 
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A beginning in this direction can be made by identifying and isolat-
ng neural mediators that are interposed between behavioral symptoms
nd disease development (see Fig. 1 ). Central to this enquiry is a high-
imensional brain mediation analysis: examining hundreds of thousands
f brain areas to find a subset of potential mediators. To uncover high-
imensional functional neural mediators with binary outcomes ( e.g. ,
hether one has a full-blown psychotic disorder or not), one, however,
ust confront several challenges. First, although existing mediation
odels have made the search for mediators fruitful, they are not suitable

or studying high-dimensional mediation analysis with binary outcomes.
or example, existing multi-level mediation models assume that the out-
omes are continuously distributed ( Chén et al., 2018 ; Geuter et al.,
020 ; Huang and Pan, 2016 ; VanderWeele and Vansteelandt, 2014 ); me-
iation frameworks concerning binary outcomes are at present restricted
o a relatively small number of mediators ( VanderWeele and Vanstee-
andt, 2014 ; Nguyen, 2016 ); high-dimensional mediation models whose
utcomes are not normally distributed do not have a closed form solu-
ion (therefore it is difficult to estimate parameters analytically, as, for
xample, in ( Chén et al., 2018 )). Second, although functional mediation
nalysis ( Lindquist, 2012 ) has considerably advanced knowledge about
he functional signal organization of the brain in relation to indepen-
ent and outcome variables, it remains unclear whether it is suitable
or analyzing high-dimensional brain data, and if so, how the underly-
ng data configuration, such as the sample size and noise level, would
ffect parameter estimation. In parallel, its efficacy needs to be evalu-
ted for brain disease studies. Third, signals from brain mediators could
e orthogonal or non-orthogonal. Whether and how their orthogonality
ould affect mediation analysis is an as-of-yet less-well-charted area. If
ot properly treated, this set of circumstances could generate inconsis-
ent results and confusing interpretations. Finally, the search for func-
ional neural mediators among subjects with severe behavioral symp-
oms raises the question of which mediators are positively, and which
re negatively, mediating the development of brain disorders. 

To address these questions, here we propose a high-dimensional
unctional mediation model. Through simulation studies and empirical
ata analysis, we demonstrate that the model may be useful to (a) an-
lyze large-scale intermediating brain signals ( e.g. , resting-state brain
ctivities from hundreds of thousands of voxels); (b) distinguish distinc-
ive functional brain regions between different groups in relation to be-
avior symptoms; (c) quantify each neural mediator’s effect on disease
utcome; and (d) identify and separate brain areas that are potentially
ositively and negatively mediating brain disorders. 

In clinical practice, one assumes that an irregular change of brain
ignals can first cause prodromal signs and symptoms, followed in some
ases by later conversion to psychosis. In this paper, we aimed at study-
ng the influence of the underlying brain signals on the link between two
irectly and clinically observable sets of variables: prodromal signs and
ymptoms on the one hand, and conversion state on the other hand. The
ramework we designed to map the pathways contained directed arrows.
he arrows clarified that the statistical model was a mediation one they
id not suggest definitive causal flows from prodromal signs via brain
reas towards conversion status (see Figs. 1 and 2 ). When confusion
bout the causal direction arises, one can interpret the identified neu-
al mediators as brain areas that are jointly associated with behavioral
ymptoms and psychosis conversion. In other words, the neural medi-
tors exclude brain areas that are associated with conversion, but that
re not associated with prodromal symptoms, and vice versa . One should
lso note that in cases where the brain signals first have an effect on the
ymptoms and then on the disease status (namely when the symptoms
re the mediator), the identified brain regions are identical to the alpha
tlas estimated by the proposed model (see Results ). Although there
re overlaps between the two models, the interpretations are different.
he key differences between brain areas identified by these two mod-
ls are (1) the identified brain areas in the current study are potential
eural mediators whereas those identified using the other model (where
he symptom is treated as the mediator) are multivariate independent
ariables; and (2) the neural mediators from the present study are a sub-
et of brain areas identified using the other model. In the Supporting

nformation , we extend the proposed model to causal mediation set-
ing using counterfactuals; additionally, we discuss how to interpret the
odel when causal inference is concerned; in cases where brain signals

an be manually controlled ( e.g. , via transcranial magnetic stimulation
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Fig. 2. A schematic representation of mediation analysis. (a) Univariate mediation analysis. The circles indicate an independent variable, a univariate mediator, an 
outcome variable, and covariates. The arrows denote pathways. The letter 𝛼 denotes the effect from the independent variable to the mediator, after accounting for 
the covariate effect. The letter 𝛽 denotes the effect of the mediator on the outcome, after controlling the independent variable and covariates. The letter 𝛾 denotes 
the effect from the independent variable to the outcome, after accounting for the covariate effect. ( b) Multivariate neural mediation analysis. Each circle within the 
brain represents a potential neural mediator. The arrows denote pathways. The letter 𝛼𝑖 ( 1 ≤ 𝑖 ≤ 𝑉 ) denotes the effect from the independent variable to the 𝑖 𝑡ℎ 

neural mediator (represented by a red circle). The letter 𝛽𝑖 denotes the effect of the neural mediator on the outcome, after controlling the independent variable and 
covariates. The letter 𝛾 indicates the direct effect from the independent variable to the outcome, after accounting for the covariate effect. 
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TMS)), under some identification conditions, the proposed model may
nveil potential causal direct effect and indirect effect on the odds ratio
cale. 

In the following, we begin with a brief overview of the media-
ion analytical frameworks concerning univariate and multivariate me-
iators. After discussing these basic concepts, we introduce the high-
imensional functional mediation framework. To demonstrate its util-
ty, we perform both simulation and case studies. During the simulation
tudy, we consider various experimental settings, including different
evels of noise, sample sizes, and both orthogonal and non-orthogonal
asis functions, to ensure that the proposed framework is suitable for
tudying high-dimensional functional mediation. During the case study,
e uncover brain areas that potentially mediate psychosis symptoms
nd disease status from whole-brain resting-state functional magnetic
esonance imaging (rs-fMRI) data obtained from 263 subjects at clinical
igh risk (CHR) for psychosis. 

.1. Univariate mediation analysis 

Univariate mediation analysis considers a single mediator ( 𝑀) (see
ig. 2 ( a )). In other words, a variable 𝑀 is a mediator if, after account-
ng for covariates 𝒁 , the effect of an independent variable 𝑋 on an
utcome variable 𝑌 is at least partially carried through 𝑀 ( Baron and
enny, 1986 ; Robins and Greenland, 1992 ). In the following, we use up-
er cases ( e.g. , M ) to indicate random variables, and lower cases ( e.g. , m )
o indicate observed values. We use nonbold letters ( e.g. , M and m )
o represent univariate variables and observations; we use bold letters
 e.g. , 𝐌 and 𝐦 ) to represent multivariate variables and observations.
xamples of univariate mediators are pain catastrophizing, which me-
iates the clinical treatment and disability status ( Whittle et al., 2017 ),
nd intention, which mediates attitudes and behavior ( Fishbein and
jzen, 1975 ). 

The identification of a univariate mediator consists of two steps
 Alwin and Hauser, 1975 ; Baron and Kenny, 1986 ; Hyman, 1955 ;
udd and Kenny, 1981 ; Sobel, 1982 ) (see Supporting Information for a
omparison between two common mediation analysis frameworks). The
rst step examines if the independent variable 𝑋 has an effect on the
ediator 𝑀 after controlling for the covariates 𝒁 , using the following

onditional model: 

 ( 𝑀|𝑥, 𝐳 ) = 𝜃0 + 𝛼𝑥 + 𝒛 T 𝒕 (i)

here 𝔼 refers to the expectation operation; 𝜃0 , 𝛼, 𝒕 are coefficients for
he intercept, the observed independent variable 𝑥 , and the observed co-
ariates 𝒛 . If 𝛼 is significantly different from zero, then the independent
ariable has an effect on the mediator. 

The second step evaluates if the mediator 𝑀 has an effect on the out-
ome 𝑌 , after controlling for the independent variable 𝑋 and covariates
 , using the following conditional model: 

 ( 𝑌 |𝑥, 𝑚, 𝐳 ) = 𝜃′0 + 𝛾𝑥 + 𝛽𝑚 + 𝒛 T 𝝉 (ii)

here 𝜃′0 , 𝛾, 𝛽 and 𝝉 are coefficients for the intercept, the observed in-
ependent variable 𝑥 , the observed value of the mediator 𝑚 , and the
bserved covariates 𝒛 . The prime in 𝜃′0 is to differentiate it from its
ounterpart in (i). If 𝛽 is significantly different from zero, then the me-
iator has an effect on the outcome. 

The univariate variable 𝑀 is said to significantly mediate the rela-
ionship between 𝑋 and 𝑌 , if both 𝛼 and 𝛽 are significantly different
rom zero. Said in a different way, if the product 𝛼𝛽 is non-zero, then

is a mediator for 𝑋 and 𝑌 , and the value of 𝛼𝛽 quantifies the media-
ion effect. In the language of a graphical model, this means that both 𝛼
nd 𝛽 edges in Fig. 2 ( a ) exist, connecting nodes 𝑋 and 𝑌 via a pathway
assing through node 𝑀 . 

.2. Multivariate mediation analysis 

Mediation analysis concerning a multivariate mediator can be con-
ucted using structural equation models (SEMs) ( Lindquist, 2012 ;
anderWeele and Vansteelandt, 2014 ) (see Fig. 2 ( b )). Formally, con-
ider 𝑉 mediators ( 𝑉 ≥ 2 ), denoted as 𝑀 (1) , 𝑀 (2) , … , 𝑀 ( 𝑉 ) , an inde-
endent variable 𝑋, and an outcome variable 𝑌 . Multivariate mediation
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Fig. 3. A hypothetical experiment and how 

multivariate mediation analysis can be used 

to study brain mediation in health and dis- 

ease. (a1) Three individuals’ behavioral symp- 
tom scores are measured at baseline. (a2) 

Resting-state brain activities for one individ- 
ual is collapsed into activities averaged over 
time across voxels in the whole brain. Each 
circle corresponds to one voxel. (a3) Indi- 
viduals’ two-year clinical outcome for psy- 
chosis. We use a blue icon to refer to a non- 
convertor and a red icon to refer to a con- 
vertor. (b 1 ) Measured individual brain sig- 
nals are arranged corresponding to their be- 
havioral symptom scores and psychosis sta- 
tuses. Each column contains data from a par- 
ticular subject. (b 2 ) The input system of the 
brain mediation framework studies the associ- 
ation between the behavioral symptom score 
(the box) and measured brain signals (the 
circles). The colored arrows indicate signifi- 
cant pathways from the behavioral symptom 

score to brain areas. The width of the ar- 
rows indicates effect size, and the color in- 
dicates sign (where orange means positive 
and blue means negative). (b 3 ) The out- 
put system of the brain mediation frame- 
work studies the association between the mea- 
sured brain signals (the circles) and disease 
status (the box). (c1) The mediation analy- 
sis framework combines the input and out- 
put systems, and studies how the effect of 
behavioral symptom score (the left box) on 
the psychosis status (the right box) is in- 
termediated by neural mediators (the cir- 
cles). A voxel significantly mediates the rela- 
tionship if its signal is associated with both 
the behavioral symptom score and the psy- 
chosis status. (c 2 ) The mediation effect of a 
particular voxel is calculated by multiplying 
the effect sizes from the input and the output 
pathways corresponding to the voxel. 
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nalysis considers two conditional models as follows. 

 ( 𝑀 ( 𝑗 ) |𝑥, 𝒛 ) = 𝜃0 ( 𝑗 ) + 𝛼( 𝑗 ) 𝑥 + 𝒛 T 𝒕 ( 𝑗 ) , 𝑗 = 1 , 2 , … , 𝑉 (iii) 

here 𝑀( 𝑗) is the 𝑗 𝑡ℎ mediator; 𝜃0 ( 𝑗) , 𝛼( 𝑗) , and 𝒕 ( 𝑗) are coefficients for
he intercept, the observed independent variable 𝑥 , and the observed
ovariates 𝒛 that are associated with the 𝑗 𝑡ℎ mediator. 

 ( 𝑌 |𝑥, 𝑚, 𝒛 ) = 𝜃’ 
0 + 𝛾𝑥 + 

𝑉 ∑
𝑗=1 

𝛽( 𝑗 ) 𝑚 ( 𝑗 ) + 𝒛 T 𝝉 (iv) 

here 𝒎 = ( 𝑚 (1) , 𝑚 (2) , … , 𝑚 ( 𝑉 ) ) is a vector representing 𝑉 observed me-
iators; 𝜃′0 , 𝛾, and 𝝉 are coefficients for the intercept, the observed inde-
endent variable 𝑥 , and the observed covariates 𝒛 ; 𝛽( 𝑗) is the coefficient
ssociated with the 𝑗 𝑡ℎ mediator. 

The 𝑗 𝑡ℎ mediator 𝑀( 𝑗) , for 𝑗 = 1 , 2 , … , 𝑉 , is said to significantly
ediate the relationship between 𝑋 and 𝑌 , if both 𝛼( 𝑗) and 𝛽( 𝑗) are

ignificantly different from zero after accounting for the covariates. The
roduct, 𝛼( 𝑗 ) 𝛽( 𝑗 ) , quantifies the mediation effect for the 𝑗 𝑡ℎ mediator
see Fig. 3 ). 

.3. High-dimensional brain-wide functional mediation 

High-dimensional mediation analysis aims at identifying mediators
rom a high-dimensional multivariate variable. For example, a neuro-
iologist is interested in searching through the entire brain to look for
eural mediators using signals recorded from hundreds of thousands of
rain regions. The framework introduced in the paper consists of a dual
ystem: the input system investigates how an independent variable ( e.g. ,
ehavioral symptoms) may be associated with signals of brain media-
ors, after controlling for covariates; the output system examines how
ignals of brain mediators may give rise to the outcome variable ( e.g. ,
sychosis disease status), after controlling for the independent variable
nd covariates (see Fig. 3 ). For brevity, from now on we will refrain
rom mentioning covariate control in our writing; readers should note
hat this has been included during the mediation analysis. 

In the following, we introduce the key concepts of the framework
nd leave derivations and discussions to the Material and Methods

nd Supporting Information sections. 
Consider 𝑁 subjects and 𝑉 brain areas, where 𝑉 is high-dimensional

in our study 𝑁 = 263 and 𝑉 = 130 , 992 ). Let 𝑥 𝑖 and 𝑦 𝑖 be the indepen-
ent and outcome variables for subject 𝑖 , respectively. Let 𝒛 𝑖 = ( 𝑧 1 𝑖 , 𝑧 2 𝑖 ,
 3 𝑖 , 𝑧 4 𝑖 and 𝑧 5 𝑖 ) denote the covariates of subject 𝑖 , for example, the site
from which data are collected), age, gender, frame-wise displacement
FD), and whole-brain gray matter volume, respectively. Finally, let
 𝑖 ( 𝑗) be the neural activity from the 𝑗 𝑡ℎ brain area of subject 𝑖 . The
igh-dimensional functional brain-wide mediation framework consists
f an input system and an output system. 

The following conditional model describes the input system (see
ig. 3 ( b 2 )): 

 ( 𝑚 𝑖 ( 𝑗 ) |𝑥 𝑖 , 𝒛 𝑖 ) = 𝜃0 ( 𝑗 ) + 𝑥 𝑖 𝛼( 𝑗 ) + 𝒛 T 𝒕 ( 𝑗 ) (v)
𝑖 
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here 𝜃0 ( 𝑗 ) , 𝛼( 𝑗 ) , and 𝒕 ( 𝑗 ) are coefficients for the intercept, the in-
ependent variable, and covariates that are associated with the 𝑗 𝑡ℎ 

ediator. It is worthwhile mentioning that the estimated parameters
= ( 𝛼(1) , 𝛼(2) , … , 𝛼( 𝑉 ) ) (see the alpha atlas in the Results section)

re closely related to canonical correlation (CCA) between multivari-
te brain signals 𝑴 and the independent variable 𝑋 and are remotely
elated to the Partial Least Squares (PLS) estimates (see Supporting In-

ormation for details). 
The following generalized functional linear model (a generalized lin-

ar model containing functional PCs in its regressors) represents the out-
ut system (see Fig. 3 ( b 3 )): 

 

(
𝑦 𝑖 |𝚫𝑖 

)
= 𝑔 −1 

( 

𝛽0 + 𝑥 𝑖 𝛾 + 

𝑉 ∑
𝑗=1 

∞∑
𝑘 =1 

𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗 ) 𝛽( 𝑗 ) + 𝒛 T 𝑖 𝝉

) 

(vi)

here 𝛽0 , 𝛾, and 𝝉 are coefficients for the intercept, the indepen-
ent variable, and covariates. Here, 𝚫𝑖 = (1 , 𝑥 𝑖 , 𝐌 

𝑇 
𝑖 
, 𝐳 𝑇 ) denotes the

ata 𝜉𝑖𝑘 and 𝜑 𝑘 ( 𝑗) are the Karhunen-Loève expansion ( Loève, 1945 ;
arhunen, 1947 ) of 𝑚 𝑖 ( 𝑗) , the 𝑗 𝑡ℎ mediator of subject 𝑖 ; in other words

 𝑖 ( 𝑗) = 

∞∑
𝑘 =1 

𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗) ≈
𝐾 ∑
𝑘 =1 

𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗) (without loss of generality, assume

 𝑖 ( 𝑗) is zero centered), where 𝜉𝑖𝑘 ∼ 𝑁( 0 , 𝜆𝑘 ) , 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆∞, for
 ∈ { 1 , 2 , … , 𝑁 } , 𝑗 ∈ { 1 , 2 , … , 𝑉 } , and 𝐾 is a finite integer such that
𝐾 ∑
 =1 
𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗) captures the importance of modes of variations of 𝑚 𝑖 ( 𝑗) (see

aterial and Methods for more detailed explanation). Additionally,
 = { 𝜑 1 , 𝜑 2 , … , 𝜑 ∞} denotes the basis functions and 𝛽( 𝑗) is the coef-
cient associated with the 𝑗 𝑡ℎ mediator. The link function 𝑔( ⋅) takes
arious forms based on the outcome distribution. For example, when
 𝑖 is Gaussian, binary, or Poisson, the link function is 𝑔( 𝑦 ) = 𝑦 , 𝑔( 𝑦 ) =
og ( 𝑦 1− 𝑦 ) , or 𝑔( 𝑦 ) = log ( 𝑦 ) , respectively. 

The first 𝐾 basis functions or { 𝜑 1 , 𝜑 2 , … , 𝜑 𝐾 } in Eq. (vi) are func-
ional representations of 𝐾 dominant population-specific ( i.e. , shared by
ll 𝑁 subjects) information of brain data, ranked decreasingly (accord-
ng to { 𝜆1 , 𝜆2 , … , 𝜆𝐾 } ) based on the amount of information each basis
unction explains about the multivariate neural mediator 𝑴 . Although
y Mercer’s theorem (see Chapter 4 of Indritz, 1963 ), the basis functions
re orthogonal, and researchers indeed are oftentimes interested in un-
overing orthogonal brain signals in relation to mediation, it remains
ossible that the brain signals consist of non-orthogonal information.
espite the central focus herein being on mediation studies, it is im-
ortant to understand how the underlying orthogonality of brain data’s
asis functions may affect the identification of neural mediators and the
stimation of the mediation effect. To that end, we performed simulation
tudies using both orthogonal and non-orthogonal basis functions with
ifferent noise levels and sample sizes, and the results showed that our
ramework was successful to uncover neural mediators regardless of the
rthogonality. Naturally, the mediation analysis performance was better
hen the underlying basis functions were orthogonal, and the estima-

ion results improved as the noise decreased or the sample size increased
see Supporting Information ). 

We summarize the key steps of the framework as follows. First, it
stimates the effect of the independent variable on each brain area;
his yields an 𝜶 brain atlas (see Fig. 3 ( b 2 )). Next, it extracts subject-
pecific principal component (PC) scores 𝝃𝑖 = { 𝜉𝑖 1 , 𝜉𝑖 2 , … , 𝜉𝑖𝐾 } from each
ndividual 𝑖 ’s brain signals ( 𝒎 𝑖 ), and estimates the effect of the trans-
ormed lower-dimensional mediators ( i.e. , 𝝃𝑖 ) on the disease outcome 𝑦 𝑖 
fter controlling for the independent variable and the covariates. Subse-
uently, the low-dimensional mediator-on-outcome effect is translated
o the high-dimensional brain space using the estimated brain-wide ba-
is functions ( i.e. , 𝝋 ); this produces a 𝜷 brain atlas (see Fig. 3 (b 3 )),

aterial and Methods and Supporting Information ). Finally, it ob-
ains the brain-wide mediation effect using the 𝜶 and 𝜷 brain atlases
nd bootstrap tests (see Fig. 3 ( c ) - ( c ) and Methods ). 
1 2 
. Material and methods 

.1. The NAPLS-2 data 

The fMRI data were drawn from the second phase of the
orth American Prodrome Logitudinal Study (NAPLS-2) consortium
 Addington et al., 2012 ), which included 263 subjects recruited from
ight study sites across the United States and Canada. All subjects met
he criteria for the prodromal syndromes at the point of recruitment
ccording to the Structured Interview for Prodromal Syndromes (SIPS)
 McGlashan et al., 2001 ) and were clinically followed-up for two years.
uring follow-up, 25 subjects developed one type of the Axis-I psychotic
isorders (CHR convertors, age 18.52 ± 4.08 years, 17 males) and 238
id not (CHR non-convertors, 19.07 ± 4.16 years, 136 males). The con-
ersion was defined as the individual either met the Diagnostic and Sta-
istical Manual of Mental Disorders, fourth edition (DSM-IV) ( Bell, 1994 )
riteria for an Axis-I psychotic disorder or had at least one fully psychotic
ymptom assessed by the Structured Interview for Prodromal Syndromes
SIPS) at follow-up ( Miller et al., 2002 ; Miller et al., 2003 ). See Table 1

or details on the studied sample. All subjects received an eyes-open
esting-state functional magnetic resonance imaging (fMRI) scan at the
oint of recruitment. 

.2. Data acquisition 

During the 5-min eyes-open resting-state scan (154 whole-brain vol-
mes), participants were asked to lay still in the scanner, relax, gaze at
 fixation cross, and not engage in any particular mental activity. Af-
er the scan, investigators confirmed with the participants that they had
ot fallen asleep in the scanner. Data were acquired from 3T MR scan-
ers located at eight study sites with identical fMRI protocols. Siemens
canners were used at Emory, Harvard, University of California Los An-
eles (UCLA), University of North Carolina at Chapel Hill (UNC), and
ale; GE scanners were used at Calgary, University of California San
iego (UCSD), and Zucker Hillside Hospital (ZHH). Functional images
ere collected using gradient-recalled echo-planar imaging (GRE-EPI)

equences: TR/TE 2000/30 ms, 77° flip angle, 30 4-mm slices, 1-mm
ap, 220-mm FOV. In addition, we also acquired high-resolution T1-
eighted images for each participant with the following sequence: 1)
iemens scanners: magnetization-prepared rapid acquisition gradient-
cho (MPRAGE) sequence with 256 mm × 240 mm × 176 mm FOV,
R/TE 2300/2.91 ms, 9° flip angle; 2) GE scanners: spoiled gradient re-
alledecho (SPGR) sequence with 260 mm FOV, TR/TE 7.0/minimum
ull ms, 8° flip angle. 

.3. Preprocessing of rs-fMRI data 

Data were preprocessed using the standard pipeline im-
lemented in the Statistical Parametric Mapping (SPM12,
ttp://www.fil.ion.ucl.ac.uk/spm/) software following previously
ublished work ( Cao et al., 2018 ; Cao et al., 2019 ; Cao et al., 2019 ;
ao et al., 2019 ), including slice-timing correction, realignment, indi-
idual structural-functional image coregistration, normalization to the
ontreal Neurological Institute (MNI) template, and spatial smoothing
ith 8-mm full width at half maximum (FWHM). Preprocessed images
ere further corrected for white matter, cerebrospinal, and global

ignals, 24 head motion parameters (6 translation and rotation parame-
ers, their first derivatives, and the square of these 12 parameters), and
rame-wise displacement (FD). To mitigate potential head motion effect,
 subjects (1 converter, 7 non-converters) with mean FD > 0.35 mm
ere excluded from further analysis. The activities of each gray matter
oxel during resting state were quantified by fractional amplitude of
ow-frequency fluctuation (fALFF), a well-established measure evaluat-
ng the ratio of power spectrum of low-frequency (0.01–0.1 Hz) to that
f the entire frequency range ( Zou et al., 2008 ). After computation,
ALFF values were extracted from a total of 130,992 voxels covering

http://www.fil.ion.ucl.ac.uk/spm/\051
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Table 1 

Demographic and clinical information for the studied sample. The two groups showed significant differences in 
disorganization symptoms. 

CHR converters ( N = 25) CHR non-converters ( N = 238) p- value 

Age (years) 18.52 ± 4.08 19.07 ± 4.16 0.52 

Sex (M/F) 17/8 136/102 0.30 

Site 7/4/1/0/8/1/3/1 36/41/28/26/44/21/36/6 0.23 

SOPS disorganized symptoms 7.52 ± 3.38 5.04 ± 3.15 < 0.001 

Mean frame-wise displacement (mm) 0.14 ± 0.10 0.11 ± 0.08 0.17 
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he gray matter of the entire brain for each subject. Secondary data
nalysis was conducted using the R software. 

.4. The model 

Here we introduce the high-dimensional functional mediation anal-
sis framework. The input system of the framework tests if the indepen-
ent variable ( e.g. , behavioral symptoms) has an effect on each brain
rea (see Fig. 3 ( b 2 )). The output system examines if each brain area
as an effect on the outcome (see Fig. 3 ( b 3 )). 

Formally, consider 𝑁 subjects and 𝑉 brain areas, where 𝑁 = 263 and
 = 130 , 992 in this study. Let 𝑥 𝑖 ∈ ℝ be the independent variable for sub-
ect 𝑖 , 𝒛 𝑖 ∈ ℝ 

5 be the covariates consisting of the site (from which data
re collected), age, gender, frame-wise displacement (FD), and whole-
rain gray matter volume, respectively, of subject 𝑖 , 𝒎 𝑖 ∈ ℝ 

𝑉 be the
easured brain signals of subject 𝑖 spanning 𝑉 brain areas, and 𝑦 𝑖 be

he outcome for subject 𝑖 (in this study 𝑦 𝑖 ∈ { 0 , 1 } ). 
We first review the basics of functional principal component anal-

sis (fPCA) ( Ramsay and Silverman, 2005 ; Wang et al., 2016 ). Let
 ( 𝑗) , 𝑗 ∈ [ 0 , 1 ] , be a squared integrable random function with mean
( 𝑗) and covariance function 𝐾( 𝑠, 𝑡 ) . In other words, 𝜇( 𝑗) = 𝔼 ( 𝑚 ( 𝑗) ) and
( 𝑠, 𝑡 ) = 𝑐𝑜𝑣 ( 𝑚 ( 𝑠 ) , 𝑚 ( 𝑡 ) ) . By Mercer’s theorem (see Chapter 4 of Indritz,
963 ), one can obtain the spectral decomposition of 𝐾( 𝑠, 𝑡 ) as: 

 ( 𝑠, 𝑡 ) = 

∞∑
𝑘 =1 

𝜆𝑘 𝜑 𝑘 ( 𝑠 ) 𝜑 𝑘 ( 𝑡 ) 

here 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆∞ are decreasingly ordered nonnegative eigen-
alues and 𝜑 𝑘 ’s are their corresponding orthogonal eigenfunctions with
nit  

2 norms. 
Karhunen-Loève expansion ( Loève, 1945 ; Karhunen, 1947 ) of the

andom function 𝑚 ( 𝑗) yields: 

 ( 𝑗 ) = 𝜇( 𝑗 ) + 

∞∑
𝑘 =1 

𝜉𝑘 𝜑 𝑘 ( 𝑗 ) 

here 𝜉𝑘 = 

1 
∫
0 
{ 𝑚 ( 𝑗) − 𝜇( 𝑗) } 𝜑 𝑘 ( 𝑗 ) 𝑑 𝑗 are uncorrelated random variables

ith zero mean and variance 𝜆𝑘 . For a given functional sample, the mean
unction 𝜇( 𝑗) and covariance function 𝐾( 𝑠, 𝑡 ) can be consistently esti-
ated using the method of moments. The eigen-values and -functions

re estimated from the empirical covariance function, and the principal
omponent scores ( 𝜉𝑘 ’s) can be estimated by numeric integration. 

Next, we inquire further into Eqs. (v) and (vi) from the Introduc-

ion section. Resume the notations used in Eqs. (v) and (vi) . Consider
subjects and 𝑉 brain areas, where 𝑉 is high-dimensional. Let 𝑥 𝑖 and

 𝑖 be the independent and outcome variables for subject 𝑖 , respectively.
et 𝒛 𝑖 = ( 𝑧 1 𝑖 , 𝑧 2 𝑖 , 𝑧 3 𝑖 , 𝑧 4 𝑖 , 𝑧 5 𝑖 ) denote the covariates of subject 𝑖 , for ex-
mple, the site (from which data are collected), age, gender, frame-
ise displacement (FD), and whole-brain gray matter volume, respec-

ively. Finally, let 𝑚 𝑖 ( 𝑗) be the neural activity from the 𝑗 𝑡ℎ brain area of
ubject 𝑖 . 

The input system consists of the following model: 

 ( 𝑚 𝑖 ( 𝑗) |𝑥 𝑖 , 𝒛 𝑖 ) = 𝜃0 ( 𝑗 ) + 𝑥 𝑖 𝛼( 𝑗 ) + 𝒛 T 𝑖 𝒕 ( 𝑗 ) 

here 𝜃0 ( 𝑗 ) , 𝛼( 𝑗 ) , and 𝒕 ( 𝑗 ) are coefficients for the intercept, the indepen-
ent variable, and covariates that are associated with the 𝑗 𝑡ℎ mediator.
pecifically, 𝛼( 𝑗) captures the effect of the independent variable on the
 

𝑡ℎ mediator, 𝜃0 ( 𝑗) indicates an intercept, and 𝒕 ( 𝑗) denotes the coeffi-
ients for the covariates with respect to the 𝑗 𝑡ℎ mediator. Without loss
f generality, consider 𝑗 ∈ { 1 

𝑉 
, 
2 
𝑉 
, … , 

𝑉 

𝑉 
} . 

The output system consists of the following generalized functional
inear model: 

 

(
𝑦 𝑖 | 𝚫𝑖 

)
= exp 

{(
𝑦 𝑖 𝜃𝑖 − 𝑎 

(
𝜃𝑖 
)
+ 𝑏 

(
𝑦 𝑖 
))
𝜙
}

(vii)

here 𝜃𝑖 = ℎ ( 𝜂𝑖 ) , 𝜂𝑖 is called a linear predictor with 𝜂𝑖 = 𝚫𝑖 𝝎 ,

𝑖 = (1 , 𝑥 𝑖 , 𝒎 

T 
𝑖 
, 𝒛 T 

𝑖 
) denotes the data, 𝒎 

T 
𝑖 
= ( 𝑚 𝑖 (1) , 𝑚 𝑖 (2) , … , 𝑚 𝑖 ( 𝑉 )) ,

nd 𝑚 𝑖 ( 𝑗) = 

∞∑
𝑘 =1 

𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗) ≈
𝐾 ∑
𝑘 =1 

𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗) , where 𝜉𝑖𝑘 ∼ 𝑁( 0 , 𝜆𝑘 ) , 𝜆1 ≥

2 ≥ … ≥ 𝜆∞, for 𝑖 ∈ { 1 , 2 , … , 𝑁 } and 𝑗 ∈ { 1 
𝑉 
, 
2 
𝑉 
, … , 

𝑉 

𝑉 
} , and 𝝋 =

 𝜑 1 , 𝜑 2 , … , 𝜑 𝐾 } is a set of basis functions. 𝝎 = ( 𝛽0 , 𝛾, 𝜷, 𝝉) T denotes
he corresponding parameters for 𝚫𝑖 . ℎ ( ⋅) , 𝑎 ( ⋅) and 𝑏 ( ⋅) are proper func-
ions. 𝜷 is a 𝑉 × 1 vector, whose 𝑗 𝑡ℎ entry 𝛽( 𝑗) estimates the effect of
he 𝑗 𝑡ℎ mediator on the outcome, controlling the independent variable
nd covariates. 𝜙 is a nuisance parameter. 

By taking the expected value of 𝑦 𝑖 conditioning on 𝚫𝑖 , Eq. (vii) yields
q. (vi) in the Introduction section. Particularly, when 𝑦 𝑖 is binary,
q. (vi) has the following form: 

 𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙 𝑙 𝑖 
(
𝑝 𝑖 
)

(viii)

here 𝑝 𝑖 = 

1 

1 + exp 
[
−( 𝛽0 + 𝛾𝑥 𝑖 + 

∑𝑉 
𝑗=1 

∑∞
𝑘 =1 𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗 ) 𝛽( 𝑗 ) + 𝒛 T 

𝑖 
𝝉) 
] . 

Thanks to spectral decomposition of 𝒎 , parameter estimation of 𝜷
an be performed on 𝝃 = ( 𝝃1 , 𝝃2 , … , 𝝃𝑁 

) T , where 𝝃𝑖 = { 𝜉𝑖 1 , 𝜉𝑖 2 , … , 𝜉𝑖𝐾 } .

o see this, rewrite 𝛽0 + 𝛾𝑥 𝑖 + 

𝑝 ∑
𝑗=1 

𝐾 ∑
𝑘 =1 

𝜉𝑖𝑘 𝜑 𝑘 ( 𝑗 ) 𝛽( 𝑗 ) + 𝒛 T 
𝑖 
𝝉 in Eq. (vi) as

0 + 𝛾𝑥 𝑖 + 

𝑝 ∑
𝑗=1 

𝐾 ∑
𝑘 =1 

𝜉𝑖𝑘 ̃𝛽𝑘 ( 𝑗) + 𝒛 T 
𝑖 
𝝉, where 𝛽𝑘 ( 𝑗) = 𝜑 𝑘 ( 𝑗) 𝛽( 𝑗) . The estimation

roblem now translates to estimating the low-dimensional mediator-on-

utcome effect, or �̃� = ( 
𝑝 ∑

𝑗=1 
𝛽1 ( 𝑗 ) , 

𝑝 ∑
𝑗=1 

𝛽2 ( 𝑗 ) , … , 
𝑝 ∑

𝑗=1 
𝛽𝐾 ( 𝑗) ) . Subsequently,

he estimation of 𝜷 can be retrieved by projecting the estimated ̂�̃� back
o the brain space using the estimated basis functions �̂� ; in other words,
̂ = ̂�̃� 

− ̂̃𝜷, where − represents a generalized inverse . 
Although in real-world brain data, the (unknown) basis functions 𝝋

an be either orthogonal or non-orthogonal, simulation studies showed
hat, regardless of the orthogonality of basis functions, our framework
as successful to uncover the 𝜶 and 𝜷 brain atlases under different noise

evels and sample sizes (see Supporting Information ). Since 𝑁 𝐼 𝐸 ( 𝑗 ) =
( 𝑗 ) 𝛽( 𝑗 ) has a one-to-one relationship to the 𝑗 𝑡ℎ voxel’s mediation ef-
ect (see Supporting Information ), for simplicity we estimate 𝑁 𝐼 𝐸 ( 𝑗 ) ,
or 𝑗 = 1 , 2 , … , 𝑉 . In words, 𝑁 𝐼 𝐸 ( 𝑗 ) is the 𝑗 𝑡ℎ voxel’s natural indi-
ect mediation effect on the log odds-ratio scale per unit increase of the
ndependent variable. When 𝑉 is small, Sobel’s Test ( Sobel, 1982 ) evalu-
tes the statistical significance of 𝑁 𝐼 𝐸 ( 𝑗 ) . When 𝑉 is high-dimensional,
he statistical significance of 𝑁 𝐼 𝐸 ( 𝑗 ) can be evaluated using a bootstrap
pproach ( Efron, 1979 ) (see Supporting Information ); the results are
urther adjusted for multiple comparisons. 
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Fig. 4. Brain areas potentially mediating be- 

havioral symptoms and the development of psy- 

chosis. A high-dimensional mediation anal- 
ysis on 130,992 brain voxels of 263 sub- 
jects suggests that the pathway between be- 
havioral symptoms and psychosis is poten- 
tially positively mediated by the right lateral 
prefrontal cortices, bilateral insular and op- 
ercular areas, bilateral sensorimotor areas, 
striatum, and cerebellar lobules 4, 5, and 6, 
and negatively mediated by the bilateral me- 
dial frontal and orbitofrontal cortices, left 
lateral prefrontal cortices, posterior cingu- 
late, precuneus, visual cortex, and cerebel- 
lar Crus 1 and lobule 9. (a) The 𝜶 brain 

atlas. The 𝜶 brain atlas shows surface and 
subcortex areas associated with behavioral 
symptoms when controlled for covariates. 
(b) The 𝜷 brain atlas. The 𝜷 brain atlas shows 
surface and subcortex areas associated with 
psychosis status when controlled for behav- 
ioral symptoms and covariates. (c) The pos- 

itive and negative neural mediators. The neu- 
ral mediators include surface and subcortex 
areas that are jointly associated with behav- 
ioral symptoms and brain disease status, af- 
ter all covariates are controlled. The areas 
highlighted in orange are positive media- 
tors, and those highlighted in blue represent 
negative mediators. (d) Explanations regard- 

ing the pathways and color codes of figures (a)–

(c). The color bars in (a)–(c) indicate effect 
sizes from bootstrap experiments. 
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.5. Brain-wide functional mediation analysis 

We conducted brain-wide functional mediation analysis on the rs-
MRI data from the NAPLS-2 sample using the proposed framework.

e first assessed if there was any effect from the independent vari-
ble (SOPS disorganization symptom scores) on each voxel, controlling
or age, sex, study site, FD, and whole-brain gray matter volume, using
q. (v) and obtained the 𝜶 brain atlas. We then estimated the effect each
rain area had on the outcome, controlling for the independent variable
nd all covariates, using Eq. (vi) and obtained the 𝜷 brain atlas. Finally,
e identified positive and negative neural mediators and estimated their
ediation effect via bootstrap experiments. We presented the empirical

esults in Fig. 4 . 

. Results 

.1. Simulation studies 

We conducted simulation studies to ensure that the proposed frame-
ork was able to identify brain areas that intermediate the indepen-
ent and the outcome variables under different settings. We first simu-
ated covariates such that their distributions were similar to those from
he empirical data. We then simulated symptom data using the covari-
tes. Next, we simulated brain signals and disease outcomes using Eqs.

v) and (vi) , respectively (see more details in the Supporting Informa-

ion ). When simulating brain signals, we examined different combina-
ions of eigenfunctions, idiosyncratic noises, and sample sizes. For eigen-
unctions, we considered both orthogonal and non-orthogonal cases (to
over the two general scenarios where the brain signals consist of or-
hogonal and non-orthogonal information). For noises, we considered
 range of magnitudes, from small, moderate, to very large scales; we
onsidered very large noise because we wanted to see to what degree
he estimates would be able to (and unable to) uncover the signals, and
hether, even under very large noise level, signals could be recovered
sing more samples. We considered dimensionality of 130,992 (the same
s the empirical study) and sample sizes of 100 and 500. Together, we
xamined 12 simulation conditions; for each condition, we conducted
00 bootstrap simulations. From the estimation performance, one can
elatively easily peer into how the model would perform under other
ombinations of basis functions, noise levels, and sample sizes. 

Overall, the proposed framework was able to uncover (simulated)
rain areas involved in mediation. Particularly, (1) the framework suc-
essfully uncovered neural mediators across different combinations of
igenfunctions, idiosyncratic noises, and sample sizes. (2) The perfor-
ance on estimating the input map 𝜶 was better than it on estimating

he output map 𝜷. With larger samples, however, the estimation of 𝜷 im-
roved. Both estimations of 𝜶 and 𝜷 deteriorated when more noises were
dded; but for each noise level, the estimation performance improved
ith more samples. At perhaps the extreme end when the noise was very

arge, the algorithm was still able to uncover some signals using large
amples. The estimation using signals simulated from orthogonal basis
unctions outperformed those from non-orthogonal basis functions. Both
ases saw improvement when less noise or larger a sample size was con-
idered. The detailed simulation procedures and results can be found in
he Supporting Information . 

.2. Empirical results 

We applied the framework to an empirical study to identify and
solate functional brain regions that mediate prodromal symptoms at
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aseline and two-year clinical outcome in subjects at clinical high risk
CHR) for psychosis. The sample included 263 subjects recruited from
ight study sites across the United States and Canada who met crite-
ia for a prodromal risk syndrome ( Miller et al., 2003 ) at the point of
ecruitment and were clinically followed up for two years as part of
he NAPLS-2 project ( Addington et al., 2012 ) (see Table 1 ). During the
ollow-up period, 25 subjects developed a full-blown psychotic disorder
CHR convertors); 238 did not (CHR non-convertors). All participants
eceived an eyes-open resting-state functional magnetic resonance imag-
ng (fMRI) scan at the point of recruitment. After data preprocessing and
oise correction, the fractional amplitude of low-frequency fluctuation
fALFF) ( Zou et al., 2008 ) for each voxel within a binary gray-matter
ask (130,992 voxels in total) was extracted. The prodromal symp-

oms were quantified using the Scale of Prodromal Symptoms (SOPS)
 McGlashan et al., 2001 ), and the clinical outcome was labeled as con-
ertor or non-convertor. 

Since disorganization symptoms have been shown to be a potential
linical predictor for psychosis ( Cannon et al., 2008 ; Demjaha et al.,
012 ; Carrión et al., 2013 ), we first investigated whether the SOPS
cores of disorganization symptoms were significantly different between
onvertors and non-convertors at baseline. Using the Welch two sam-
le t -test and Pearson’s (product moment) correlation coefficient test,
he data confirmed that the convertors and non-convertors in the study
ndeed had significantly different behavioral symptom scores ( 𝑡 = 3 . 49 ,
 < 0.005; Pearson correlation 𝑟 = −0 . 22 , p < 0.001) (see Fig. 1 ( b )). We
hen continued to investigate which brain regions would functionally
ediate this association. First, we tested if behavioral symptoms had an

ffect on any of the 130,992 voxels, controlling for age, sex, study site,
ead motion parameter, and total gray-matter volume (see Fig. 3 ( b 2 )).
his analysis yielded the 𝜶 brain atlas (see Fig. 4 ( a )): each of its 130,992
lements indicated the effect of behavioral symptoms on a brain voxel.
econd, we tested if activity from a brain voxel would increase (or de-
rease) the likelihood of developing psychosis, while controlling for be-
avioral symptoms and the aforementioned covariates (see Fig. 3 ( b 3 )).
his was conducted using a generalized functional linear model (see
ethods ). This analysis yielded the 𝜷 brain atlas (see Fig. 4 ( b )): each

f its 130,992 elements represented the effect from a brain voxel to
he likelihood of developing psychosis, controlling behavioral symptoms
nd covariates. Third, we obtained the brain-wide functional mediators
sing the 𝜶 and 𝜷 brain atlases and classified them into two categories:
he positive and negative neural mediators (see Fig. 4 ( c )). Finally, we
onducted bootstrap experiments to test whether the mediation effect
orresponding to each voxel was statistically significant (see Methods ).
esults were reported after Bonferroni correction across all voxels in the
rain (see Fig. 4 ). 

.3. The 𝜶 and 𝜷 brain atlases 

We further inquired into the 𝜶 brain atlas ( Fig. 4 ( a )) and the 𝜷 brain
tlas ( Fig. 4 ( b )) in order to investigate how the input and output sys-
ems contribute to overall mediation. Specifically, the 𝜶 brain atlas in-
luded brain regions that were associated with behavioral symptoms;
he 𝜷 brain atlas consisted of brain areas that were associated with psy-
hosis status when controlled for behavioral symptoms. On the 𝜶 brain
tlas, activities of the majority of brain regions were positively associ-
ted with behavioral symptoms, while activities of the striatum, thala-
us, insular and opercular areas, middle cingulate cortex, sensorimotor

rea, lingual gyrus, together with cerebellar lobules 4, 5, 6, crus 1, and
rus 2 were negatively correlated with behavioral symptoms. On the 𝜷
rain atlas, positive associations were present mainly in the middle cin-
ulate cortex, inferior parietal lobule, striatum, thalamus, lingual gyrus,
alcarine sulcus, inferior and middle temporal gyri, and cerebellar lob-
le 6, crus 1, and crus 2. In contrast, negative associations were shown
n the lateral and medial prefrontal cortices, anterior cingulate cortex,
osterior cingulate cortex, precuneus, insular and opercular areas, an-
ular gyrus, fusiform gyrus, and cerebellar lobule 8. 
.4. The positive and negative mediators 

Discovering brain areas that are positively and negatively mediat-
ng behavioral symptoms and disease development is a central problem
n neuropathology. To promote discussion, here we defined the posi-
ive mediators as brain areas whose activities were positively mediat-
ng higher behavioral symptoms and increased chance of conversion to
sychosis (see regions with positive weights in Fig. 4 ( c )). Our results
uggested that the positive mediators were mainly present at the bilat-
ral insular and opercular areas, left inferior parietal cortex, right middle
rontal gyrus, bilateral inferior temporal gyrus, and cerebellar crus 1 and
. In parallel, we defined the negative mediators as brain areas whose
ctivities were negatively mediating higher behavioral symptoms and
ncreased chance of conversion to psychosis (see regions with negative
eights in Fig. 4 ( c )). Our results suggested that the negative media-

ors were located chiefly at the bilateral medial frontal cortex, anterior
ingulate cortex, orbitofrontal cortex, precuneus, cuneus, calcarine sul-
us, striatum, thalamus, and cerebellar vermis and lobule 8. The direct
ffect after accounting for the mediators remained significant ( 𝛾 > 0,
ootstrap p < 0.05), suggesting that the identified mediation effect was
artial mediation. 

. Discussion 

In this study, we designed a high-dimensional brain-wide functional
ediation analysis framework. Through its lenses, we identified and iso-

ated positive and negative neural mediators that potentially mediate
sychosis prodromal behavioral symptoms and disease status among in-
ividuals at CHR and quantified each mediator’ effects on developing
sychosis. The positive mediators consisted of brain areas associated
ith positive mediation, which were primarily distributed in the brain’s

ensorimotor system, insular and opercular areas, and striatum. The neg-
tive mediators consisted of areas associated with negative mediation,
hich were chiefly located in the brain’s default-mode system and vi-

ual system. The identification and isolation of the positive and nega-
ive mediators provide insights regarding the neurobiological pathways
rom early psychotic signs to full-blown psychosis, and demonstrate the
otential utility of the proposed methodological framework in clinical
euroscience studies. 

The proposed framework showed promise to study how brain signals
ay intermediate between an independent variable (such as prodromal

ehavioral symptoms) and an outcome variable (such as psychosis dis-
ase status). The framework extends multivariate mediation analysis to
igh-dimensional functional mediation analysis with non-Gaussian out-
omes by incorporating functional data analysis and a generalized lin-
ar model. To inquire into the functional organization of the mediator,
he model extracts subject-specific principal component (PC) scores and
unctional representations (population-specific brain-wide basis func-
ions) of measured brain signals. The estimated effect from PC scores
o psychosis status is then translated to the whole brain space via the
rain-wide basis functions. A logit link function was employed to couple
easured brain signals and the independent variable with the disease

utcome. Since the model allows for a variety of link functions, it may as-
ist other mediation problems with different outcome distributions from
he exponential family. 

There are a few additional properties of the proposed framework
hat may be useful in other studies. First, the framework integrates a
eneralized functional linear model into a dual regulatory system con-
ecting an input system and an outcome system. This technique may
rovide some insights regarding designing biological models consisting
f sub-systems. Second, when the outcomes are binary, one can use the
ramework to evaluate controlled direct effects, and natural direct and
ndirect effects on the odds-ratio scale (see Supporting Information ).
hird, high-dimensional brain signals may contain multilevel informa-
ion. The proposed framework allows us to extract both group-level ( i.e. ,
he group-level basis functions) and subject-specific features ( i.e. , the



O.Y. Chén, H. Cao, H. Phan et al. NeuroImage 226 (2021) 117508 

s  

t  

u
 

s  

d  

i  

s  

o  

b  

a  

f  

f  

l  

s  

a  

(  

c  

s  

c  

T  

u  

e  

n  

k  

2  

c  

c  

l  

i  

c  

n  

n  

l  

c  

s  

t  

t  

2  

f  

d  

o  

a  

c  

t  

w  

o  

v  

C  

e  

t  

m  

i  

p
 

t  

i  

e  

t  

2  

m  

fi  

(  

c  

2  

i  

f  

w  

t  

f  

u  

s  

i  

s  

n
 

i  

w  

f  

I  

r  

p  

w  

i  

p  

n  

b  

p  

s  

r  

w  

f  

a  

p  

m  

t  

o  

t  

f  

b  

t  

r  

t  

p  

a  

i  

(  

2  

t
 

d  

a  

s  

t  

i  

m  

a  

e  

v  

a  

a  

(  

r
 

t  

t  

e  

a  

i  

d  

n  

s

ubject-specific PC scores) of the brain data. The subject-specific fea-
ures may be used as low-dimensional neural features to assess individ-
al differences in the future (see Supporting Information ). 

We applied the proposed framework in a psychosis neuroimaging
tudy, where we investigated how functional brain activities may me-
iate prodromal behavioral symptoms and clinical outcome. The find-
ngs provided some insights into psychotic disorders. First, our re-
ults suggest that the positive mediators mainly involved the insular-
percular areas, temporal areas, frontoparietal areas, and part of cere-
ellum (crus 1 and 2). With extensive connections with both sensory
reas and limbic system, the insula is a critical structure in the brain
or the integrating and processing of visual and auditory emotional in-
ormation and supporting subjective feeling states ( Wylie and Tregel-
as, 2010 ; Namkung et al., 2017 ). A large number of studies have demon-
trated that increased activity in the insular-opercular area is strongly
ssociated with auditory hallucinations in patients with schizophrenia
 Dierks et al., 1999 ; Shergill et al., 2000 ; Powers et al., 2017 ). Increased
onnectivity was found between insula and multiple perceptual areas
uch as sensorimotor cortex and visual cortex, together with decreased
onnectivity between insula and prefrontal cortex ( Tian et al., 2019 ).
he exact mechanism underlying the hyperactivity state of this area is
nclear; it, however, may relate to sensory gating deficits disrupted by
xcessive mesolimbic dopamine input ( Braff, 1990 ). The frontoparietal
etwork, inferior temporal gyrus, and cerebellar crus 1 and crus 2 are
ey cognitive areas in humans ( Dosenbach et al., 2007 ; Dosenbach et al.,
008 ; Buckner et al., 2011 ; Marek et al., 2018 ); increased activity and
onnectivity in these regions have been shown to be predictive of psy-
hosis onset in previous studies ( Cao et al., 2018 ; Cao et al., 2019 ). In
ine with previous findings, the current study further shows that these
ncreased activities are potential mediators positively mediating psy-
hosis conversion in individuals with prodromal symptoms. Second, the
egative mediators are primarily distributed in the brain’s default mode
etwork or DMN (including medial prefrontal cortex, anterior cingu-
ate cortex, and precuneus), together with thalamus, visual cortex, and
erebellar lobule 8. The DMN is one of the most frequently reported
ystems whose function is strongly associated with psychosis. Perhaps
he most prominent finding regarding the DMN in patients is the failure
o deactivate this network during cognitive tasks ( Pomarol-Clotet et al.,
008 ; Fryer et al., 2013 ), which may relate to exaggerated internally-
ocused thoughts and lack of sufficient suppression of these thoughts
uring cognition ( Whitfield-Gabrieli and Ford, 2012 ). Here, the finding
f negative mediation effect in DMN activities during resting state is par-
llel to such interpretation, suggesting lower activity (indicating insuffi-
ient activation) during rest may potentially mediate prodromal symp-
oms and psychosis onset. In addition, this finding also corresponds well
ith the “triple network ” model of psychosis, where the dysregulation
f insula (as a positive mediator) on the DMN has been reported in indi-
iduals at risk for psychosis ( Wotruba et al., 2014 ; Bolton et al., 2020 ).
erebellar lobule 8 is a key region for processing sensorimotor-related
rrors ( Buckner et al., 2011 ; Schmahmann, 2019 ). Higher activity in
his region and the visual cortex may therefore imply a compensatory
echanism or an amplification of neural representations of perceptual

nformation, potentially related to resolving or attenuating the existing
erceptual deficits. 

A few reasons have made the blood-oxygen-level-dependent func-
ional magnetic resonance imaging (BOLD fMRI) data suitable for study-
ng brain-wide mediation. First, although studies have used resting state
lectroencephalography (EEG) data and discovered brain areas, such as
he frontal regions, that are associated with psychosis ( Sollychin et al.,
019 ), imaging modalities with greater spatial resolution, such as fMRI,
ay both confirm and extend neural signatures beyond those identi-
ed using EEG. Second, reduced auditory P300 event-related potential
ERP) amplitude (from a functional neurophysiological test) is a primary
andidate electrophysiologic biomarker of psychosis ( Hamilton et al.,
019 ); it nevertheless may not capture as much variability that occurs
n spontaneous brain activity as fMRI data to work well as a biomarker
or conversion. Third, slow wave power has been shown to correlate
ith reduced blood flow and glucose utilization in schizophrenia pa-

ients, and is therefore thought to reflect reduced functioning in the
rontal area ( Ingvar et al., 1976 ; Guich et al., 1989 ). This supports the
tility of fMRI BOLD data in mediation studies. Finally, structural MRI
tudies are beginning to discover associations between structural brain
nformation and conversion to psychosis ( Chung et al., 2019 ); here we
howed that functional MRI data may add new insights into studies of
eural markers associated with psychosis. 

There are several limitations in this study. First, the nature of the
maging and clinical data suggests that the identified mediating path-
ays are associative; our results do not conclude definitive causal flows

rom prodromal signs via brain areas towards conversion status (see
ntroduction ). Second, we were mainly interested in identifying brain
egions that were simultaneously mediating behavioral symptoms and
sychosis status. This naturally left out the cases where some mediators
ere interposed before or after other mediators. Future analysis may

ncorporate dynamic mediating systems and information feedback com-
onents. Third, throughout, we assumed that behavioral symptoms did
ot interact with the mediators. Future work that includes interaction
etween the independent variable and the mediator may be useful to ex-
and current analysis (see Supporting Information for an example and
ee ( Muller et al., 2005 ) for a special case). Fourth, although dimension
eduction could reduce biases caused by spurious correlation, our frame-
ork cannot remove the coincidental association between some (voxel)

eatures and the residual term ( i.e. , incidental endogeneity). This is an
ctive research area in high-dimensional data analysis (see, for exam-
le, ( Fan and Liao, 2014 )). Fifth, the proposed model focused on neural
arkers by averaging the brain time courses over time. This omitted

he territory of mediation analysis where the mediation effect changes
ver time. Future work could extend the framework to longitudinal set-
ings: such extensions are particularly useful for studying mediation ef-
ect related to brain development during childhood and adolescence,
rain aging between health and disease, and brain degeneration along
he trajectory of a neurodegenerative disease development. We are cur-
ently investigating how to extend the techniques used in our framework
o improve our understanding about large-scale longitudinal mediation;
otential directions include combing functional data analysis (FDA) and
 dual mediation system with autoregressive models ( Gollob and Re-
chardt, 1991 ; Cole and Maxwell, 2003 ), latent growth curve (LGM)
 Muthén and Curran, 1997 ), parallel process models ( Cheong et al.,
009 ), latent difference score (LDS) models ( McArdle, 2001 ), and au-
oregressive LGM models ( Bollen and Curran, 2004 ). 

Although we demonstrated high-dimensional functional neural me-
iation analysis in the domain of brain studies, the framework may
lso be useful to study other high-dimensional mediation problems,
uch as how genome-wide genotypes mediate the effect of environmen-
al factors on phenotypes. With the recent convergence in neuroimag-
ng, genomics, health informatics, wearable and digital sensors, the
odel may be useful to study a broad range of intermediating vari-

bles. For example, the model may be used to understand how gene
xpression, brain physiology, and circadian patterns jointly mediate en-
ironment and biological phenotypes, uncover brain regions that medi-
te sensory input and behavior outcome collected by wearable devices,
nd study how computers may act as a mediating artificial intelligence
AI), transferring human input into computer-generated intelligent
esponses. 

To summarize, in the present study, we propose a framework
hat leverages mediation analysis concept and neuroscientific insights
o inquire into the properties of large-scale functional neural mark-
rs that mediate the relationship between an independent variable
nd a binary disease outcome. The framework’s capacity of treat-
ng high-dimensional data and flexibility in handling non-normally
istributed outcomes make it potentially useful in a variety of sce-
arios to uncover intermediating pathways in complex regulative
ystems. 
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