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Abstract
Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high
extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical
input layer IV (LIV). Rodent models of impaired 5-HT transporter (SERT) function show disruption in their topological
organization of S1 and in the expression of activity-regulated genes essential for inhibitory cortical network formation. It
remains unclear how such alterations affect the sensory information processing within cortical LIV. Using serotonin
transporter knockout (Sert−/−) rats, we demonstrate that high extracellular serotonin levels are associated with impaired
feedforward inhibition (FFI), fewer perisomatic inhibitory synapses, a depolarized GABA reversal potential and reduced
expression of KCC2 transporters in juvenile animals. At the neural population level, reduced FFI increases the excitatory
drive originating from LIV, facilitating evoked representations in the supragranular layers II/III. The behavioral consequence
of these changes in network excitability is faster integration of the sensory information during whisker-based tactile
navigation, as Sert−/− rats require fewer whisker contacts with tactile targets and perform object localization with faster
reaction times. These results highlight the association of serotonergic homeostasis with formation and excitability of
sensory cortical networks, and consequently with sensory perception.
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Introduction
Sensory experience and neuronal activity collectively drive the
development of inhibitory cortical circuitry (Huang 2009),

starting during the second postnatal week in the rodent neo-
cortex (Luhmann and Prince 1991; Daw et al. 2007; Huang 2009;
Zhang et al. 2011; Le Magueresse and Monyer 2013). During this
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initial critical period for the inhibitory cortical circuitry, sensory
deprivation, which leads to reduced neural transmission
between the thalamus and sensory cortex, has been associated
with an impaired maturation of inhibitory synapses (Kilman
et al. 2002; Hensch 2005; Gao et al. 2014), lower inhibitory drive
(Chamma et al. 2012), deficits in feedforward inhibitory mechan-
isms (Chittajallu and Isaac 2010) as well as altered excitatory
and inhibitory receptive field maturation within cortical layer IV
(LIV) (Shoykhet et al. 2005).

Rodents exposed to elevated brain serotonin (5-HT) levels
early in development represent useful models to investigate the
effects of such reduced afferent activity at the thalamocortical
(TC) synapse. During the first postnatal weeks, 5-HT1B receptor
activation on TC synapses impairs the probability of glutamate
release onto neurons within the main input LIV of the somato-
sensory cortex (Rhoades et al. 1994; Laurent et al. 2002). The sero-
tonin transporter (SERT) transiently expressed in TC axons
approximately from embryonic (E) day 15 to postnatal (P) day 10
reuptakes 5-HT at the TC synapse (Lebrand et al. 1998; Gaspar
et al. 2003). Blockage of SERT, either genetically or pharmaco-
logically, results in impaired topological TC innervation and
organization of the barrel field in cortical LIV (Gaspar et al. 2003;
Lee 2009; Miceli et al. 2013; Chen et al. 2015) as well as reduced
expression of GABAergic markers important for inhibitory syn-
apse formation (Guidotti et al. 2012). Hence, regulating extracel-
lular 5-HT levels during the first 2 postnatal weeks is critical for
proper TC synaptic transmission and consequently, maturation
of the intracortical circuits (Chen et al. 2015).

Synaptic inhibition is crucial for proper sensory signal pro-
cessing (Miller 2003; Wilent and Contreras 2005; Isaacson and
Scanziani 2011) as microcircuits such as those which mediate
feedforward inhibition (FFI) in cortical LIV allow the gating of
incoming peripheral stimuli and preserve their spatio-temporal
aspects (Gabernet et al. 2005; Roux and Buzsáki 2015). In S1 cor-
tical networks, this is possible through the topologically orga-
nized projections of TC axons of the ventroposteromedial
thalamic nucleus (VPM) onto both excitatory neurons, that is,
spiny stellate and pyramidal cells, and inhibitory interneurons
(in particular GABAergic parvalbumin positive fast spiking [FS]
neurons) in the cortical LIV barrels (Porter et al. 2001; Devlin
et al. 2005; Sun et al. 2006; Cruikshank et al. 2007, 2010; Daw
et al. 2007; Hull and Scanziani 2007; Kimura et al. 2010). Since
the thalamocortical afferents (TCAs) of the VPM project mono-
synaptically onto excitatory neurons, whereas the inhibitory
input requires disynaptic transmission, this circuit allows a
short time window (1–2ms) for temporally relevant informa-
tion to be integrated before the inhibitory input shunts any
latent response (Miller et al. 2001; Swadlow 2003; Bruno and
Sakmann 2006). Furthermore, FFI prevents excessive recurrent
excitation of the extensively interconnected excitatory LIV neu-
rons (Feldmeyer et al. 1999; Schubert et al. 2003). SERT dysfunc-
tion and consequently high extracellular 5-HT levels affect the
topological organization of the barrel field as well as the
expression of GABAergic markers (Cases et al. 1996; Persico
et al. 2001; Salichon et al. 2001; Rebsam et al. 2002; Guidotti
et al. 2012; Miceli et al. 2013; Chen et al. 2015), suggesting that it
could affect the formation and maturation of the inhibitory cir-
cuits involved in mediating sensory integration within the
input LIV of the barrel cortex. Here, we investigated the associ-
ation between high extracellular 5-HT levels during develop-
ment due to SERT knockout (Homberg et al. 2007) and the
functioning of FFI circuits in controlling excitatory networks in
LIV barrels of S1 using juvenile Sert−/− rats. Using electrophysio-
logical, anatomical, molecular, and behavioral approaches, we

found that reduced perisomatic inhibitory synaptic innervation
of excitatory LIV neurons, reduced inhibitory drive due to a
depolarized GABAA reversal potential (EGABA), as well as a
reduced membrane expression of the KCC2 chloride trans-
porter; Sert−/− rats showed an increased excitability of LIV to
LII/III pathways and integrated sensory information faster,
making perceptually-based decisions with significantly fewer
whisker contacts during a whisker-input-based spatial object
localization task. These results show that the serotonergic
homeostasis during brain development has a significant impact
on the formation (see also Miceli et al. 2013) as well as on the
functioning of sensory cortical networks and thus, conse-
quently, on sensory perception.

Materials and Methods
Animals

Experiments were performed on male juvenile (postnatal (P) day
20–23, except the behavioral experiments which were performed
between P21 and P28) Wistar rats. Sert−/−(Slc6a41Hubr) rats were
generated by ENU-induced mutagenesis (Smits et al. 2006). All
animals were bred and reared in the Central Animal Laboratory
of the Radboud University Nijmegen (Nijmegen, the Netherlands).
Breeding animals were derived from outcrossing heterozygous
(Sert+/−) knockout rats for 8 generations. Experimental animals
were derived from homozygous breeding. We genotyped the ani-
mals routinely in order to confirm their genetic background.
Animals were supplied with food and water ad libitum and were
kept on a 12:12h light:dark cycle (lights on at 06:00h). The light:
dark cycle was inversed for the Gap Crossing behavioral experi-
ment. All experiments were approved by the Committee for
Animal Experiments of the Radboud University Nijmegen Medical
Centre, Nijmegen, the Netherlands, and all efforts were made
to minimize animal suffering and to reduce the number of ani-
mals used.

Electrophysiological Recordings

Slice Preparation
Acute TC slices from the rat somatosensory cortex containing the
pathway from the thalamus to the barrel cortex (Agmon and
Connors 1991) were used. Following anesthesia and decapitation,
brain tissue containing the barrel cortex was excised, quickly
removed from the skull, and stored in ice-cold artificial cerebro-
spinal fluid (ACSF) oxygenated with carbogen (95% O2, 5% CO2).
ACSF consisted of (in mM): 124 NaCl, 1.25 NaH2PO4, 26 NaHCO3,
1 CaCl2, 5 MgCl2, 3 KCl, 10 glucose at pH 7.4. The hemispheres
were separated and cut with a 55° angle from the midline accord-
ing to the rat brain coordinates of Land and Kandler (2002). The
tissue block containing the region of interest was glued to a chilled
Vibratome platform (Microm HM 650V, Microm) and slices
(300 µm thickness) were cut. The slices were stored in an incuba-
tion chamber containing carbogenated ACSF at room temperature
for at least 1h, then transferred to the recording chamber and sub-
merged in 32 °C ACSF 124 NaCl, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2,
1.8 MgCl2, 3 KCl, 10 glucose at pH 7.4. at a flow rate of 1mL/min.

Voltage-Clamp Recordings
LIV excitatory neurons were identified based on their periso-
matic morphology using an upright microscope (Olympus) fit-
ted with 2.5× and 40× objectives. The barrel field was visualized
at low magnification and the individual cells were selected
within the barrels at high magnification using an infrared
enhanced quarter-field illumination (DGC, Luigs & Neumann).
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Somatic whole-cell recordings were performed at room tem-
perature using borosilate glass pipettes with a tip resistance of
4–6MΩ. Patch pipettes were filled with (in mM): 115 CsMeSO3,
20 CsCl, 10 Hepes, 2.5 MgCl2, 4 Na2ATP, 0.4 NaGTP, 10 Na-
Phosphocreatine, 0.6 EGTA). Cells were selected at a minimum
depth of −60 µm to retain the maximum network and minimize
cutting artifacts. GABAA/AMPA ratio recording was performed
as previously described (Chittajallu and Isaac 2010) in AP5
(100 µM) where input onto LIV excitatory cells was evoked by
placing a bipolar stimulation electrode in the thalamic affer-
ents and applying a 200 µs pulse. The stimulation intensity was
calibrated in order that the GABA (0mV) response could be
recorded in a range smaller than 1000 pA, where the same
stimulation could induce a visible AMPA response at −70mV
which was usually in the range of 50 pA. The ratio of the peak
GABAA mediated inhibitory postsynaptic currents (IPSC) ampli-
tude (recorded at Vh 0mV) to the peak amplitude of the AMPA
receptor-mediated excitatory postsynaptic currents (EPSC)
(recorded at Vh −70mV), refers to the GABAA/AMPA ratio.
Thalamic release probability onto excitatory and FS interneur-
ons was recorded as paired-pulse ratio (PPR) of evoked EPSCs at
Vh −70mV, at varying interstimulus intervals (ISIs; 50 and 100ms)
with a stimulation strength which could evoke an initial EPSC at
−70mV within a range of 50–200pA. The latter was recorded using
a K-gluconate based intracellular solution which allowed us to
identify and characterize the firing response of FS interneurons as
well as their intrinsic properties (see current-clamp recordings).
For evoked IPSCs, a bipolar stimulation electrode was placed
within the recorded LIV barrel at a minimum distance of 50 µm
from the recorded cell, which was held at +10mV. Paired-pulse
stimulation was delivered as voltage or current pulses with
a 200 µs pulse at different ISIs (50, 100, 200, and 500ms). PPR
was calculated as the ratio of Amplitude 2/Amplitude1.
Miniature IPSCs (mIPSCs) were recorded at holding potential
(Vh) of +10mV in ACSF containing 1 µM TTX and 100 µM AP5
(Tocris Bioscience). Miniature excitatory postsynaptic cur-
rents (mEPSCs) were recorded at Vh −70mV in ACSF contain-
ing 1 µM TTX and 100 µM PTX (Tocris Bioscience).

Current-Clamp Recordings
Somatic, whole-cell current clamp recordings, were performed
using a K-gluconate based intracellular solution (13 KCl, 117
K-gluconate, 10 K-HEPES, 2 Na2ATP, 0.5 NaGTP, 1 CaCl2, 2 MgCl2,
11 EGTA). FS interneurons were characterized for their resting
membrane potential and passive and active intrinsic membrane
properties by injection of a series of depolarizing pulses until
reaching action potential firing. Electrophysiological data were not
corrected for a liquid junction potential of approximately −10mV.
Inhibitory reversal potential was measured as previously described
(Staiger et al. 2004). A bipolar stimulation electrode was placed
within the thalamic afferents and a 200 µs pulse was applied until
a first inhibitory postsynaptic potential (IPSP) could be observed
in the recorded LIV neuron. After identification of the first IPSP,
the stimulation strength was doubled to ensure a strong disynap-
tic inhibition and the recorded neuron was held at different
membrane potentials using a voltage-clamp controlled current-
clamp mode (from −80 to −40mV). The time at which the peak
IPSP (around Vh −40mV) was observed was used to determine the
membrane potential with zero net flow equal to 0mV.

Signal Acquisition and Analysis
The signals were amplified (SEC-05LX; npi-electronics), filtered
at 3 kHz, and digitized using a Power1401 interface (CED). Data

were recorded, stored, and analyzed with PC-based software
(Signal, CED). After recording, the slices were photographed in
the bath chamber to document the topography of barrel-related
columns and laminae as well as the respective position of the
patch electrode.

Histochemistry and Neuronal Quantification

Tissue Processing and Immunofluorescence
Histology was performed on TC slices following intracardial per-
fusion (4% paraformaldehyde in phosphate-buffered solution
(PBS) 0.1M, pH 7.4). The hemispheres were separated and cut
with a 55° angle from the midline according to the rat brain coor-
dinates of Land and Kandler (2002) to preserve pathway from the
thalamus to S1 and 60 µm slices were embedded (2% agarose)
and cut using a vibratome (Microm HM 650V, Thermo Fisher
Scientific). Slices were rinsed and blocked overnight at 4 °C in
10% normal goat serum (Invitrogen) and 10% normal donkey ser-
um (D9663, Sigma-Aldrich) in PBS containing 0.05% Triton-X and
1% BSA on a shaking Table at 4 °C. Primary antibodies chicken-
anti NeuN (1:500; ABN91, Millipore), mouse-anti GAD67 (1:1000;
MAb5406, Millipore), and rabbit-anti GABA (1:500; A2052, Sigma-
Aldrich) were incubated for 48h 4 °C to ensure thorough tissue
penetration. Secondary antibodies, Alexa Fluor 488-AffiniPure don-
key anti-chicken (1:200; 703-545-155, Jackson Immunoresearch),
Alexa Fluor 568 goat anti-mouse (1:200; Invitrogen) and Alexa
Fluor 647 goat anti-rabbit IgG (1:200; Invitrogen) were incu-
bated at room t° for 3 h. Slices were mounted in Dako fluores-
cent mounting medium (Dako North America Inc.). Negative
control experiments were performed by incubation without
primary antibodies.

Image Acquisition
Mosaic scans with a voxel size of 1.52 × 1.52 × 0.99 μm were
taken using the Leica TCS SP5 confocal microscope equipped
with Argon-, DPSS 561-, and HeNe 633-lasers at a magnification
of ×20. Throughout imaging, the same laser power and photo-
multiplier settings were used. Large multi-tile images were cre-
ated using the automated stitching plugin provided in the Leica
Application Suite Advanced Fluorescence software. Using the
GAD67 channel, the same S1 column was manually selected in
6 subsequent sections for each animal. The selected columns
were then analyzed using a Matlab-based automated cell
counting method that uses a combination of filtering and cor-
rection methods to collect data on the amount of inhibitory
and excitatory neurons within a barrel column (see below).

Automated Cell Counting Analysis
All image analyses were performed using custom-written
Matlab routines running on Matlab 2012b with Image
Processing Toolbox (Mathworks). For localization of the posi-
tively stained nuclei, we first applied a 3D median filter
(Region of interest: 3 × 3 × 3 pixels) and the resulting image
was used for vignette correction (Zheng et al. 2009). This pro-
cess ensured homogenous illumination throughout the cor-
tical volume and accounted for the intensity variation in the
signal. For background subtraction, the background was esti-
mated by dilation (disk, 15 pixels in radius). To increase the
SNR and amplify the signal from weakly stained neurons, we
applied contrast-limited adaptive histogram equalization (8 ×
8 tiles). Images were then converted to the grayscale (256
levels) before the separation of foreground (i.e., signal) from
the background using an adaptive threshold (2-level; Otsu
1979). Nuclear localization was performed using a modified
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watershed (Meyer 1994), so-called the marker-based water-
shed method; Markers were calculated by applying regional
maxima transform on (grayscale) foreground pixels smoothed by
morphological opening-by-reconstruction operation (Vincent
1993). To ensure accurate detection of cell boundaries image dila-
tion (1 pixel) is applied to the B&W foreground before watershed
segmentation. Finally, objects with a surface volume <70 pixels
(empirically determined) are removed by morphological opening.
Cell density is calculated from tissue volume measured by con-
focal microscopy. The collected data were binned into 20 bins per
section, which were combined to represent their respective
layers. Neuronal densities and IN-to-neuron ratios were analyzed
for the entire column and per layer.

Statistical Analysis of the Reliability of Automated Counting
Three human observers independently counted varying num-
ber of 3-D image stacks from different antibody staining, using
Vaa3D software (Peng et al. 2010). Three identical copies of
each image stack were placed in the manual counting data-set
in random order, and the human observers did not notice the
repeated appearing of the same samples.

Quantification of Inhibitory Boutons onto Somata
of Excitatory LIV Neurons

Immunofluorescence, Image Acquisition, and Analysis
Tissue was acquired and processed as previously described for
the neuronal quantification immunohistochemistry protocol in
the exception that a lower Triton-X concentration (0.01%) was
used to prevent disruption of membrane proteins. Using a Zeiss
Axio Imager Z1 fluorescent microscope, equipped with an
ApoTome system, the center of a LIV barrel was localized at
20× based on dense GAD67 immunofluorescence labeling.
Increased ×63 magnification was then used to image and select
single excitatory neuronal cell bodies within a barrel, based on
a NeuN positive and GABA-negative immunolabeling. A total of
91 Sert+/+ and 82 Sert−/− LIV neurons were photographed and
quantified using NIH ImageJ software. Perisomatic inhibitory
varicosities were defined as small (0.5–1 μm) GAD67-positive
puncta located within 1 μm of a NeuN positive and GABA-
negative cell body. Circumference of neurons was calculated
and perisomatic inhibitory GAD67 puncta were normalized to
circumference in µm. Data are given as GAD67 puncta/µm.

Determination of KCC2 and NKCC1 Protein
Concentration

Tissue Acquisition and Cross-Linking
Acute thalamocortical slices from P21 Sert+/+ (n = 12) and Sert−/−

(n = 12) were obtained in the same manner as for electrophysio-
logical recordings (see above). Punches of barrel cortex from 3
subsequent 300 µm slices submerged in ice-cold ACSF were
taken bilaterally using a 2mm micropunch (Harris Inc.), follow-
ing stereotactic coordinates of Land and Kandler (2002), snap
frozen in liquid nitrogen and stored at 80 °C. Cell surface pro-
tein fractions were extracted using the BS3 crosslinking method
(Kasri et al. 2009) using 1mM of the chemical crosslinking agent
(BS3, #21580, Thermo Fisher Scientific) in ice cold PBS. The
crosslinking reaction was quenched by adding ice-cold 50mM
Tris-HCl (pH 8.0). Samples were homogenized in ice-cold RIPA
buffer (150mM NaCl, 1% Triton X-100, 0.5% Na-deoxychelate,
0.1% SDS, 50mM Tris pH 8.0) containing protease inhibitors
(Roche Holding AG) and phosphatase inhibitors (Roche Holding
AG). Tissue homogenization was achieved by 10 rotations of a

pestle in the Eppendorf tube. Subsequently, the samples were
placed in a rotator at 4 °C for 30min followed by centrifugation
at 13 000 rpm at 4 °C for 20min. The supernatant was trans-
ferred to a new tube and the pellet was discarded. A fraction of
the supernatant was taken for determination of the protein
concentration using the bicinchoninic acid (BCA)-assay
(Thermo Fisher Scientific). Throughout these procedures, pairs
of Sert+/+ and Sert−/− samples were processed in parallel to min-
imize variability. Protein concentration was determined, sam-
ples were diluted to equal concentrations and incubated with
50mM Dithiothreitol in Laemmli Sample Buffer (Bio-Rad
Laboratories, Inc.) at 95 °C for 5min.

Western Blotting and Analysis
Samples were resolved in 4–15% polyacrylamide gels (Bio-Rad
Laboratories, Inc.). Proteins were transferred to a nitrocellulose
membrane (Bio-Rad Laboratories, Inc.). Membranes were
blocked for an hour in 5% nonfat dry milk in PBS-Tween (0.05%)
and incubated in the following primary antibodies (diluted in
PBS-Tween 0.05% containing 1% nonfat dry milk): polyclonal
rabbit-anti KCC2 (1:1000; ab49917, Abcam), polyclonal rabbit-
anti NKCC1 (1:500; ab59791, Abcam), or monoclonal mouse
anti-γ-tubulin (1:2000; T5326, Sigma-Aldrich) overnight at 4 °C.
After an hour of extensive washing in PBS-Tween (0.05%),
membranes were incubated in horseradish peroxidase conju-
gated antibodies (1:8000) in PBS-Tween (0.05%) containing 1%
nonfat dry milk; goat anti-rabbit IgG (#G21234, Invitrogen) for
KCC2 and NKCC1 and goat anti-mouse IgG (#115-035-062,
Jackson ImmunoResearch) for γ-tubulin. After incubating for
1 h at room temperature, blots were washed extensively again
and revealed using the SuperSignal West Femto or Pico
Chemiluminescent Substrate (Bio-Rad Laboratories, Inc.).

Western blots were analyzed using the Bio-Rad Image Lab
5.0 software. Due to crosslinking, high molecular weight multi-
meric complexes were formed that remained in the top portion
of the polyacrylamide gels forming multiple bands, which was
analyzed in its entirety. A measure for surface expression of
KCC2 and NKCC1 was obtained by dividing the intensities of
the crosslinked (surface) fraction by the monomeric (internal)
fraction (Blaesse et al. 2006).

Multi Electrode Array recordings

For investigating stimulus-evoked intracortical signal propa-
gation, we used extracellular recordings of local field poten-
tials (LFPs) in slices mounted on multi electrode arrays (MEAs)
kept under submerged conditions (identical to the conditions
described above for whole cell patch clamp recordings and
following a protocol described previously, Bakker et al. 2009).
In brief, we used uncoated standard MEA chips (Multichannel
Systems) containing 60 TiN electrode with a diameter of 30 µM
spaced 200 µM center to center. The slices were positioned in
such a way that the fourth row of MEA electrodes was aligned
to cortical LIV and kept in place by a harp grid. This way all
cortical layers were covered by at least one row of electrodes
while vertically each barrel associated column was covered by
1–2 columns of MEA electrodes (see Fig. 6A). We allowed
30min of incubation for the tissue to settle and ensure good
connection with the MEA electrodes. Pictures were taken for
later assignment of electrodes to cortical columns and layers
during analysis.

We applied electrical stimulation as monophasic voltage
pulses (200 µs at −1000mV) by a MEA electrode that was aligned
with a LIV barrel of interest (see Fig. 6A) using a stimulus
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generator (STG2004, Multichannel Systems). Recording electro-
des were blanked from 20 µs before until 100 µs after the pulse.
Signals from the MEA electrodes were band pass filtered (0.1 Hz
high pass filter and 3 kHz low pass filter), acquired by the PC-
based data software MC Rack (Multichannel Systems) and digi-
tized at a sampling rate of 10 kHz. Each stimulation protocol
was repeated 8 times at 10 s intervals.

Pharmacology
We pharmacologically dissected the main components of
stimulus-evoked LFPs. After the standard 30min incubation in
ACSF and recording of the stimulus-evoked LFPs, we added in a
first step CNQX (5 µM, Sigma-Aldrich) in order to block AMPA
receptor-mediated responses and in a second step, following
another 30min incubation, we added TTX (1 µM, Sigma-Aldrich) in
order to also block voltage-gated sodium channels and thus action
potential generation in the slice. Stimulus-evoked LFPs were
recorded during each of the 3 conditions. LFPs typically consisted
of a more or less prominent TTX sensitive fast action potential
volley (within 2ms post stimulus, see Bakker et al. 2009), followed
by a slower negative, mainly CNQX sensitive AMPA component
(see also Fig. 6B) representing local postsynaptic excitatory activity.

Analysis and Creation of Average Maps of Intracortical Excitatory
Signal Propagation
MEA analysis was carried out with a custom made Matlab-
based analysis toolbox (MEAMEA, developed in house). Based
on the averages over 8 recorded sweeps, for each electrode we
determined the negative peak amplitude of the synaptic excita-
tory component. Pictures were analyzed for the position of
columns and layers and used to determine the layer and
column-specific LFP responses. LFPs recorded from electrodes
within the cortical column containing the stimulated LIV barrel
were assigned to home column (HC) responses, those within
the adjacent cortical column to neighboring column (NC)
responses. For the quantitative analyses for each layer of inter-
est in HC and NC, the electrode delivering the strongest LFP
responses was considered. For the construction of genotype-
specific average maps of excitatory signal propagation, includ-
ing a visualization of confidence levels of evoked responses, we
used a method to project individual response maps into a
template map (Staiger et al. 2015). In brief, we matched the
slice-specific laminar and columnar cytoarchitecture with a
template using vertical and horizontal scaling. This procedure
involved, as a first step, translating, scaling, and rotating LFP
response maps with known layer and column-specific position-
ing of the electrodes until an optimal match with a template’s
center barrel position, overall barrel size, slice orientation, and
pial surface was obtained. We estimated individual confidence
levels that the averaged activity x at a given point differed from
zero with ζ Τ= · ( ) −

σ
· n2 , 1x n , where n was the number of con-

tributing slices, σ the sample standard deviation, and Τ the
cumulative Student’s t-distribution. For display purposes, only
those template grid points to which at least 3 slices contributed
(n ≥ 3) and for which ζ ≥ 68.3% (zero activity excluded by “one
sigma”) were considered further.

Gap-Crossing Paradigm

Tactile object localization training was performed on the gap-
crossing task under no-visible light (Celikel and Sakmann 2007).
Animals did not receive any reward for successful task execu-
tion, nor did they receive any whisker deprivation. The training
was performed on the automated version of the paradigm

(Voigts et al. 2008, 2015) where the target position was controlled
by linear actuators. The position of the target platform was
drawn from a Gaussian distribution and the target position was
set prior to the onset of the trial. The mean of the distribution
was increased (range: 3–7) and the variance was reduced (range:
1–3) with increased number of sessions to ensure that animals
can be tested in large range of tactile distances. This training
procedure also compensated the body growth across days.

The training lasted 5 days starting from postnatal day (P) 23.
Two sessions of habituation to the apparatus on P21 and P22
were performed before animals were exposed to a gap. The
entire first session and the first half of second habituation ses-
sion were performed under white light. Each training session
lasted for 30min or 20 successful trials (whichever came first).
A high-speed camera (PIKE AVT F-032B) positioned above the
target platform in conjunction with infrared backlights (wave-
length = 820 nm; NERLITE) placed under the elevated platforms
was used to visualize whisker-based tactile exploration of the
target as described before (Voigts et al. 2015).

Automated Analysis of Tactile Exploration Statistics
All image analyses were performed using custom-written Python
routines using the OpenCV, Numpy, Scipy, and StatsModels tool-
boxes. A background image was computed as the average of 30
frames taken before the animal entered the field of view and sub-
tracted from all the frames. Platform edges were detected in this
background picture as the positions of a transition from a low to
a high brightness in the illumination. The nose was assumed to
be the dark point closest to the target platform edge as detected
after automated adaptive thresholding (Otsu 1979). Crossing time
was defined as the moment the animal’s nose has passed the
platform edge by more than 20 pixels. The contacts were deter-
mined as follow: A one-pixel-high line was extracted on each
side of the target platform edge for every frame. From these lines
2 spatio-temporal images were constructed where the horizontal
axis is the position along the platform edge and the vertical axis
is time. In this representation, whiskers are V-shaped objects:
During the protraction phase the whisker is coming closer to the
center and during the retraction phase it is going back to the sides.
After application of a median filter, those V-shaped objects were
detected and labeled through a connected-components analysis.
Whiskers detected on one side of the platform were assigned to
the ones detected on the other side based on geometric proximity.
If a whisker was detected before but not after the platform edge
then it was considered to be a contact. This approach, without
requiring us to trace the entire whisker length, yielded the number
of contacts occurring on each frame. Human observers independ-
ently analyzed a random subset of the trials to confirm the accur-
acy of the automated count. Compared with the previous
algorithms for whisker tracking in freely moving animals (Voigts
et al. 2008) this approach provided rapid analysis of tactile
exploration without any whisker deprivation. The time series
were further analyzed by genotypes and gap distances. All statis-
tical tests are 2-sided independent sample t-tests. Values are
reported as mean ± standard error of the mean, in the text as
well as on graphs with a shaded area.

Results
Reduced Efficiency of FFI at the LIV Thalamocortical
Synapse of Sert−/− Rats

Efficient integration of sensory input within the circuitry of the
primary somatosensory cortex requires coincidence detection
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of temporally correlated synaptic activity through feedforward
mechanisms, which require proper excitatory/inhibitory func-
tion (Higley and Contreras 2003; Celikel et al. 2004; Foeller et al.
2005; Marik et al. 2010). In order to test the efficiency of FFI, we
first verified that LIV excitatory neurons of both Sert−/− and
Sert+/+ rats received excitatory and inhibitory input following
thalamic fiber stimulation. We measured excitatory postsynap-
tic potentials (EPSPs) and IPSPs onto LIV excitatory neurons
using whole-cell current clamp (CC) recordings in combination
with orthodromic stimulation of TCAs via a bipolar stimulation
electrode positioned in the white matter below LVI (Staiger
et al. 2004, Fig. 1A). We identified excitatory LIV Sert+/+ and
Sert−/− neurons based on their somatic appearance and their
action potential firing pattern and classified them as regular
spiking or burst spiking as previously described (Miceli et al.
2013, Supplementary Fig. 1). All excitatory neurons had a stable
resting membrane potential of <−60mV. For morphological
confirmation, a subset of LIV excitatory cells (n = 20) were filled
with biocytin and classified as being either spiny stellate (SpSt;
n = 11) or pyramidal (Pyr; n = 9) neurons (Supplementary Fig. 1).
In agreement with our previous study (Miceli et al. 2013), we
found no genotypic differences in the basic intrinsic electro-
physiological properties of either excitatory cell classes (Miceli
et al. 2013, Table 1). In all recorded excitatory LIV cells of both
Sert+/+ and Sert−/− rats, TCA stimulation reliably induced a
monosynaptic EPSP in CC at a holding potential (Vh) of −65mV,
without any genotype-specific difference in the stimulation
strength that was needed to induce an EPSP of 2.5mV (Fig. 1A,
B). Increasing the stimulation intensity resulted in higher amp-
litude EPSPs until the feedforward inhibitory circuits were
recruited, which induced a fast disynaptic hyperpolarizing IPSP
in all recorded neurons of both genotypes. In contrast to the
direct excitatory TC inputs onto the LIV cells, on average, the
induction of the disynaptic IPSP required stronger TCA stimula-
tion in Sert−/− than in Sert+/+ rats (Fig. 1A,B, Sert+/+: n = 10, Sert−/−:
n = 13, P < 0.05). One should note, however, that due its technical

limitations in calibration, electrical TCA stimulation only allows
a coarse comparison of TC innervation strength between the
2 genotypes. Due to the lack of cell-type specific differences in
stimulus-evoked responses upon TCA stimulation we considered
LIV excitatory neurons as one group.

We investigated thalamic integration of excitatory/inhibitory
inputs by measuring GABA (Vh = 0mV) and AMPA (Vh = −70mV)
currents onto LIV excitatory neurons of both genotypes following
strong thalamic afferent stimulation in whole-cell voltage clamp.
GABA/AMPA ratios were 43% lower in Sert−/− rats (Fig. 1B; Sert+/+

4.27 ± 0.90, n = 13; Sert−/− 2.45 ± 0.34, n = 17; P < 0.05) demonstrat-
ing a reduced inhibitory control of the excitatory LIV neurons.

As a next step, we tested whether in Sert−/− rats, the FFI was
affected by an altered intrinsic neuronal excitability and/or
changes in the synaptic release probability for TC input onto 2
relevant cortical target cell populations, that is, excitatory as
well as FS inhibitory neurons, in LIV. To this end, we recorded
LIV FS inhibitory neurons (Sert+/+ n = 6, Sert−/− n = 6), which were
identified based on their ovoid soma shape as well as their high
frequency, non-adapting AP firing pattern (Supplementary Fig.
2A; Porter et al. 2001). The intrinsic membrane properties of
inhibitory LIV FS neurons were similar across both genotypes
(Table 1), implying no change in the intrinsic excitability.
Recordings of TCA induced EPSCs in inhibitory FS LIV neurons
showed that those of Sert−/− rats require stronger TCA stimula-
tion than those Sert+/+ in order to reach an excitatory input cur-
rent of a certain magnitude (Supplementary Fig. 2B,C; Sert+/+

n = 6, Sert−/− n = 6; P < 0.05). We furthermore tested the release
probability of the TC synapses using paired-pulse stimulation
of the TCAs (Stevens 2003). Using whole-cell voltage clamp (Vh

−70mV), stimulation of TCAs at ISI of 50 and 100ms revealed
no significant changes in the PPR of excitatory current
responses onto excitatory LIV neurons (Supplementary Fig. 1D;
50ms: Sert+/+ 0.97 ± 0.06, n = 18; Sert−/− 1.03 ± 0.11, n = 17;
t(28) = 0.47, P = 0.65; 100ms: Sert+/+ 1.06 ± 0.08; Sert−/− 1.00 ± 0.08,
t(33) = 0.48, P = 0.63) as well as onto inhibitory FS cells

Figure 1. Sert−/− rats show reduced FFI onto LIV excitatory neurons (A) Left, schematic of the recording depicting bipolar stimulation in the TCAs originating from

the VPM with whole cell recording of a monosynaptic excitatory input and disynaptic inhibitory input onto an excitatory neuron within a LIV barrel. Middle, example

current clamp recording showing input onto a LIV excitatory neuron following TCA stimulation with increasing stimulation strength (response to strongest stimula-

tion resulting is given in black). Strongest stimulation resulted in truncation of the EPSP by disynaptic IPSP in both Sert+/+ and Sert−/−. (B) Histograms showing the TCA

stimulation strength (as voltage pulses) needed to evoke an EPSP of 2.5mV (left, Sert+/+: n = 1, Sert−/−: n = 14) and strength needed to induce the first IPSP (right, Sert+/+:

n = 10, Sert−/−: n = 13) LIV excitatory neurons. (C) Representative voltage clamp recordings depicting approximate mean of Sert+/+ and Sert−/− GABA currents at Vh =

0mV and AMPA currents at Vh = −70mV. (D) Histogram of mean GABA/AMPA ratio of Sert+/+ (n = 13) and Sert−/− (n = 17) rats recorded in voltage clamp. Data are repre-

sented as mean ± SEM, *P < 0.05 (t-test).
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(Supplementary Fig. 2B,C). Furthermore, we tested the reversal
potential of the fast disynaptic GABAA mediated inhibitory
input (EGABA) onto LIV excitatory cells using a strong TCA
stimulation. While recording excitatory LIV neurons in current
clamp at varying membrane potentials (between −80 and
−40mV) we observed a significantly depolarized inhibitory
reversal potential in Sert−/− LIV excitatory neurons (Fig. 2; Sert+/+

−68.18 ± 1.67mV, n = 18; Sert−/− −62.47 ± 2.00mV, n = 19;
t(35) = 2.20; P < 0.05).

Taken together, these results show that the FFI circuits of
Sert−/− rats possess a reduced efficiency in mediating inhibitory
control of excitatory LIV neurons. Beyond finding an indication
for a weaker excitatory TC drive of the presynaptic FS inhibitory

neurons, the reduced efficiency in mediating inhibitory control
of excitatory LIV neurons was supported by a 43% reduction in
GABA/AMPA ratio as well as a depolarizing shift in EGABA. Next,
we investigated the intracortical network mechanisms that could
contribute to this reduction in inhibitory drive within LIV.

Reduced Inhibitory Synapses onto Somata of LIV
Excitatory Neurons of Sert−/− Rats

SERT dysfunction has previously been shown to alter the
migration of inhibitory neurons during embryonic development
(Riccio et al. 2009; Frazer et al. 2015) and result in altered cellu-
lar laminarization in various cortical areas (Altamura et al.

Table 1 Electrophysiological properties of LIV excitatory and FS interneurons

Regular spiking Intrinsically bursting Fast spiking

Sert+/+ Sert−/− Sert+/+ Sert−/− Sert+/+ Sert−/−

Properties n = 21 n = 27 n = 19 n = 18 n = 6 n = 6

Passive intrinsic
Vrmp [mV] −69.5 ± 1.5 −67.8 ± 1.4 −70.1 ± 1.0 −71.6 ± 3.5 −79.8 ± 1.3 −75.4 ± 3.0
Rm [MΩ] 156.6 ± 13.0 131.1 ± 13.2 149.2 ± 14.0 140.9 ± 15.2 182.3 ± 41.8 182.2 ± 48.5
τm [ms] 20.5 ± 1.9 18.9 ± 1.8 17.2 ± 1.8 17.5 ± 1.9 11.0 ± 1.3 11.5 ± 1.8

Active intrinsic
AP threshold [mV]a −37.8 ± 1.1 −36.7 ± 1.1 −35.0 ± 1.1 −38.4 ± 2.0 −39.8 ± 1.0 −41.3 ± 1.2
AP amplitude [mV] 79.2 ± 1.6 73.6 ± 5.9 73.2 ± 3.2 77.4 ± 4.7 68.2 ± 3.6 59.5 ± 5.0
AP halfwidth [ms] 1.3 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 1.3 ± 0.1 0.8 ± 0.1 0.8 ± 0.1
First ISI [ms]a 45.7 ± 6.6 52.8 ± 7.4 10.5 ± 2.5 7.5 ± 2.5 20.8 ± 3.1 30.8 ± 4.0
Third ISI [ms]b 44.8 ± 2.3 46.2 ± 3.1 39.7 ± 1.4 41.4 ± 2.5 23.4 ± 3.1 30.4 ± 3.6
Ninth ISI [ms]b 62.1 ± 2.0 59.0 ± 1.6 66.5 ± 2.8 67.2 ± 4.4 23.3 ± 2.9 29.8 ± 3.1
Ninth/Third ISI ratio 1.2 ± 0.1 1. 5 ± 0.1 1.7 ± 0.1 2.3 ± 0.1 1.0 ± 0.1 1.0 ± 0.0
fAHP [mV] 13.8 ± 2.3 13.4 ± 2.1

aActive properties were measured by just suprathreshold stimulation, eliciting 2–4 APs.
bActive properties were measured by stronger depolarizing current injection, eliciting 10–14 APs. No significant differences were found between regular spiking,

intrinsically bursting or FS interneurons across both genotypes.

Data are means ± SEM. ISI, interstimulus interval; fAHP, fast hyperpolarizing potential.

Figure 2. Sert−/− rats show a depolarized inhibitory reversal potential in LIV excitatory neurons. (A) Example current clamp traces of postsynaptic responses recorded

in LIV excitatory neurons at different membrane potentials in (−80 to −40mV) following maximal bipolar stimulation (2 × stimulation intensity for eliciting a first truncat-

ing IPSP) of TCAs of Sert+/+ and Sert−/−. (B) Plot of postsynaptic potential amplitudes at different holding potentials in Sert+/+ (n = 18) and Sert−/− (n = 19). (C) Histogram of

mean reversal potential in Sert+/+ and Sert−/− rats, which was determined at x-intercept and averaged. Data are presented as mean ± SEM, *P < 0.05 (t-test).
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2007). Therefore, a reduced GABA/AMPA ratio and subsequent
reduction in inhibitory control in the FFI circuit of Sert−/− rats
could be mediated by a lower number of inhibitory neurons
along a cortical column. To evaluate the density and laminar
distribution of excitatory and inhibitory neurons, we performed
immunohistochemistry on TC slice preparations and recon-
structed a barrel column at soma resolution to measure neur-
onal densities of excitatory and inhibitory neurons (Fig. 3A–C;
see Materials and Methods). The total number of neurons per
tissue volume was determined by counting NeuN positive
(NeuN+) somata and that of presumed inhibitory and presumed
excitatory cells by counting GABA positive (GABA+) and NeuN+/
GABA− somata, respectively. We used glutamate decarboxylase
67 (GAD67) labeling to determine the dimensions of the individ-
ual LIV barrels (Meyer et al. 2010). We found no significant geno-
typic differences between the total columnar densities of
NeuN+/GABA− somata (presumed excitatory neurons, Sert+/+ 2.32
E+06 ± 4.84 E+04/mm3, n = 13; Sert−/− 2.50 E+06 ± 3.67 E+04/mm3,
n = 10; F(1,5) = 2.02, P = 0.08) and GABA+ somata (presumed
inhibitory neurons, Sert+/+ 3.92 E+05 ± 8.18 E+03/mm3; Sert−/−

4.25 E+05 ± 1.62 E+04/mm3, F(1,5) = 1.70, P = 0.14) as well as
in the ratio of GABA+ neurons to total NeuN+ neurons (Sert+/+

22.37 ± 0.22%; Sert−/− 23.13 ± 0.23%, F(1,5) = 2.17, P = 0.06).
Likewise, we found no significant genotypic differences in the
layer specific numbers and densities across the cortical column
(Fig. 3D–F). These findings argue that SERT loss of function does
not alter the number, density or laminar location of GABA+ neu-
rons in the juvenile rat barrel cortex.

With unaltered neuronal densities within the barrel circuits, a
lower GABA/AMPA ratio on the synaptic level could be indicative
of either a reduced GABAergic input, an increased AMPAergic
input or a combination of both. To directly quantify the number of
GABAergic inputs any given LIV excitatory neuron receives, we
first classified individual NeuN+/GAD67− somata as presumed
excitatory neurons within LIV barrels (Fig. 4A). Since GAD67 is
expressed throughout GABAergic neurons and thus also in pre-
synaptic terminals of inhibitory neurons (Pinal and Tobin 1998;
Huang et al. 2007) we quantified GAD67 puncta that were localized
onto the soma of excitatory cells, a typical innervation domain of
inhibitory FS LIV basket cells (Huang et al. 2007), as a measure of
perisomatic inhibitory synaptic contacts. We observed a 18%
reduction in perisomatic bouton numbers in Sert−/− rats, indicating
fewer inhibitory synapses targeting LIV excitatory neurons
(Fig. 4B; Sert+/+ 0.30 ± 0.01 synapses/µm, n = 82; Sert−/− 0.24 ± 0.01
synapses/µm, n = 91; t(177) = 5.95, P < 0.001). Additionally, we func-
tionally assessed the strength and number of both excitatory and
inhibitory synapses onto LIV excitatory neurons, using whole-cell
voltage clamp recordings of miniature postsynaptic currents. We
found no differences in mEPSC frequency (Sert+/+ 5.87 ± 0.36Hz, n
= 12; Sert−/− 6.00 ± 0.48Hz, n = 16; t(21) = 0.20, P = 0.42) or ampli-
tude (Fig. 4C; Sert+/+ 10.44 ± 0.48 pA; Sert−/− 10.70 ± 0.44 pA; t(21) =
0.36, P = 0.36), thereby excluding any change in AMPA receptor
expression. However, in Sert−/− rats, mIPSCs were significantly
reduced in both their frequency (Sert+/+ 4.4 ± 0.3Hz; Sert−/− 3.4 ±
0.3Hz; t(31) = 2.34, P < 0.01) and amplitude (Fig. 4D; Sert+/+ 33.5 ±
1.9 pA; Sert−/− 28.2 ± 1.9 pA; t(31) = 1.95, P < 0.01).

Figure 3. Reduction in inhibitory control in Sert−/− rat is not due to changes in density or laminar distribution of inhibitory neurons within a cortical column. (A) Left,

photomicrographs of single fluorescence channels for all neuron identification (NeuN), interneuron identification (GABA), and barrel identification (GAD67). Right,

photomicrograph showing merged immunolabeling of one TC slice (60 µm) with GAD67, NeuN and GABA positive neurons. (B) The limits of barrel borders were deter-

mined from the GAD67 labeling in LIV and extrapolated to all layers (dashed lines). (C) Excitatory and inhibitory neurons distribution were quantified from 6 subse-

quent slices (total 360 µm). Left, NeuN+ neuron density distribution and right, GABA+ neuron distribution were used to identify excitatory (NeuN+, GABA− somata) and

inhibitory (GABA+ somata) neuron distribution across a barrel column. (D,E) Normalized (from Pia to white matter) distribution of excitatory and inhibitory neuronal

densities along a cortical column and histogram of layer quantifications (Sert+/+ 13 barrels in 5 animals; Sert−/− 10 barrels in 5 animals) shows no significant changes

in the density and laminar distribution of neuronal populations in Sert−/− rats. (F) GABA+ to total neuron ratio show absence of difference in Sert−/− rat. Two-way

ANOVA with Bonferroni correction was used for data in D, E, and F. All data are presented as mean ± SEM.
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The lower frequency of mIPSCs recorded in Sert−/− LIV exci-
tatory cells could be due to either a reduced number of inhibi-
tory synapses onto LIV cells, supported by our finding of
reduced number of perisomatic GAD67 puncta, and/or due to a
diminished presynaptic probability of release of inhibitory

vesicles. We tested the dynamic changes in presynaptic trans-
mitter release by evoking inhibitory vesicle release in the vicin-
ity of the recorded LIV excitatory neurons using a paired-pulse
of varying ISI (50, 100, 200, and 500ms). Because mIPSCs
recorded onto LIV excitatory cells most abundantly originate

Figure 4. Sert−/− rats show a reduced number of perisomatic inhibitory boutons onto excitatory LIV neurons. (A) Fluorescent photomicrographs of LIV excitatory neu-

rons (NeuN+/Gad67−) used for quantification of perisomatic GAD67 puncta/µm in Sert+/+ and Sert−/− rats. White arrows mark puncta onto a representative soma of a

pyramidal cell. (B) The number of GAD67-positive perisomatic varicosities was normalized against the diameter of each presumed excitatory neuron. Histogram

shows the plot of mean number of perisomatic boutons per cell (normalized to cell diameter, puncta/µm) in Sert+/+ (n = 82) and Sert−/− (n = 91) neurons. (C) Top,

example voltage clamp trace of mEPSCs recorded in excitatory LIV neurons of both Sert+/+ and Sert−/− rats at Vh = −70mV. Bottom, cumulative probability distributions

and histograms of amplitude and frequency of mEPSCs in Sert+/+ (n = 12) and Sert−/− (n = 11). (D) Top, example voltage clamp trace of mIPSCs recorded in excitatory

LIV neurons of both Sert+/+ and Sert−/− rats at Vh = +10mV. Bottom, cumulative probability distributions and histograms of amplitude and frequency of mIPSCs in

Sert+/+ (n = 17) and Sert−/− rats (n = 16). (E) Left, example voltage clamp trace of evoked IPSCs onto LIV excitatory neurons within a barrel at different ISI (50, 100, 200,

and 500ms) at Vh = +10mV in the presence of AMPA/NMDA blockers. Right, line plot depicting PPR Amp2/Amp1 at varying ISIs in Sert+/+ (n = 8) and Sert−/− rats (n = 9).

Data are represented as mean ± SEM, *P < 0.05 and ***P < 0.001 (t-test).
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from local cortical inhibitory networks (Porter et al. 2001;
Beierlein et al. 2003), IPSCs were evoked within the home barrel
in the presence of AMPAR/NMDAR blockers. We detected no
differences in the PPRs (Fig. 4E; Sert+/+ n = 8; Sert−/− n = 9; 50ms,
P = 0.90; 100ms, P = 1.0; 200ms, P = 0.12; 500ms, P = 0.18),
indicating similar levels of release probability.

Depolarized GABA Reversal Potential Associated
with Lower GABAA Receptor and KCC2 Transporter
Expression within S1 of Sert−/− Rats

The depolarized EGABA of LIV excitatory neurons as well as the
smaller mIPSC amplitudes observed in SERT−/− rats demonstrate
an altered driving force for GABA receptor-mediated ionic cur-
rents. In addition, the smaller mIPSC amplitudes could be caused
by a downregulated expression of GABAA receptors. Furthermore,
the alpha 1 (α1) subunit of GABA receptors has been shown to be
located at parvalbumin-positive perisomatic synapses onto pyr-
amidal cells, involved in FFI (Nusser et al. 1996; Freund and
Katona 2007). To investigate possible changes in expression, we
quantified the amount of GABAA receptor α1 and α2 subunits in
total S1 protein extracts from somatosensory cortex tissue using

western blot. We observed a 22% reduction in GABAA α1 receptor
subunit expression in Sert−/− rats compared with Sert+/+ rats
(Fig. 5A; Sert+/+ 1, n = 4; Sert−/− 0.78 ± 0.06, n = 4; t(3) = 3.38,
P < 0.05) whereas GABAA α2 receptor subunit expression was
comparable across the genotypes (Fig. 5B; Sert+/+ 1, n = 4; Sert−/−

0.88 ± 0.08, n = 4; t(3) = 1.39, P = 0.26).
We further investigated the molecular mechanisms that

could underlie the altered driving force of GABA receptor-
mediated ion currents. Throughout development, a sequential
expression of 2 chloride transporters, NKCC1 and KCC2, help to
define the reversal potential for chloride, and therefore the
drive for GABAA mediated inhibitory responses, being depolar-
izing in the early postnatal phase and shunting or more hyper-
polarizing in the mature brain (Ben-ari et al. 2007). In this
respect, an increase in NKCC1 or decrease in KCC2 could
explain the observed depolarized inhibitory reversal potential.
We therefore quantified the protein expression of both chloride
transporters in somatosensory cortex tissue using western blot
of total S1 cross-linked protein lysates to obtain a ratio of func-
tional surface (S) to the internal (I) expression of chloride trans-
porters of P21 Sert+/+ and Sert−/− rats. We found no genotypic
differences in terms of total protein expression and S/I ratios

Figure 5. Reduced inhibitory drive in Sert−/− rats is associated with a decrease in GABAA α1 subunit expression as well as a reduced KCC2 chloride extruder protein

expression within S1. (A) Western blot analysis of GABAA α1 subunit expression in S1 total protein lysates of Sert+/+ (n = 4) and Sert−/− rats (n = 4). Left, loading control.

Right, western blot and histogram showing total GABAA α1 receptor subunit expression normalized to Sert+/+. (B) Western blot analysis of GABAA α2 receptor subunit

expression in S1 total protein lysates of Sert+/+ (n = 4) and Sert−/− rats (n = 4). Left, loading control. Right, western blot and histogram showing total GABAA α2 subunit

expression normalized to Sert+/+. (C) Left, surface and internal NKCC1 protein levels were determined by BS3 cross-linking method using S1 protein lysates of Sert+/+

and Sert−/− rats with non-crosslinked control (Ctrl). Right, histograms showing quantification of total NKCC1 expression normalized to γ-tubulin and surface NKCC1

expression normalized to internal expression in Sert+/+ (n = 12) and Sert−/− (n = 12) rats. (D) Left, surface and internal KCC2 protein levels were determined by BS3

cross-linking method using S1 protein lysates of Sert+/+ and Sert−/− rats with non-crosslinked control (Ctrl). Right, histograms showing quantification of total KCC2

expression normalized to γ-tubulin and surface KCC2 expression normalized to internal expression in Sert+/+ (n = 12) and Sert−/− rats (n = 12). All data are presented as

mean ± SEM, *P < 0.05 and **P < 0.01 (t-test).
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for NKCC1 (Fig. 5C; total: Sert+/+ n = 12, Sert−/− n = 12; Sert−/− 1.05 ±
0.09; t(11) = 0.53, P = 0.60; S/I: Sert−/− 0.98 ± 0.11; t(11) = 0.16, P =
0.87). However, while the total expression of KCC2 showed no
genotypic differences (Fig. 5D; Sert+/+ 1, n = 12, Sert−/−; Sert−/− =
1.07 ± 0.66, n = 12; t(11) = 0.36, P = 0.72), we found KCC2 S/I expres-
sion to be significantly reduced in Sert−/− rats (Fig. 5D; Sert−/− =
0.76 ± 0.09; t(11) = 2.56, P < 0.05), exhibiting a 24% decrease in
surface expression.

Taken together, our data indicate a reduction in the number
of functional inhibitory synapses targeting LIV excitatory neu-
rons associated with a decrease in postsynaptic GABAA α1
receptor expression. Combined with the measured depolarized
EGABA and reduced surface expression of KCC2 chloride extru-
der, these results may directly explain the observed decrease in
efficiency of inhibitory control within the LIV circuits of Sert−/−

rats.

Increased Intracortical Signal Propagation
and Accelerated Tactile Navigation during Object
Localization in Sert−/− Rats

Our structural (synaptic), functional, and molecular findings show
a strong reduction in inhibitory control within the FFI circuits of
LIV, which could change how cortical circuits integrate sensory
information coming from the periphery (Foeller et al. 2005;

Celikel and Sakmann 2007). We tested intracortical excitatory
signal propagation by recording LFPs in brain slices mounted
on MEAs following standardized bipolar electrical stimulation
(−1 V, 200 µs) of neuronal circuits in LIV (Fig. 6A). We compared
the negative stimulus induced CNQX sensitive (i.e., AMPA
receptor-mediated) synaptic component of layer and column-
specific LFPs (Fig. 6B, see Material and Methods for details)
between Sert+/+ (n = 20) and Sert−/− rats (n = 20) in LIV, upper
LII/III and LVb. Mapping the confidence levels for all excitatory
LFP responses upon LIV stimulation across experiments
revealed a widening of the horizontal spread of the excitatory
responses into the neighboring cortical columns in Sert−/− as
compared with Sert+/+ (Supplementary Fig. 3). We furthermore
found a general increase in the response amplitudes of the
excitatory synaptic LFP component (Fig. 6C; F(1,8) = 10.2, P <
0.0001) in particular within the home column. There excitatory
synaptic LFP amplitudes were increased by 87.9% within LIV
(Sert+/+ −141.6 ± 12.3 µV; Sert−/− −266.1 ± 20.4 µV; t(8) = 10.5, P <
0.001), and by 57.9% in the upper supragranular LII/III, Sert+/+

−77.7 ± 9.0 µV; Sert−/− −122.7 ± 13.9 µV; t(8) = 3.8, P < 0.01). This
implies that in the somatosensory cortex of Sert−/− rats, effer-
ent excitatory signal propagation between LIV circuits and its
projection target is generally increased.

To address the role of altered FFI in LIV in processing tactile
information, we quantitatively studied the sensory information

Figure 6. Intracortical excitatory signal propagation following activation of LIV networks is increased in Sert−/− rats. (A) Photograph of an acute brain slice mounted on

a MEA chip and schematic representation of slice positioning relative to electrode positions (black dots). Electrical stimulation of LIV networks was applied by a block

voltage pulse through a MEA electrode positioned in a LIV barrel (red dot). HC, (stimulated) home column; NC, neighboring column. (B) Pharmacological identification

of main components of evoked LFPs. Representative LFP response in LIV first under 1) ACSF condition (black trace), showing a fast action potential volley (arrow 1)

and a slow AMPA mediated synaptic component (arrow 2), 2) After 30min under 5 µM CNQX (red trace) and 3) After 30min under 5 µM CNQX + 1 µM TTX (gray trace).

(C) Averaged maps of excitatory signal propagation, constructed by linearly transforming individual maps (Sert+/+: n = 15; Sert−/−: n = 15) to the cortical template

shown as gray background centered to one LIV barrel center (black dot). The maps illustrate the averaged amplitude of excitatory synaptic LFP responses with confi-

dence levels ≥68.3%. (D) Average negative (excitatory) synaptic peak amplitudes of LFPs following LIV stimulation for Sert+/+ (n = 20) and Sert−/− rats (n = 20). Data

were obtained from the electrode delivering the strongest LFP response in each of the 3 layers of interest (upper LII/III = second electrode row; LIV = fourth electrode

row; LVb = sixth electrode row) separately for HC and NC. Traces show representative averaged LFP recordings at the respective laminar positions in the HC. Data are

means ± SEM. Asterisks indicate significant differences between the 2 genotypes. Two-way ANOVA with Bonferroni correction was used. Data are represented as

mean ± SEM, **P < 0.01 and ***P < 0.001. See Supplementary Fig. 3 for maps of confidence levels of the excitatory response.
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Sert+/+ (n = 8) and Sert−/− (n = 8) juvenile rats require to perform
a whisker dependent object localization task (Voigts et al. 2008,
2015). On this task, the so-called spontaneous gap-crossing
task, animals are required to locate an elevated tactile target in
darkness after they are positioned on an elevated (home) plat-
form located at a distance from the target platform. Before
each trial, the target was pseudorandomly positioned at “nose”
or “whisker” distances where animals could collect tactile
information using mechanoreceptors in the skin and/or with
their whiskers (Fig. 7A). Tactile exploration of the target plat-
form was observed using high-speed infrared imaging (Voigts
et al. 2008; Pang et al. 2011; Juczewski et al. 2016) and tactile
evidence (i.e., duration of whisker contact; Fig. 7B) before suc-
cessful object localization was quantified using video record-
ings (see Materials and Methods; Fig. 7C). Rats of both
genotypes were able to learn the task at comparable rates
(Fig. 7D; Learning effect: F = 84.52; P < 0.001; Genotype effect:
F = 0.22; P = 0.64, 2-way ANOVA with df = 1). However, analysis
of the total duration of tactile exploration showed that Sert−/−

rats made significantly less contacts compared with Sert+/+ rats
prior to successful object localization when the object was
located at distances where the animals could reach it using only
their whiskers (Fig. 7E; Sert+/+ 1.06 s ± 0.17; Sert−/− 0.62 s ± 0.1;
P = 0.042; t = 2.057; n = 59 and 51 trials, respectively). At shorter,
“nose,” distances the 2 groups were not significantly different
despite the tendency for Sert−/− to require less tactile exploration
(Fig. 7E; Sert+/+ 0.83 ± 0.16; Sert−/− 0.55 ± 0.11; P = 0.19; t = 1.32;
n = 60 and 39 trials, respectively). The latency between the first
contact and the successful object localization was significantly
shorter for Sert−/− rats when the target was located at whisker
(Fig. 7F; Sert+/+ 2.49 s ± 0.19; Sert−/− 1.77 ± 0.17; P < 0.01; t = 2.720;
n = 59 and 51 trials, respectively) but not at nose distances
(Sert+/+ 2.39 ± 0.24; Sert−/− 2.37 ± 0.26; P = 0.966; t = 0.43; n = 60
and 39 trials, respectively), suggesting that Sert−/− rats not only
required less tactile information to successfully locate the tar-
get, but also did so faster than Sert+/+ rats (Fig. 7G) without alter-
ing the temporal distribution of tactile contacts with the target
(Supplementary Fig. 4).

Figure 7. Sert−/− rats show faster decision-making during tactile object localization. (A) Cartoon representation of the behavioral task. (B) Schematic representation of

temporal distribution of tactile exploration on a given trial and key independent parameters extracted for the quantification of tactile exploration. (C) Temporal distri-

bution of whisker contacts onto target prior to successful object localization. Twenty-five randomly chosen trials at whisker distances in each genotype were plotted

after aligning the trials at gap-cross. Peri-contact time histograms (top) were normalized to the sum of all contacts on each trial. (D) Learning curves described as the

maximum distance animals could successfully locate the target across sessions (Sert−/− n = 8; Sert+/+ n = 8 animals). (E) Histogram showing total duration of explor-

ation prior to successful object localization when the object was located either at “nose” distances in Sert+/+ (n = 60 trials) and Sert−/− (n = 39 trials) rats, or at “whisker”

distance (Sert+/+ n = 60; Sert−/− n = 51 trials). (F) Histogram showing the latency between the first contact and the successful object localization with target locations at

nose distance in Sert+/+ (n = 60 trials) and Sert−/− (n = 39 trials) rats, or at whisker distance (Sert+/+ n = 60 trials; Sert−/− n = 51 trials). (G) Temporal distribution of whisker

contacts was comparable across genotypes. Diamonds denote outliers *P < 0.05 and ***P < 0.001 (2-way ANOVA and t-test). See Supplementary Fig. 4 for temporal dis-

tribution of whisker contacts.
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Discussion
We investigated whether increased extracellular 5-HT levels
may affect the establishment of key networks for inhibitory
control within primary somatosensory cortical networks and
how this further impacts sensory integration using a model of
SERT loss of function (Sert−/−). Quantifying the feedforward
inhibitory drive in the Sert−/− rat barrel cortex, we showed that
elevating brain 5-HT levels during critical periods of develop-
ment can be associated with reduced inhibitory control over TC
recipient networks in cortical LIV of juvenile rats. At many
levels, we find deficits in intracortical inhibitory circuitry within
the Sert−/− genotype reflected by: 1) a reduction in GABA/AMPA
ratio in LIV excitatory neurons, 2) fewer functional soma-
targeting inhibitory synapses onto LIV excitatory neurons, 3) a
decreased GABAA α1 receptor expression, 4) a depolarized EGABA
in excitatory LIV neurons and 5) a decrease in membrane KCC2
chloride extruder. On the level of the intracortical excitatory
circuitry, we find a facilitation of the stimulus-evoked signal
propagation in LII/III after LIV stimulation. Interestingly, when
evaluating the ability of Sert−/− rats to detect the location of an
object in space using their whiskers, we observe faster reaction
times as well as fewer whisker contacts (i.e., less sensory
exploration) required to successfully locate the platform.

The fine balance of excitatory and inhibitory cortical net-
works that mediate FFI is essential for gating incoming TC
input, for effectively blocking recurrent excitation and preserv-
ing distinct signaling in cortical networks (Sun et al. 2006). We
show that FFI is impaired in the Sert−/− rat, where the
GABAergic disynaptic transmission onto LIV excitatory neu-
rons, following thalamic stimulation is significantly reduced.
This mechanism relies on the recruitment of soma targeting FS
interneurons (Daw et al. 2007; Chittajallu and Isaac 2010) for
effectively shunting latent incoming information. Our thalamic
stimulation combined with single neuron recording imply that
the excitatory TC drive of the FS LIV inhibitory neurons was
reduced, whereas that of LIV excitatory neurons remained
similar. However, due to the limitations of electrical mapping
in isolating single TC afferents, direct observation of the thal-
amic input onto excitatory and inhibitory neurons are yet to be
realized. Nonetheless, intracortically we found a strong reduc-
tion in soma-targeting inhibition onto Sert−/− LIV neurons.
Furthermore, the observed reduction of GABA α1 receptor sub-
unit expression suggests a reduction in perisomatic parvalbu-
min positive inhibitory synapses directly involved in FFI
(Freund and Katona 2007). Together with the observed depolar-
ized EGABA, we show multiple levels of impaired inhibitory con-
trol which affect Sert−/− rats and directly impact the integration
of somatosensory information within the input layer of S1.

FFI allows temporally correlated thalamic excitation to sum-
mate onto excitatory LIV neurons before engaging a strong
inhibitory shunt for any latent information. It is hypothesized
that a reduction in inhibitory control would therefore diminish
spike-timing precision and result in a widening of the time
window during which positive feedback can play a role in amp-
lifying the excitatory response (Fox et al. 1996; Kyriazi et al.
1996; Puzerey and Galán 2014). Successful localization of an
object in the environment requires the preservation of complex
spatial and temporal information along intracortical somato-
sensory networks. With others, we have previously shown that
the Sert−/− phenotype exhibits a disrupted topological organiza-
tion of the barrel cortex (Cases et al. 1996; van Kleef et al. 2012;
Miceli et al. 2013; Chen et al. 2015). Despite their altered topo-
logical organization we show here that Sert−/− rats still

successfully integrate sensory information from the periphery,
locating tactile targets of interest using solely whisker touch.
Interestingly, increased excitability along the intracortical pro-
jections facilitates the integration of sensory information
across whisk cycles such that Sert−/− rats required fewer whis-
ker touch and showed faster response times compared Sert+/+

rats. These results are in agreement with recent observations
in a mouse of Fragile X syndrome (Juczewski et al. 2016) where
hyperexcitability of the primary somatosensory neurons have
been well characterized (Zhang et al. 2014; Juczewski et al.
2016). Collectively, the findings point to an inverse correlation
between somatosensory cortical excitability and the duration
of tactile sampling required for successful object localization by
whisker contacts.

The function of thalamic clustering and overall topological
organization of primary sensory cortices affect the spatio-
temporal processing of incoming stimuli (DeAngelis et al. 1999).
The barrelless (Brl) mouse, a spontaneous mutant which lacks
AC1 is characterized by TC afferent overlap and the absence of
visible barrels. Interestingly, the Brl mouse can still perform
tactile sensory tasks and has also shown a shorter latency of
LIV neuron activation following surround whisker activation
(Welker et al. 1996). Single- and multi-whisker activation both
lead to accurate decision-making on a sensory detection task,
where multi-whisker exploration reduces the latency to deci-
sion without altering the probability of successful object local-
ization (Hutson and Masterton 1986; Celikel and Sakmann
2007). These results corroborate our findings that Sert−/− rats
showing a strong TC as well as LIV excitatory neuron axonal
projection overlap (Miceli et al. 2013) require fewer sensory
inputs for correct responses on the gap crossing task. Welker
et al. (1996) have argued that the overlap of TC afferents gener-
ates a cortical neuronal receptive field that is more appropriate
to a continuous and less discriminate representation of the
tactile periphery (Welker et al. 1996). The gap crossing task
embodies such a stimulus in that the detection of the presence
of a platform does not require complex sensory discrimination
abilities. This is in sharp contrast to a novel object discrimin-
ation task which would involve the ability to discriminate
between intricate textures and topologies, which has recently
been reported to be impaired in the Sert−/− rat (Kroeze et al.
2016). Previous studies have implied impaired tactile perform-
ance in Sert−/− mice (Pang et al. 2011) and postnatally fluoxetine
(SERT inhibitor) exposed rats (Lee 2009). Whether the discrep-
ancy arises from species differences or is based on the transi-
ent pharmacological intervention is currently unclear.
Regarding our findings, we argue that the reduction in inhibi-
tory control of LIV excitatory neurons combined with the broa-
dened barrel organization (Miceli et al. 2013) and increased
synaptic transmission from LIV to LII/III (in space and time)
might serve as a compensatory mechanism to amplify and
make sense of potentially weak and non-topologically orga-
nized, incoming peripheral signals. The broadening of the exci-
tatory signal propagation into adjacent cortical columns in
Sert−/− rats is in agreement with the reduced column-specific
axonal projection patterns of LIV excitatory neurons (Miceli
et al. 2013). Reasons for the increased strength of excitatory
synaptic transmission observed for local LIV networks as well
as between LIV and LII/III could theoretically be found in 1)
increased numbers of activated excitatory LIV neurons, either
due to increased neuronal densities or intrinsic excitability, or
2) due to increased numbers and more efficient excitatory
synapses established by these LIV neurons. However, our
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current results as well as that of a previous study (Miceli et al.
2013) argue against the latter interpretation. It should neverthe-
less be considered that although no significant change in the
total number of GABA+ neurons was found, inhibitory neurons
have been found to show protracted postnatal maturation after
the initial critical period in the second week and at the juvenile
age (Le Magueresse and Monyer 2013). Thus, changes in cell
distribution may appear in older Sert−/− animals. We further-
more cannot rule out possible alterations in cell numbers of
particular classes of inhibitory neurons. Previous studies have
shown that for example, the number of PV+ neurons were
reduced following sensory deprivation (Patz et al. 2004; Desgent
and Ptito 2012). Thus, future studies focussing on inhibitory
neuron subtype quantifications may demonstrate changes at
that level as it has recently been shown in altered laminariza-
tion of VIP+ expressing neurons in Sert−/− mice (Frazer et al.
2015). Furthermore, a possible explanation for the observed
increased excitatory synaptic propagation in Sert−/− rats could be
that upon stimulation of LIV networks which activate both exci-
tatory and inhibitory neurons, the disinhibition prevents proper
cut of the stimulation induced action potential firing of excita-
tory cells, and consequently results in increased local neuronal
firing. Future in vivo electrophysiological as well as imaging
studies will be important in evaluating and quantifying the total
effect of this reduced inhibitory control on the excitatory
response following whisker deflection. Complementary to that,
functional assessment of the consequence of broadened axonal
projections and receptive fields might benefit from studying tact-
ile exploration during fine scale texture discrimination.

The maturation of functional excitatory and inhibitory cir-
cuits within sensory cortices depends on experience and relies
on afferent neuronal activity to develop (Allen et al. 2003;
Foeller et al. 2005; Hensch 2005; Jiao et al. 2006; Lee et al. 2007;
Spiegel et al. 2014). We have previously shown that the input/
output connectivity of Sert−/− rat resembles that of an immature
cortex possessing extensive transcolumnar as well as infragra-
nular axonal innervations (Miceli et al. 2013). Here, the fewer
soma targeting inhibitory synapses onto excitatory LIV neurons
observed in Sert−/− rats as well the depolarized EGABA and lower
KCC2 surface expression are all indicative of an immature sys-
tem (Chattopadhyaya et al. 2004; Blaesse et al. 2006). The latter
could result from lower incoming sensory synaptic activity dur-
ing the first postnatal weeks, a time at which the thalamic to
LIV barrel pathway matures and the somatotopic pattern forms
(Erzurumlu and Gaspar 2012). During this critical period SERT is
transiently found on growing thalamic afferents (for review see
Schubert et al. 2015) where it regulates extracellular 5-HT levels
and modulates activity at the TC synapse (Rhoades et al. 1994;
Laurent et al. 2002). A disruption of SERT function during these
critical time points results in excessive presynaptic 5-HT1B
receptor activation leading to impaired glutamatergic release
upon LIV barrel neurons (Laurent et al. 2002). Reduction in
incoming sensory activity during this early critical period, as it
can also be induced by sensory deprivation such as whisker
trimming from birth, has been shown to reduce the number of
inhibitory synapses (Micheva and Beaulieu 1995; Gainey et al.
2016) and thus delays inhibitory circuit formation. Similarly, vis-
ual deprivation has been shown to decrease mIPSC frequency as
well as GAD67 puncta density onto pyramidal cells of primary
visual cortex (Gao et al. 2014). We believe that the reduced
glutamate release at the TC synapse, which results from over-
activation of presynaptic 5-HT1B receptors during the first post-
natal weeks of sensory experience results in the observed
decrease in mIPSC frequency and amplitude as well as the

depolarized EGABA. In this respect, as genetic ablation of Sert in
rats has also been associated with reduced gene expression of
transcription factor Npas4, Brain-Derived Neurotrophic Factor
(BDNF) and GABAergic markers in the prefrontal cortex during
early development (Guidotti et al. 2012), it is possible that BDNF,
regulated by Npas4, serves as an upstream force driving the dif-
ferential development of cortical excitatory/inhibitory circuitry in
Sert−/− rats (Hong et al. 2008; Spiegel et al. 2014).

A translational aspect of the present research concerns the
use of Selective Serotonin Reuptake Inhibitors (SSRIs) by preg-
nant mothers, which can pass the placenta and block SERT
function in the developing human fetal brain (Bonnin et al.
2011; van Kleef et al. 2012). Further research investigating the
effects of SSRIs, and resulting increase in extracellular 5-HT
levels would therefore be informative and could permit to spe-
cifically dissect the time points at which 5-HT influences the
structure and function of the developing barrel cortex. It also
remains to be investigated whether the alterations shown in
this study at the juvenile age are having lasting effects on the
maturation of inhibitory control and functioning of cortical net-
works in the adult brain, in particular when impairment of
SERT function is induced only transiently during early develop-
ment, for example, due to exposure to SSRIs.

Changes in developmental SERT signaling have been linked
to differential sensitivity to features of environmental stimuli
(Belsky et al. 2009). A high prevalence of the short (s), low expres-
sing variant of the SERT polymorphic region (5-HTTLPR) occurs
in human populations and has been related to the Sensory
Processing Sensitivity (SPS) personality trait. Interestingly, 5-
HTTLPR s-allele carriers as well as individuals scoring high on
the Highly Sensitive Person scale (high SPS) show increased sen-
sitivity to both the adverse and supportive features of environ-
mental stimuli (Aron et al. 2012; Pluess and Boniwell 2015) and
are at higher risk for depressive disorders (Liss et al. 2005). As
proper integration of primary sensory information is crucial for
developing reliable and accurate constructs of our environment,
the reduced inhibitory control within the cortical input LIV in S1
of Sert−/− rats, as identified in the present study, may provide a
lead toward understanding the role of 5-HT homeostasis and its
contribution to SPS and related neurological diseases (Homberg
et al. 2016).
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Supplementary material are available at Cerebral Cortex online.
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