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Tissue-resident memory (TRM) T cells are a unique subset of memory T cells that

are critical for the first line of defense against pathogens or antigens in peripheral

non-lymphoid tissues such as liver, gut, and skin. Generally, TRM cells are well

adapted to the local environment in a tissue-specific manner and typically do not

circulate but persist in tissues, distinguishing them from other memory T cell

lineages. There is strong evidence that liver TRM cells provide a robust adaptive

immune response to potential threats. Indeed, the potent effector function of

hepatic TRM cells makes it essential for chronic liver diseases, including viral and

parasite infection, autoimmune liver diseases (AILD), nonalcoholic fatty liver

disease (NAFLD), hepatocellular carcinoma (HCC) and liver transplantation.

Manipulation of hepatic TRM cells might provide novel promising strategies for

precision immunotherapy of chronic liver diseases. Here, we provide insights into

the phenotype of hepatic TRM cells through surface markers, transcriptional

profiles and effector functions, discuss the development of hepatic TRM cells in

terms of cellular origin and factors affecting their development, analyze the role of

hepatic TRM cells in chronic liver diseases, as well as share our perspectives on the

current status of hepatic TRM cell research.

KEYWORDS

tissue-resident memory T cells, liver, chronic hepatitis B virus infection, malaria,
autoimmune hepatitis, nonalcoholic fatty liver disease, hepatocellular carcinoma
Introduction

T cells are essential for building an effective immune response against pathogens or

antigens. Once the pathogen breaks through the barrier tissue and invades the body,

antigen-presenting cells (APC) capture the foreign antigen and then migrate to the local

draining lymph nodes to activate naive T cells. Primed naive T cells subsequently

proliferate and differentiate into effector T cells that migrate into inflamed tissues to
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eliminate pathogens (1). Among these effector T cells, a minor

fraction persists and develops into memory T cells precursors

after the pathogens are cleared. According to their unique

patrolling properties, proliferative potential, and effector

function, these memory T cell precursors eventually develop

into circulating memory T cells and tissue-resident memory T

(TRM) cells (2, 3). Circulating memory T cells include central

memory (TCM) cells that target and patrol in the lymph node

and egress to the blood after infection, and effector memory

(TEM) cells that survey nonlymphoid peripheral tissues and enter

the peripheral circulation thorough the lymphatic system (4). By

contrast, TRM cells almost not recirculate and are retained within

tissues under homeostatic conditions (5).

Both CD8+ and CD4+ subpopulations of TRM cells are detected

at different tissue sites (6–8). CD8+ TRM cells are well defined and

enhance immune responses in peripheral tissues. However, the

characteristics and functions of CD4+ TRM cells remain largely

unclear (9, 10). In general, TRM cells primarily develop and persist

in organs that are frequently exposed to pathogens or antigens, such

as the liver, gut, skin and lung (11, 12). Among these organs, the liver

is considered as a vital immune organ, and it is exposed to various

pathogens and food antigens, that enter or re-enter the body via

portal vein from the gastrointestinal tract and the systemic

blood circulation.

Liver contains a large number of innate immune cells,

including natural killer (NK) cells, NKT cells, gd T cells,

mucosal-associated invariant T cells, Kupffer cells, and

dendritic cells (13). Interestingly, liver also include a number

of liver-specific antigen-presenting cells, such as hepatic
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sinusoidal endothelial cells and hepatic stellate cells, which

contribute to immune tolerance in the liver (13). Moreover,

the hepatic specific immune microenvironment constructed by

these immune cells promotes the generation of antigen-

experienced T cells and TRM cells involved in pathogen

clearance or autoimmune responses against self-antigens (14).

Importantly, liver TRM cells perform an essential role in the first

line of adaptive cellular defense while exposing to the cognate

antigens in the liver (15, 16). Accordingly, the liver acts as an

essential gatekeeper to prevent systemic infection and

inflammation, while the liver TRM cells contribute to the

efficient eradication of pathogens as well as immune responses.

In this review, we primarily focus on phenotype and

development of hepatic TRM cells, mainly CD8+ TRM cells,

with emphasis on their protective roles in viral and parasite

infection, non-alcoholic fatty liver disease (NAFLD),

hepatocellular carcinoma (HCC) and liver transplantation, as

well as their pathogenic roles in autoimmune liver diseases

(AILD) (Table 1).
Phenotype of liver TRM cells

The general characteristics of TRM cells include their

strategic positioning in the tissues and effector functions.

However, despite TRM cells share some similar features, the

phenotype, such as surface markers and transcriptional profiles,

and the underlying mechanisms for their generation and

retention are highly heterogeneous in different tissues.
TABLE 1 Phenotype and clinical significance of liver CD8+ TRM cells in chronic liver diseases.

Chronic
liver dis-
eases

Phenotype Clinical significance Reference

HBV CD69+CD103+CXCR3+CXCR6+CD39+PD1+BLIMP1hiHOBIT+/

loT-betloEOMESloIL2+IFN-g+perforin+
Virus-specific liver TRM cells control viral replication, and contribute to the
functional cure for HBV patients.
Liver TRM cells persist in the liver and provide long-term viral control in
HBV patients.

(17–22)

HCV CD69+CD103+/-CXCR6+S1PR1loKLF2logranzyme B+ Liver TRM cells have specific activating and cytolytic potential for viral
eradication.

(23–27)

Malaria
(Murine
study)

CD69+CD49a+LFA-1+CD101+CXCR3+

CX3CR1loKLRG1loCD107a+T-bet+EOMESloIFN-g+TNF-
a+granzyme B+

Liver TRM cells can directly kill Plasmodium-infected cells, thereby
mediating protective immune responses.
TRM-based vaccination strategies could hold remarkable promise in the
prevention and treatment of malaria.

(16, 28–35)

AIH CD69+CD103+CD49a+CXCR3+CXCR6+PD1+BLIMP1hiT-
betloIL2+IL17+IFN-g+ granzyme B+

Antigen-specific liver TRM cells infiltration may serve as a new biomarker
of pediatric acute liver failure (PALF) due to AIH.
Histological remission in AIH patients is accompanied by a reduction in
liver CD8+ TRM cells, and liver TRM cells may be an important factor in
relapse after steroid discontinuation.

(36–38)

NAFLD
(Murine
study)

CD69+CD103-

CXCR3+CXCR6+LAG3+CTLA4+FasL+TOX+EOMES+
Liver CD8+ TRM cells promote fibrosis resolution by inducing apoptosis of
predisposed activated hepatic stellate cells (HSCs), and may perform a
protective role in resolving liver fibrosis of NASH.

(39)

HCC CD69+CD103+PD1+LAG3+TIM3+CTLA4+T-betloEOMES+ Enrichment of liver TRM cells are associated with better prognosis in HCC
patients.

(19, 40–42)
fro
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Surface markers

It is considered that the surface markers contribute to the

identification and maintenance of hepatic TRM cells. Similar to

other tissue-specific TRM cells, hepatic TRM cells downregulate

the expression of tissue egression markers, like soingosine-1-

phosphate 1 (S1PR1), and the homing receptors such as CD62L

and CCR7 (43, 44). Furthermore, hepatic TRM cells usually

express some adhesion molecule and chemokine receptors,

including CD69 (44), CD103 (17, 45), CD49a (36), CXCR3

(17, 23) and CXCR6 (46, 47), which are involved in their

localization and maintenance in the hepatic sinusoids and

portal veins.

The lectin CD69 is constitutive expressed on the majority of

liver TRM subsets. Upon exposure to antigens or pro-

inflammatory mediators, the expression of CD69 is strongly

upregulated on activated CD8+ T cells within peripheral tissues

as a result of the downregulation of Krüppel-like factor 2(KLF2)

(44, 48, 49). Meanwhile, as an antagonist of S1P1, CD69

complexs with S1P1 on the cell surface and leads to its

internalization and degradation (50). Besides, CD69 also

contributes to the retention status of hepatic TRM cells by

downregulating sphingosine 1 phosphate receptor (S1PR1)-

mediated tissue egress (44). Therefore, it is likely to that its

primary role is to restrict the egress of TRM cells from the liver to

the blood and lymphatic vessels.

CD103 is an a-chain of the integrin aEb7. It is upregulated
in activated peripheral CD8+ T lymphocytes upon exposure to

TGFb (51). CD103 is a receptor for E-cadherin, an adherens

junction protein interlocking epithelial cells (52). Interestingly,

E-cadherin is widely expressed by hepatocytes and

cholangiocytes (36, 53, 54).The interaction of E-cadherin and

CD103 expressing on the liver-infiltrating lymphocytes may be

involved in positioning, adhesion and retention of hepatic TRM

cells (36). Furthermore, CD103 may define two different

functional subsets of TRM cells in human liver. The

CD69+CD103+ subpopulat ions are ant igen-specific

autoreactive cytotoxic T cells in human liver, exhibiting more

potent effector function than CD69+CD103- counterparts (45,

55, 56). Interestingly, there are differences between mouse and

human liver TRM cells regarding CD103 expression.

Interestingly, it appears that another liver-specific homing

marker, lymphocyte function associated antigen 1 (LFA-1),

rather than CD103, may be responsible for the retention of

hepatic TRM cells in mice (16, 57).

CD49a, another adhesion molecule of TRM cells, is the a1
component of the integrin a1b1. CD49a pairs with integrin b1
to form the heterodimer VLA-1 which bind to collagen IV. This

interaction is believed to be critical for retention of the resident

population at the epithelium (58). In general, CD49a is

upregulated following T cell activation and can be found on

circulating T cells (59). Expression of CD49a contributes to
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protect cells from undergoing apoptosis (60). Importantly,

blockade of CD49a with antibodies as well as genetic deletion

of CD49a results in a diminution of TRM cells (59, 61). However,

CD49a was not essential for the recruitment of CD8 T cells to the

lung in mice, but for their persistence as memory cells (59).

Therefore, CD49a may promote the survival, retention or

proliferation of TRM cells. Moreover, CD49a may define

different functional subsets of TRM cells. In the skin, CD49a

expressing CD8+ TRM cells produce large amounts of IFN-g,
perforin and granzyme B, while CD49a negative counterparts

prefer to produce IL17 (62). However, the effector function bias

based on CD49a expression of liver TRM cells have not been

comprehensively interrogated.

Chemokines and chemokine receptors have been extensively

used to describe the correct localization, residence and effector

function of immune cells within lymphoid organs and non-

lymphoid tissues (63). Despite their expressions on TRM cells of

different tissues have great heterogeneity, it is reported that the

maintenance and effector function of TRM require constant

chemokine stimulation (64–66). Chemokine receptors CXCR3

and CXCR6 have been extensively reported to be constitutively

expressed on the surface of intrahepatic TRM cells (16, 17, 23, 46,

67). CXCR3 is a vital homing marker that may contributes to the

retention of liver CD8+ TRM cells. It binds to multiple

chemokines, such as CXCL9, CXCL10 and CXCL11, which are

predominantly secreted by monocytes, liver sinusoidal

endothelial cells and fibroblasts (17). On the other hand,

CXCR6 also plays an important role in the maintenance of

liver TRM cells (46, 68). CD8+ T cells lacking CXCR6 migrate to

the liver normally after immunization, whereas perform a

marked decrease capacity to form hepatic CD8+ TRM cells and

severely impairs their effector functions against infection in the

liver (46). In addition, CXCR6 also contributes to the

maintenance of liver TRM cells via binding to CXCL16

secreted by liver sinusoidal endothelial cells (46, 68). These

studies suggest that CXCR6 is essential for retention rather

than recruitment of CD8+T cells to the liver. Additionally,

deficiency of CXCR6 results in decreased survival of hepatic

NKT cells patrolling the liver sinusoids, affecting hepatic

intravascular immune surveillance (68).
Transcriptional profiles

Besides surface markers, multiple transcription factors are

involved in the regulation of the distinct features of liver

TRM cells.

The network of transcription factors underlies the unique

features of TRM cells, including liver TRM cells (Figure 1). These

transcription factors include B lymphocyte-induced maturation

protein 1 (BLIMP1; also known as PRDM1), homologue of

BLIMP1 in T cells (HOBIT; also known as ZFP683), runt-related
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transcription factor 3 (RUNX3), Notch, Peroxisome

proliferator-activated receptor-g (PPAR-g), BHlHe40, TBX21

(T-bet), aryl hydrocarbon receptor (AhR), Eomesodermin

(EOMES), and NR4A family of orphan nuclear receptors

(NR4As). The combined action of these transcription factors

contributes to the residency status of liver TRM cells (64, 69).

HOBIT is specifically up-regulated in TRM cells and, together

with related Blimp1, mediates the development of TRM cells in

lymphoid organs and non-lymphoid tissues (70). The co-

expres s ion of HOBIT and BLIMP1 ins t ruc t s the

downregulation of CCR7, transcription factor 7 (TCF7), KLF2,

and S1PR1 in TRM cells (71). CCR7 is the receptor for

chemokine ligand 19 (CCL19) and chemokine ligand 21

(CCL21) that responsible for cell migration to secondary

lymphoid tissues (72).Meanwhile, TCF7, KLF2 and S1PR1 are

involved in the tissue egression of lymphocytes (71).

Interestingly, KLF2 regulates the expression of S1PR1 in

lymphocytes of tissues, which directs them returning to

c ircu la t ion (44) . Consequent ly , the Hobi t-Bl imp1

transcriptional module retains TRM cells within tissues through

silencing the genes related to recirculation in addition to
Frontiers in Immunology 04
suppressing the markers related to egression. Furthermore, a

murine study demonstrated that the transcriptional repressor

Capicua (CIC) controls the development of liver TRM cells.

Mechanistically, they found that CIC could regulate the

expression of HOBIT by inhibiting the ETS variant

transcription factor 5 (ETV5) (73). RUNX3 and Notch are

essential for the maintenance of TRM cells by repressing the

expression of genes involved in the formation of circulating

memory T cells and inducing the expression of retention

molecules, including CD103 (74). The collaboration of

HOBIT, BLIMP1 and RUNX3 also drives immediate effector

function in TRM cells by inducing and sustaining granzyme B

production (75–77). Notch, predominantly expressed in newly

developed TRM cells, not only regulates expression of IFN-g
upon restimulation but also contributes to the mitochondrial

fatty acid b-oxidation (FAO) in TRM cells (74, 75). Importantly,

exogenous free fatty acids uptake and their FAO are required for

the survival and effector function of TRM cells (78). Meanwhile,

PPAR-g facilitate the uptake of free fatty acids by upregulating

fatty acid binding proteins 1 and 4 (FABP1 and FABP4) in TRM

cells (78, 79). Bhlhe40, a stress-responsive protein, promotes the
FIGURE 1

Characteristics of TRM cells include their tissue residency, long-term persistence, and effector function. The residency status of liver TRM cells is
regulated by the combined action of B lymphocyte-induced maturation protein 1 (BLIMP1), BLIMP1 homolog in T cells (HOBIT), Notch, and
runt-related transcription factor 3 (RUNX3). BLIMP1 and HOBIT downregulate CCR7, Krüppel-like factor 2 (KLF2) and tissue export pathway
sphingosine 1-phosphate receptor 1 (S1PR1), while Notch directly upregulates the expression of CD103 on TRM cells. The interaction of CD103
and E-cadherin expressing on hepatocytes as well as cholangiocytes may be involved in adhesion and retention of hepatic TRM cells.
Furthermore, the expression of BLIMP1 is regulated by the transcription factor runt-related transcription factor 3 (RUNX3) and NR4A family of
orphan nuclear receptors (NR4As). The effector functions of liver TRM cells include direct killing of infected or malignant cells by secreting
cytotoxic molecules and inflammatory cytokines, such as granzyme B, TNF-a, IFN-g, and IL17. The expression of these cytotoxic components is
regulated by HOBIT, BLIMP1 and RunX3. The development and maintenance of TRM cells require stimulation with IL15, and TGFb, as well as
cognate antigens presenting by antigen-presenting cells (APC). T-bet is essential for the sustain expression of IL15 receptor, albeit at low levels.
Meanwhile, the expression of TGFb receptor is also regulated by P2X purinreceptor 7 (P2RX7), a sensor for extracellular nucleotides that
promotes mitochondrial homeostasis. Mitochondrial fatty acid b-oxidation (FAO) is an important energy source for TRM cells. Peroxisome
proliferator-activated receptor-g (PPARg) drives the upregulation of FABP1 and FABP4 to promote free fatty acid uptake from the extracellular
compartment, while the transcription factor BHlHe40 maintains mitochondrial fitness.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.967055
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.967055
survival and function of TRM cells under stress conditions by

sustaining mitochondrial fitness (80).

T-bet is crucial to sustain the expression of the IL15 receptor

b subunit (IL15Rb) and therefore enable the long-term lineage

stability of TRM cells, albeit at low levels (81). Activation of aryl

hydrocarbon receptor (AhR) may be associated to the

maintenance of liver TRM cells by increasing the expression of

CD69 (82, 83).Recent studies reveal that EOMES directly

inhibited expression of IFN-g in vitro, while EOMES deletion

in T cells led to substantially increased frequency and percentage

of TRM precursor in the liver (84, 85). Therefore, the

downregulation of EOMES in TRM cells is required to not only

their formation, but also their effector function.

Additionally, the NR4As are composed of NR4A1 (Nur77),

NR4A2 (Nurr1), and NR4A3 (Nor1). During the memory phase

of influenza infection, Nur77 deficiency in CD8+ T cells reduces

the frequency of CD8+ TRM cells in the liver without any effect

on lung or bone marrow CD8+ TRM cells and other memory

CD8+ T cells such as TCM and TEM (86), indicating a specific role

of Nur77 on liver TRM cell differentiation. In addition, the

expression of the transcription factors involving in TRM

differentiation (BLIMP1 and T-bet) is decreased, while the

expression of EOMES is increased in absence of Nor1 in CD8+

T cells (87). Interestingly, NR4As are particularly enriched in the

highly functional CD28+ subset of CD8+ TRM cells. Importantly,

deficiency of Nurr1 specifically reduces the percentage of these

CD28+ TRM subsets (88). To conclude, NR4As are important

regulators involved in the differentiation of CD8+ TRM cells.

However, not all NR4As are comprehensively interrogated at the

specific differentiation steps of CD8+TRM cells. Therefore, figure

out which signals promote the expression of NR4As in addition

the role of NR4As in CD8+ TRM cell differentiation await

further investigation.

Although these transcription factors described above have

been shown to be critical for TRM cells, it is difficult to determine

which are the specific key regulators of TRM differentiation and

maintenance, as they are also expressed in other CD8+ effector or

memory subsets. Therefore, the differentiation and maintenance

of TRM may be regulated by the cooperation of multiple

transcription factors.
Effector functions

Similar to other tissue TRM cells, liver TRM cells also have

timely, potent and durable effector functions. When pathogens

enter the liver, TRM cells can take advantage of tissue residency

to generate a rapid and effective protective immune response by

secreting multiple chemokines and cytokines in a deployment-

ready mode (75). The cytotoxic cytokines enable them to directly

eliminate infected or malignant cells as well as control invading

pathogens, while chemokines and pro-inflammatory cytokines

recruit and activate other immune cells, thereby remodeling the
Frontiers in Immunology 05
local liver microenvironment for more potent effector functions.

Furthermore, liver CD8+ TRM cells express high levels of Ki-67

and TCF1, showing their proliferative and self-renewal potential

(89). Actually, TRM cells can persist in the liver for years and

exert durable protective effect (17). In addition, TRM cells may

help to significantly promote the repopulation of locally resident

and circulating memory T cells after infection, suggesting their

role in establishing secondary memory T cells to prevent future

reinfection with the same pathogen (90, 91). Accordingly, TRM

cells have been used to develop vaccines that generate stronger

and longer-lasting immune responses than conventional

vaccines (15, 28, 29). Meanwhile, CD8+ TRM cells are able to

attract hepatic stellate cells (HSCs) in a CCR5-dependent

manner and predispose activated HSCs to FasL-Fas-mediated

apoptosis, thereby promoting liver fibrosis regression (39).

However, every coin has two sides, as do liver TRM cells. Once

TRM cells are interfered by cognate antigens and damage

hepatocytes and cholangiocytes, it may lead to the occurrence

of AILD. Meanwhile, auto-aggressive liver CXCR6+CD8+ TRM

cells cause hepatic immune pathology in NASH in an MHC-

class-I-independent manner (47). Therefore, clarifying the

biological characteristics and development of liver TRM cells so

as to accurately manipulate liver TRM cells can enhance the

effector functions of TRM cells and avoid weaknesses.
Development of liver TRM cells

Mult iple factors including T cel l - intr insic and

environmental factors are believed to be involved in the TRM

cell differentiation. Thereinto, the first question to be addressed

is the origin of TRM cells. Olivier, O et al. analyzed antigen-

activated T cells from different tissues using TCR sequences.

They found that TCM cells in the lymph nodes share a common

clonal origin with TRM cells (92), indicating that these subsets

derive from the same naïve T cell precursors. Moreover, the

differ in TCR stimulation affinity, namely the strength of antigen

binding of TCRs, affects the subsequent development of TRM

cells (93). In this regard, high TCR affinity leads to TEM

development, whereas a low TCR affinity results in short-lived

memory cells with impaired secondary immune response (94,

95).It is reported that TRM cells have different TCR stimulation

affinity compared to splenic memory T cells (93, 94).

Furthermore, there is heterogeneity in the magnitude of TCR

stimulation affinity required for the development of functional

CD8+ TRM cells in different tissues (93, 96). For example, Maru,

S et al. demonstrated that brain TRM cells stimulated with

suboptimal stimulation strength respond more effectively to

CNS infection than cognate antigen, suggesting that the

strength of antigen stimulation affects the functional integrity

of TRM cells in a persistent viral infection (93). However, the

specific strength of TCR stimulation affinity required for

inducing liver-adapted TRM cells has not been determined.
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Additionally, the killer cell lectin-like receptor G1 (KLRG1)

may contributes to figure out the source of TRM cells. KLRG1 is

upregulated in short-lived effector cells (SLECs, KLRG1hi

IL7Ralo), whereas the memory precursor effector cells

(MPECs) that turn into heterogenous populations of memory

CD8+ T cells, bear negative or low expression of KLRG1 (9, 97).

Adoptive transfer experiments have shown that MPECs could

generate TRM cells after entering specific tissues (98). In

addition, a portion of KLRG1+ CD8+ T cells can downregulate

KLRG1 during the contraction phase of immune response and

differentiated into TRM cells. The latter subset accounts for

approximately half of the liver TRM cell population and has a

stronger cytotoxic and proliferative capacity than those directly

derived from KLRG1-CD8+ T cells (99). These findings suggest

that liver TRM cell can originate from both KLRG1+ or

KLRG1- lymphocytes.

On the other hand, studies have shown that cognate antigens

and inflammatory cytokines also contribute to the development

and maintenance of liver TRM cells (Figure 1).

Antigenic challenge induces and amplifies antigen-specific

TRM cell proliferation, and maintained at low-level magnitude in

the liver TRM pool after the clearance of infection. Actually, the

capacity of hepatic TRM niches is large enough to lodge multiple

TRM cells with different specificities without displacing

previously established cells (14). Therefore, newly formed liver

TRM cells do not displace existing TRM cell populations (14).

Intriguingly, TRM cells induced by cognate antigen in secondary

immune response are mainly developed from the pre-existing

TRM populations, instead of circulating memory T cells (90,

100). Therefore, cognate antigens contribute to the immune

response mediated by TRM cells and the construct of polyclonal

TRM cell repertoire.

The differentiation and development of liver TRM cells can be

mediated by multiple cytokines, including IL2, IL15, TGFb and

IL10. IL2 is mainly produced by activated T cells. It promotes the

growth, proliferation and differentiation of lymphocytes, and is

essential for the body’s immune response and antiviral infection.

Interestingly, human liver CD8+ TRM cells express high levels of

IL2 (17, 36). The unusually high IL2 production of hepatic CD8+

TRMmay be important for their protective potential, as autocrine

IL2 is needed to the persistence of memory responses to

pathogens and secondary population expansion of CD8+

memory T cells (17, 101). In addition, IL15 is known to be

involved in TRM development and longevity. Although shares a

receptor subunit with IL2, IL15 has a perceptible difference in

immunomodulatory properties. Generally, IL15 induces the

proliferation and survival of circulating memory CD8+ T cells

(102, 103). Nevertheless, the upregulation of the IL15 receptors

in memory CD8+ T cells indicating that IL15 stimulation may be

essential for TRM development (102). It was reported that IL15

was able to induce CD69, CXCR3 and CXCR6 expression on

peripheral CD8 T cells in a dose-dependent manner, all of which

were highly expressed on hepatic TRM cells (17). Consistently,
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IL15 knockout mice prevent CD8+ TRM cells development in the

liver (14). Meanwhile, the expression of hepatic IL15 is positively

correlated with TRM cells in AIH liver (36). Therefore, the

presence of IL15 may be essential for the formation of liver

TRM cells. Another important cytokine is the TGFb. TGFb is a

pleiotropic cytokine that is produced in an inactive form, namely

latency associated peptide (LAP). LAP can be activated by

binding to integrin avb6 on epithelial cells and/or integrin

avb8 on dendritic cells and endothelial cells (104). Activated-

TGFb induces CD8+ TRM cells to express CD103 as well as

downregulate of EOMES (81, 98), which are mandatory for their

generation, adhesion and long-term persistence in the liver. In

fact, TGFb is capable of inducing liver-adapted TRM cells, and

importantly, hepatic TGFb is significantly correlated with TRM

cells infiltration in human liver (17, 18, 36). Actually, sequential

exposure to IL-15 followed by TGFb efficiently induced de novo

CD69+CD103+CD8+ TRM cells, with similar frequencies to those

found in healthy livers (17). These studies suggest that the

expression of IL15 and TGFb in the liver promotes the

development and residency of CD103+ TRM cells in human.

However, a recent mouse experiment showed that constitutive

TGFb signaling did not accelerate the development of liver TRM

cells (105), indicating that TGFb may have functional

heterogeneity in liver TRM cells between human and mice.

Meanwhile, monocyte-produced IL10 induced the release of

surface-bound TGFb of antigen-presenting cells, while

blocking IL10 reduced CD103 expression on TRM cells (106).

Therefore, IL10-mediated TGFb signaling may have a critical

role in the generation and retention of liver TRM cells.

Additionally, several cytokines have been reported to be

involved in TRM development outside the liver. For example, the

IFN-b and IL12 are described to positively influence TRM cells

differentiation by regulating the expression of CD103 and CD69

in the intestine (107). Meanwhile, it is reported that hair follicle-

derived IL7 is involved in CD4+ TRM cells generation and

persistence in the skin (108, 109). Intriguingly, hepatocytes are

the main source of IL7 in the liver, and the hepatocyte-derived

IL7 can promote the survival of memory CD4+ and CD8+ T cells

(110). However, the specific role of these cytokines on the

development of liver TRM cells remains to be elucidated.
Metabolic profiles of liver TRM cells

There are significant differences in the metabolic profiles of

different T cell subsets. Several studied demonstrated that

preferences for certain metabolic pathways for energy affect

TRM cells generation, tissue retention, and effector functions.

Generally, highly proliferative and active cells prefer the

glycolytic pathway, while quiescent cells primarily use oxidative

phosphorylation and FAO to generate ATP. Thereinto,

mammalian target of rapamycin (mTOR), including two

subunits of mTOR complex 1 (mTORC1) and mTORC2, is a
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key regulator involved in regulating T cell nutrient metabolism,

proliferation and activation (111). While activating, it induces

glucose consumption to support T cell proliferation. There is

strong evidence that mTOR plays an important role in the

generation of TRM cells (112). Rapamycin, an mTORC1

inhibitor, has been reported to induce the formation of

memory CD8+ T cells but reduce TRM production in the gut,

thereby protecting mice from functional CD8+ TRM cell-

mediated intestinal autoimmunity (113). However, the exact

effects of rapamycin on the liver TRM cells are still

under investigation.

Fatty acid binding proteins (FABPs) are a group of

intracellular molecules that mediate the trafficking and

metabolism of fatty acids (114). Reliance on FAO has recently

been shown to be essential for the development and maturation

of CD8+ TRM cells (78). For example, studies on skin TRM cells

revealed that TRM cells upregulate FABP4 and FABP5 so as to

uptake and utilize exogenous free fatty acid (FFA) as an energy

source for their survival. Consistently, the deficiency of FABP4

and FABP5 results in impaired functional properties and

longevity of skin CD8+ TRM cells, but not influence the

survival of TCM cells in vivo (78). However, TRM cells from

different tissues express distinct FABPs with selected in a tissue-

specific fashion that is optimized for local fatty acid availability

(78, 79). It has been demonstrated that liver TRM cells express

high levels of FABP1 and a low concentration of FABP4, but do

not express FABP5 (79). In a murine model of LCMV infection,

FABP1 deficiency mice manifested impaired TRM cell

development in the liver but not in the skin. Furthermore, the

selective loss of liver TRM cells could be restored upon re-

expression of FABP1 (79). Interestingly, bezafibrate, the PPAR

agonists that promote FAO, has been confirmed to improve the

effector function of memory T cells (115). Therefore, a unique

FAO regulator, FABP1, driven by a liver-specific microenvironment

may be a promising target for intervention in hepatic TRM cells.

Additionally, several studies revealed that P2X purinreceptor

7 (P2RX7) is required for the establishment, maintenance and

functionality of TRM cells. P2RX7 is a sensor for extracellular

nucleotides that promotes mitochondrial homeostasis and

metabolic function of memory CD8+ T cells (116).

Importantly, P2RX7 supports TRM development by enhancing

CD8+ T cell sensing of TGFb via upregulate the TGFb receptor

II (TGFbRII) through calcineurin signaling. Meanwhile, P2RX7-

deficient TRM cells progressively decayed and expressed

dysregulated TRM-specific markers such as CD103.

Consistently, upregulation of TGFbRII expression rescued

P2RX7-deficient TRM cell generation as well as mitochondrial

function (116), indicating that sustained P2RX7 signaling is

required for long-term TRM cell maintenance. However,

another study demonstrated that P2RX7 activation in sterile

tissue damage during acetaminophen-induced liver injury

selectively enhanced the NAD-induced cell death of liver TRM

cells compared with circulating T cells, whereas concurrent TCR
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engagement promoted survival of TRM cells (117).These studies

suggest that differences in genetic background, microbiota as

well as their metabolites might have caused discrepancies in the

regulation of TRM differentiation and maintenance by P2RX7.
Liver TRM cells in the chronic
liver disease

The porous epithelial layer is a unique feature of the liver,

which not only enables the direct interaction of TRM cells with

hepatocytes, but also facilitates the encounter of cognate

antigens by TRM cells in the liver. TRM cells that reside in the

unique microenvironments of the liver not only develop in

response to infection, such as viral or parasite infection, but

are also detected in AILD, NAFLD, HCC and liver allografts.

Below, we discuss the unique characteristics of TRM cells in the

local microenvironment of different chronic liver diseases, their

role in disease progression, as well as their potential therapeutic

value (Table 1).
Liver TRM cells in viral infection

Hepatoviral infection is mainly caused by the hepatitis B

(HBV) and hepatitis C (HCV) viruses and the course can be

acute or chronic. Chronic infection with hepatotropic virus can

cause liver damage, cirrhosis, liver failure, development of HCC,

and even liver transplantation. It has been demonstrated that

hepatic TRM cells play a major antiviral immune response during

chronic hepatic virus infections.

Pallett, J et al. were the first to report the virus-specific liver CD8+

Tcells inchronicHBVinfection, inwhichapproximately90%of them

have a TRM cell-like phenotype (CD69+CD103+ or CD69+CD103−)

(17). CD8+ TRM cells can persist in the liver for several years after

primary infection and expand in patients with HBV. Importantly,

virus-specific CD8+ TRM cells could still be detected in spontaneously

recovered HBV patients, with effector functions equivalent to those

from chronic HBV-infected patients (18), suggesting the long-term

viral control of hepatic CD8+ TRM cells. Virus-specific CD8+ TRM are

very efficient in their function. During HBV viral infection, PD-L1

expression is upregulated in hepatic sinusoidal endothelial cells and

hepatocytes (118). PD-L1 on intrahepatic cells can interact with PD1

on TRM cells, thereby dampening pro-inflammatory TRM cell

responses (19). Nevertheless, even though TRM cells express high

levels of the PD1, they readily produce IFN-g, TNF-a, perforin, and
IL2 upon stimulation (17). IFN-g and TNF-a mediated control of

HBV replication, while perforin may contribute to the directly

elimination of infected hepatocytes (20, 21). Furthermore, IL2

production is most strikingly enhanced within CD69+CD103+ TRM
cells, which contributes to overcome PD-L1-mediated inhibition and

exhaustion, stressing their ability for survival and maintenance (21,
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119).Additionally, CD8+TRMcells are enriched inHBVpatientswho

achievedviral control, andtheirabundance is inverselycorrelatedwith

HBV viral load, stressing that the virus-specific liver TRM cells can

control viral replicationandcontribute to the functional cure forHBV

patients (17, 22). Therefore, liver TRM cell expansion may be a

potential therapeutic target for chronic HBV infection.

Additionally, a portion of HBV patients are co-infected with

hepatitis D virus (HDV), which often indicates a poor prognosis.

As the smallest known human virus, HDV has perfectly adapted

to escape recognition by CD8+ T cells restricted by common

human leukocyte antigen (HLA) class I alleles (120). A recent

study suggested that antigen-nonspecific activation of hepatic

CD8+ TRM cells may be involved in intrahepatic inflammation

and disease progression in HDV infection (121).

CD8+ TRM cells also play an essential role in long-term antiviral

response in chronic HCV infection (23–25). In the chimpanzee

model of HCV reinfection, depletion of CD8+ T cells resulted in

prolonged the virus persistence and prevented effective viral

clearance, while recovery of CD8+ T cells lead to virus eradication

(26). Meanwhile, a large number of CD69+CD8+ T cells were

detected in the liver of animals recovered after HCV infection, but

not in the peripheral blood. These subsets may be hepatic TRM cells,

which are required for protection from persistent HCV Infection

(26). Consistently, liver CD8+ TRM cells are highly increased in

chronic HCV patients and possess a specific activation and cytolytic

potential and are important in controlling chronic HCV

infection (27).

Besides hepatotropic virus infection, liver CD8+ TRM cells

contribute to the effective clearance of Lymphocytic

choriomeningitis virus (LCMV) as well. In the murine model of

LCMV infection, virus-specific TRM cells in the liver could be

influenced by other liver-resident immune cells. For example,

deficiency of liver-resident natural killer (LrNK) cells increased

both the frequency and antiviral activity of hepatic TRM cells via the

interaction of PD1 and PD-L1. Consistently, transfer of LrNK cells

into LrNK-cell-deficient mice as well as PD-L1 inhibition restrain

hepatic TRM cell function, resulting in impaired viral clearance

(122). Furthermore, during LCMV infection, other liver-resident T

cells, such as gd T cells, also expand and promote viral clearance by

producing IFN-g and TNF-a (123).

Current studies suggest that hepatic TRM cells may be

involved in the clearance of viral infection, protect patients

from persistent viral infection, and improve disease prognosis.

However, the role of TRM cells in different viral infections in the

liver remains to be further elucidated.
Liver TRM cells in parasite infection

Besides viral infections, several studies have investigated the

role of liver TRM cells in parasitic infections, including malaria

and leishmaniasis.
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Malaria is an insect-borne infectious disease caused by the

infection of Plasmodium through the bite of Anopheles

mosquitoes or the transfusion of the blood of a person

carrying Plasmodium (124). Plasmodium has a complex life

cycle, including three stages in the liver, blood and mosquito.

During infection of malaria, Plasmodium promotes the

development of antigens-specific TRM cells (16, 125–127).

These TRM cells could mediate protective immune responses

through killing infected cells by producing pro-inflammatory

cytokines, such as IFN-g and TNF-a (16, 30). Additionally, TRM

cell depletion abrogated an efficient immune response to a

murine model of Plasmodium infection (31).Due to the

protective immune response of TRM cells against malaria,

vaccination strategies that maximize intrahepatic Plasmodium-

specific TRM development have emerged (16, 28, 29, 32–34, 127).

An example is the Plasmodium ribosomal protein vaccine (15).

One of the antigens for this vaccine is PbRPL6120-127, a highly

conserved H2-Kb-restricted epitope from the 60S ribosomal

protein L6, expressed throughout the parasite life cycle, across

Plasmodium species (15). It may be an optimal antigen for

endogenous liver TRM development and protection against

malaria. A single dose of this vaccine could provide effective

and prolonged sterilizing immunity against high dose sporozoite

challenges (15). Indeed, people living in malaria-endemic areas

do not acquire effective protection against reinfection from

malaria (128), while attenuated Plasmodium falciparum

sporozoite (SPZ) vaccine is highly protective against controlled

human malaria infection 3 weeks after immunization (129),

suggesting multiple, complex factors are likely responsible for

the lack of development of sterilizing immunity to malaria

through natural infection. Furthermore, the protection and

long-term efficacy of existing vaccines are not satisfactory.

Accordingly, to improve the TRM-based vaccination against

malaria in human, further investigation of the mechanisms

that mediate Plasmodium-specific TRM generation and

function, assessment of the feasibility of currently known

antigens, as well as identification of novel target epitopes

are required.

Recently, the role of TRM cells in Leishmaniasis was studied

as well. Leishmaniasis is a zoonotic disease caused by

Leishmania, which can cause cutaneous and visceral kala-azar

in humans (130). There are various types of Leishmania in which

Leishmania infantum (L. infantum) primarily infects the liver

(131–133). During chronic L. infantum infection, liver TRM cells

are generated and play a protective role. Importantly, induction

by the Leishmania proteins LirCyP1 and LirSOD promotes

the expansion of hepatic TRM cells, which could be a

promising strategy for prophylactic or therapeutic vaccine

formulations (131).

Taken together, hepatic TRM cells are critical in parasitic

infections, and the TRM-based vaccination strategies could hold

remarkable promise in providing long-term protection.
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Liver TRM cells in AILD

AILD is a group of liver inflammatory damage diseases

mediated by abnormal autoimmunity, including autoimmune

hepatitis (AIH), primary biliary cholangitis (PBC), primary

sclerosing cholangitis (PSC), IgG4-related sclerosing

cholangitis (IgG4-SC), etc. AIH is an inflammatory liver

disease dominated by T cell-mediated hepatocyte injury.

Antigen-specific CD8+ TRM cells have been reported to

characterize the liver tissue of subjects with indeterminate

pediatric acute liver failure (PALF) and may serve as a novel

biomarker for PALF due to AIH (37, 38). Recently, our group

demonstrated that CD69+CD103+CD8+ TRM cells play an

important role in the pathogenesis of AIH, and histological

remission is accompanied by decreased hepatic CD8+ TRM cells

in AIH patients (36). In addition, hepatic CD8+ TRM cells from

AIH patients expressed a higher level of PD-1, CXCR3 and

granzyme B than those of healthy controls. Consistently, in AIH

liver, both expression of IL15 and TGFb, cytokines that induce
TRM cells in vitro, were elevated, suggesting that the

immunological microenvironment facilitates hepatic CD8+

TRM cells development and residency (36). Intriguingly, E-

cadherin, the natural ligand of CD103, is widely expressed in

hepatocytes of AIH patients, and located closely to CD8+ TRM

cells, which may contribute to the residency of CD8+ TRM cells in

the liver. Furthermore, E-cadherin is also widely expressed in

cholangiocytes (53, 54), suggesting that CD103+ TRM cells may

be involved in pathology of bile duct injury in cholestatic liver

diseases, such as PBC and PSC. Interestingly, a recent study on

biliary immune atlas revealed the presence of CD8+ TRM cells in

areas of biliary inflammation in PSC patients (134).
Liver TRM cells in NAFLD

Nonalcoholic fatty liver disease (NAFLD) is considered a

hepatic manifestation of metabolic syndrome, hypertension and

type 2 diabetes. Several studies have demonstrated that liver-

resident T cells and the proinflammatory immune response they

elicit are involved in NAFLD disease progression (135–138).

Generally, liver-resident gdT cells induce chronic liver

inflammation by producing proinflammatory cytokines such as

IL17A, IFN-g, and TNF-a, contributing to the pathogenic immune

response to NAFLD (123, 137, 139). Furthermore, systemic

inflammation in obese patients is associated with increased TRM
cells in the liver and may be further involved in NAFLD disease

progression. Importantly, activated TRM cells are significantly

increased in the liver and visceral fat of obese patients. These

activated TRM cells produce multiple pro-inflammatory cytokines,

such as IL1b, IL2, IL12, and IL15 (140), further contributing to the

generation of TRM cells in addition to the overall pro-inflammatory

phenotype in obese patients.
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Interestingly, a recent study revealed that CD69+CD103-

CD8+ TRM cell may perform a protective role in resolving liver

fibrosis of nonalcoholic steatohepatitis (NASH) (39). They

demonstrated that the reduction of these CD8+ TRM cells

significantly delayed fibrosis resolution via influencing

predisposed HSCs apoptosis, while adoptive transfer of these

cells protected mice from fibrosis progression in a CCR5-

dependent manner (39). Therefore, the paradoxical roles of

TRM cells in NAFLD and their specific mechanisms remain to

be further investigated.
Liver TRM cells in HCC

HCC accounts for the majority of primary liver cancers and

is currently one of the leading causes of cancer-related deaths

worldwide. The development of HCC is a complex multistep

process caused by multiple risk factors, whereas the function of

tumor-infiltrating T cells is important for moderating antitumor

immunity in HCC development and determining the clinical

fate of HCC patients (40). There are strong evidences that

CD103+ TRM cells are enriched in HCC patients and

associated with better prognosis (19, 41, 42).

In murine model of HCC, hepatic TRM cells were

significantly expanded, and their frequencies decreased during

HCC progression (141). Meanwhile, hepatic TRM cells in HCC

have an exhausted phenotype, manifested by expression of PD1,

LAG3, and TIM3 (40). Given that PD1 expression in TRM cells in

HCC is associated with poor disease outcome (142),

immunotherapy targeting checkpoint inhibition has been

applied to HCC (143, 144). During immunotherapy for HCC,

PD1high TRM cells are the most sensitive cells to anti-PD-1

therapy to overcome tumor growth and progression (145).

Additionally, other markers of exhaustion and inhibition, such

as TIM3 and CTLA4, and pro-inflammatory cytokines, such as

IFN-g and TNF-a, can also be simultaneously expressed on TRM

cells in HCC patients (142), suggesting that hepatic TRM cells

may be involved in direct killing of tumor cells. Overall, hepatic

TRM cells might play an extremely important role in both HCC

development and anti-tumor therapy.
Liver TRM cells in transplantation

Liver transplantation is the treatment of last option for end-

stage liver disease of various causes and severe acute liver failure.

It has been reported that donor-derived TRM cells are detectable

in the liver allografts and that their abundancy could be

correlated with organ survival and reduced rejection (146–

148). Specifically, long-term persistence of lung donor-derived

TRM cell is associated with reduced incidence of clinical events

that precipitate allograft injury, including primary graft
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dysfunction (PGD) and acute cellular rejection (ACR) (149).

However, the association of liver donor-derived TRM cells with

the incidence of clinical events remains to be further elucidated

(150). In liver allograft tissues, approximately 2-6% of CD8+ T

cells had a donor-derived TRM phenotype at 11 years post-

transplantation (18), well demonstrating the longevity of human

liver TRM cells. Additionally, donor-derived TRM cells from an

HBV-infected liver allograft could migrate to draining lymph

nodes with down-regulation of some TRM-specific markers.

However, they were not detectable in blood vessels (18).

Interestingly, the same study demonstrated that a lower

quantity of recipient-derived virus-specific T cells with a TRM-

like phenotype were detected in the liver and blood (18), further

revealing the extrahepatic origin of TRM cells in the liver.

Nevertheless, CMV-specific TRM cells in human liver allografts

did not acquire a TRM phenotype in the liver, possibly due to the

lack of relevant antigens in the liver.
Perspectives

The tissue retention and longevity of hepatic TRM cells and

their potent effector functions demonstrate their potential role in

chronic liver diseases. The above studies have shown that hepatic

TRM cells play a protective role in viral and parasitic infection,

NAFLD, HCC, and liver transplantation, whereas they might be

pathogenic in AILD such as AIH. However, further studies are

needed to reveal more mechanisms of TRM cell biology,

including the phenotype of TRM cells and the specific

mechanisms that regula te the i r deve lopment and

differentiation. Furthermore, there are several key points

regarding hepatic TRM cells that remain to be investigated.

Firstly, TRM cells are heterogeneous, and the subsets of TRM

cells that function in the liver under different conditions will

differ in the expression of surface markers and biological

behavior. For example, the predominant TRM cells associated

with the pathogenesis of AIH are CD8+CD69+CD103+ TRM cells

that highly express PD1, CXCR3 and granzyme B (36); whereas

liver TRM cells of patients with acute hepatitis A are mainly

CD8+CD69+CD103- TRM cells that express high levels of HIF-2a
(55). TRM cells are essential for the adaptive immune response.

While interfering different chronic liver diseases by hepatic TRM

cells, the biological function and disease specificity of the

corresponding TRM cells should be carefully considered.

Therefore, identifying the specific subsets of hepatic TRM cells

that play a major role in the chronic liver diseases will help to

define precise future intervention strategies.

Secondly, since the liver is an immune organ, we should pay

attention to the crosstalk of other immune cells in the liver to

hepatic TRM cells. Clarify whether they are cooperative or

antagonistic is of great significance. It has been shown that

LrNK cells can reduce the frequency and antiviral activity of

hepatic TRM cells through the interaction of PD1 and PD-L1
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during LCMV infection (122). However, the interaction among

other liver-resident cells remains to be further investigated. For

example, liver-resident gd T cells, participate in the pathogenic

immune response to NAFLD by producing proinflammatory

cytokines (123), are capable of form a long-lived resident

memory-like subpopulation upon local inflammation or

infection. Nevertheless, it is still unclear whether there is

crosstalk between unconventional gd TRM cells and

conventional ab TRM cells. Accordingly, clarifying these

interactions will shed light on the overall immune homeostasis

of the liver and lay the groundwork for developing

holistic therapies.

Thirdly, given that the biliary system that communicates

with the digestive tract and the portal blood that flows directly

into the liver may contain various gut-derived microorganisms

as well as their metabolites, hepatic TRM cells are chronically

exposed to, and may be trained by them. Whether the

composition of the gut microbiome, specific species of the gut

microbiome or their metabolites would influence the phenotype

and development of hepatic TRM cells are unknown yet.

Elucidating these interactions may open up new avenues for

the realization of therapeutic strategies for “enteric treatment of

liver disease”.

To conclude, hepatic TRM cells are considered to play a

crucial role in various chronic liver diseases. Elucidating and

characterizing the underlying mechanisms of hepatic TRM cells

will shed light on the control of chronic liver diseases and

provide promising strategies for precision immunotherapy in

different chronic liver diseases.
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