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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) binds to epithelial cells through angiotensin-convert-
ing enzyme 2 (ACE2) and damages the alveolar lining, 
especially of type II pneumocytes.1 The virus damages alve-
olar cells, promoting cell lysis and apoptosis and causing dif-
fuse alveolar damage with fibrin-rich hyaline membrane 
formation and some multinucleated giant cell infiltration, 
leading to coronavirus respiratory distress syndrome. It is 
characterized by severe hypoxemia due to alterations in pul-
monary compliance and elastance, damage to pulmonary 
flow, and hypoxemic pulmonary vasoconstriction.2

Type II pneumocytes synthesize and secrete pulmonary 
surfactant, which covers the alveolar air–liquid interface, 
minimizing surface tension and avoiding alveolar collapse.3 
Traditional approaches to surfactant replacement therapy in 

acute respiratory distress syndrome include invasive meth-
ods for instillation.
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cannula (HFNC) may positively affect lung structure and function in this context. In this study, we report on five clinical 
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patients were treated with aerosol therapy using surfactant delivered through vibrating-mesh nebulizers alongside HFNC. 
Of these patients, four demonstrated positive responses to the treatment, suggesting that aerosol therapy with surfactant 
through vibrating-mesh nebulizers could be a viable rescue therapy in adults receiving HFNC oxygen therapy for hypoxemic 
respiratory failure caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Unfortunately, one patient 
had a negative outcome and succumbed. The findings from these cases indicate that the use of aerosol therapy with vibrating-
mesh nebulizers as rescue therapy might offer an alternative approach for managing adults with hypoxemic respiratory failure 
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Surfactant therapy, traditionally used in neonatal care, has 
been explored in adults with acute respiratory illnesses. 
While not considered standard treatment globally, its poten-
tial benefits, cost implications, and side effects warrant fur-
ther investigation. However, the administration of surfactant 
by nebulization can reduce side effects associated with inva-
sive instillation, such as transient airway obstructions, hyper-
capnia, and hypoxia.4

High-flow nasal cannula (HFNC) oxygen therapy pro-
vides heated and humidified oxygen gas, by supplying a con-
trolled fraction of inspired oxygen (FiO2) and a positive 
pressure at the end of expiration, improving hypoxemia by 
decreasing respiratory effort and reducing rebreathing of 
oxygen and carbon dioxide.5 HFNC has been proven effec-
tive during the coronavirus disease-2019 (COVID-19) pan-
demic.6 Nevertheless, concerns about the aerosolization and 
spread of the virus through these ventilatory support tech-
niques remain under investigation.7

The vibrating-mesh nebulizer is used in ventilatory sup-
port with a higher performance and drug absorption than tra-
ditional nebulizers.8 The active vibratory technology applies 
vibratory energy, generating a low-speed aerosol and allow-
ing the nebulization of viscous solutions. In addition, it 
allows a greater deposition of the drug compared to tradi-
tional nebulizers because of the minimum residual volume 
remaining in the device after nebulization.9

During the early stages of the pandemic, there existed 
undeniable uncertainty in the optimal management of this 
novel disease. These rescue measures were desperate 
attempts to prevent intubation and mechanical ventilation in 
patients at high risk of mortality. The scarcity of ventilator 
resources exacerbated this challenge, pushing clinicians to 
find alternative treatment modalities.10

In the context of the escalating crisis caused by SARS-
CoV-2 and its resultant hypoxemic respiratory failure, the 
innovative adaptation of aerosol therapy with surfactant, tra-
ditionally used in neonatal populations, is introduced. The 
dosage, initially modeled after pediatric protocols, was metic-
ulously adjusted based on the clinical response of each adult 
patient, thus endorsing the extrapolation of treatment strate-
gies from neonates to the adult demographic. This pragmatic 
approach was pursued amidst a strained healthcare system, 
which necessitated leveraging any available therapeutic 
option that offered safety and a potential benefit.

We explore the application of vibrating-mesh nebulizers 
for administering surfactant to adults on HFNC oxygen ther-
apy, aiming to bridge the treatment gap in severe respiratory 
conditions. To further elucidate the efficacy and safety of 
this innovative approach, we present five clinical cases 
where vibrating-mesh nebulizer-administered surfactant was 
used as a rescue therapy in adults experiencing hypoxemic 
respiratory failure due to SARS-CoV-2. These cases were 
documented during the initial wave of the COVID-19 pan-
demic in Ecuador in 2020.

Case report

Patient 1

A 49-year-old man presented on day 1 with a 5-day history 
of progressive dyspnea and fever. His oxygen saturation on 
ambient air was 85%. Laboratory findings revealed an ele-
vated white cell count of 18,230 per mm3, a neutrophil count 
of 12,000 per mm3, and lymphocytes at 1600 per mm3. His 
clinical state was moderately severe with a ratio of oxygen 
saturation as measured by pulse oximetry/FIO2 to respiratory 
rate (ROX index).

ROX index of 5.4. He was immediately commenced on 
HFNC. The surfactant used was a synthetic formulation pre-
pared as per standard guidelines. On day 3, due to persistent 
dyspnea and worsening clinical state, aerosol therapy with 
surfactant was initiated using a vibrating-mesh nebulizer. 
This was given for 5 days at doses of 100 mg every 12 h with-
out any observed side effects. On day 7 of evolution, HFNC 
weaning began, and by day 9, he only required a simple nasal 
cannula with 3 L oxygen. A chest tomography showed sig-
nificant ground-glass pulmonary opacities, condensation 
areas, and a crazy-paving pattern. He was discharged from 
the intensive care unit (ICU) on day 12 and from the hospital 
on day 14.

Patient 2

A 52-year-old woman presented on day 1 with 4 days of 
cough, shortness of breath, headache, arthralgias, myalgia, 
and dyspnea. Her oxygen saturation was 80%. Laboratory 
examinations showed a white cell count of 8260 per mm3, 
7800 neutrophils per mm3, and lymphocytes at 530 per mm3. 
Her initial ROX index was 5.3, and aerosol therapy with sur-
factant was initiated on day 2 using a vibrating-mesh nebu-
lizer for 5 days at doses of 100 mg every 12 h. No side effects 
were noted from the treatment. Tomography displayed sig-
nificant ground-glass opacities with some condensation 
areas. She was discharged from the ICU on day 6 and from 
the hospital on day 8.

Patient 3

A 73-year-old man was admitted with 7 days of flu-like 
symptoms including fever, dry cough, chest and abdominal 
pain, diarrhea, dyspnea, and malaise. His oxygen saturation 
was 85%. Laboratory results showed a white cell count of 
11,920 per mm3, 10,800 neutrophils per mm3, and lympho-
cytes at 410 per mm3. He started aerosol therapy with a 
vibrating-mesh nebulizer on day 3 which was continued for 
5 days at doses of 100 mg every 12 h. On day 7, he showed 
marked clinical improvement. Tomography revealed ground-
glass opacities and condensation areas but no crazy-paving. 
He was discharged from the ICU on day 10 and from the 
hospital after 22 days.
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Patient 4

A 53-year-old woman with 6 days of persistent cough, high 
fever, headache, chest pain, and dyspnea was admitted. Her 
oxygen saturation stood at 80%. Laboratory analysis revealed 
a white cell count of 10,700 per mm3, 10,000 neutrophils per 
mm3, and lymphocytes at 600 per mm3. She was started on 
aerosol therapy with surfactant on day 2, which continued 
for 5 days. On day 7, her clinical state improved, but she 
developed a hypertensive crisis likely unrelated to the sur-
factant therapy. Chest tomography showed ground-glass 
opacities, condensation areas, and a crazy-paving pattern. 
She was discharged from the hospital on day 21.

Patient 5

A 60-year-old man presented with 8 days of worsening dysp-
nea, sore throat, dry cough, general discomfort, and fatigue. 
His oxygen saturation was recorded at 85%. Laboratory tests 
showed a white cell count of 10,800 per mm3, 10,800 neutro-
phils per mm3, and lymphocytes at 500 per mm3. Despite 
starting aerosol therapy with surfactant on day 10, he showed 
no significant improvement. Tomography depicted signifi-
cant ground-glass opacities, condensation areas, and a crazy-
paving pattern. On day 14, due to further deterioration, he 
was intubated and put on invasive mechanical ventilation. 
Unfortunately, his condition worsened, leading to multior-
gan failure, and he died on day 22. A chest radiograph taken 
on admission and post-treatment is shown in Figure 1.

Alongside surfactant therapy, patients were administered 
antiviral therapies, anticoagulation, steroids, and other 
COVID-specific therapies.

Specific surfactant details, the patient’s clinical presenta-
tions, and observed side effects (if any) are tabulated in Table 
1. Arterial blood gas levels before and after treatment are 
detailed in Table 2.

Surfactant dosing in adults.  In neonatal care, surfactant therapy 
has been a cornerstone for the management of neonatal respira-
tory distress syndrome (NRDS). The efficacy of surfactants in 
reducing morbidity and mortality in NRDS led to an interest in 
its potential benefits for adults with lung conditions, such as 
ARDS (Acute Respiratory Distress Syndrome). Translating 
pediatric dosages to adult care, a dose of 100 mg every 12 h via 
a vibrating-mesh nebulizer is currently being explored. This 
dose attempts to maintain a therapeutic surfactant level in the 
alveoli, leveraging the positive outcomes observed in pediatric 
populations. It is essential to monitor the patient’s response and 
lung mechanics to ensure optimal outcomes.

A chest radiograph on initial evaluation and after aerosol 
therapy with surfactant through a vibrating-mesh nebulizer 
is shown in Figure 1. The characteristics of patients are 
shown in Table 1.

All five patients were subjected to intermittent conscious 
pronation for 12 hours as a part of their treatment protocol.

ABG measurements were taken before surfactant treatment 
and immediately following the administration of surfactant 
to evaluate the therapy’s acute impact on respiratory func-
tion. Arterial blood gas levels before and after aerosol ther-
apy with surfactant through a vibrating-mesh nebulizer are 
shown in Table 2.

This case series obtained ethical approval from the ad hoc 
ethics committee of the Ecuadorian Ministry of Public Health 
(Approval Code: MSP-CGDES-2021-0065-O). It involved 
the use of the REDCap (Research Electronic Data Capture) is 
a secure platform application designed to support data cap-
ture for research studies). The study was conducted at the 
Intensive Care Unit, Ecuadorian Institute of Social Security 
Hospital in Babahoyo, and followed all ethical standards for 
clinical research. Data collection spanned from July 2020 to 
March 2021. We confirm that we have obtained written 
informed consent from the legally authorized representative 
of the deceased subject for the publication of this case report. 
This is in addition to the written informed consent obtained 
from the other subjects. We have ensured that the consent was 
obtained retrospectively for the deceased subject. We under-
stand and respect the guidelines set by the Committee on 
Publication Ethics (COPE) and have adhered to them.

Discussion

We report five clinical cases of patients undergoing aerosol 
therapy with surfactant using HFNC through vibrating-
mesh nebulizers and four of them exhibited positive out-
comes. Although instillation is the only approved method 
for the administration of surfactants, current approaches to 
surfactant replacement therapy for acute respiratory distress 
syndrome are less invasive than traditional invasive meth-
ods. The administration of surfactant by nebulization may 
reduce side effects associated with instillation such as tran-
sient airway obstructions and reflux, hypercapnia, and 
hypoxia.

Several in vitro and animal studies have explored the use-
fulness of nebulized surfactants with variable results10 but 
few clinical studies have evaluated the efficacy of nebulized 
surfactants in human infants without ventilation.11–13 Some 
of these studies have used jet-type nebulization, which is 
very ineffective owing to the use of air drags.14 Nevertheless, 
other studies have demonstrated that the early use of postna-
tal nebulized surfactant may reduce the need for intubation 
in the first 3 days of life compared to nasal continuous posi-
tive airway pressure alone.15

The beneficial effects of HFNC vary across patients due 
to its effects on oxygenation and decrease in ventilatory 
work.16 The primary concern while using HFNC is the dis-
persion of aerosol particles. However, dispersion with 
vibrating-mesh nebulizers is lower than with other oxygena-
tion and ventilation devices. Despite this, the principal 
advantages of the use of mesh nebulizers are greater effi-
ciency and low risk in the dispersion of particles. In addition, 
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Figure 1.  Chest radiograph on initial evaluation and after aerosol therapy with surfactant through a vibrating-mesh nebulizer.
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Table 1.  Clinical characteristics, laboratory findings, radiologic features, and treatment outcomes of COVID-19 patients.

Characteristics Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Age (years) 49 52 73 53 60
Sex Male Female Male Female Male
Previous comorbidities Arterial 

hypertension
Rheumatoid 
arthritis

Arterial 
hypertension

Arterial 
hypertension plus 
obesity type II

None

Clinical picture Fever, dry cough, 
chest pain, 
discomfort, dyspnea

Fever, dry 
cough, headache, 
arthralgias, myalgia, 
dyspnea

Fever, dry cough, 
chest and abdominal 
pain, diarrhea, 
dyspnea, malaise

Fever, dry cough, 
headache, chest 
pain, dyspnea

Fever, sore throat, 
dry cough, general 
discomfort, difficulty 
breathing

RT-PCR test for SARS-
CoV-2

+ + + + +

Oxygen saturation on 
ambient air (%)

85 80 85 80 85

Laboratory exams
 � White cell count (per 

mm3) (normal range 
4400–10,300)

18,230 8260 11.92 10,700 10,800

Differential count (per mm3)
 � Total neutrophils (normal 

range 1780–5380)
12,000 7800 10,800 10 10,800

 � Total lymphocytes (normal 
range 1180–3740)

1600 530 410 600 500

Total monocytes (normal range 250–710)
 � CRP (mg/dL) (normal 

range 0–5)
30 0.74 398 100 217

 � Ferritin (ng/mL) (normal 
range 30–400)

1260 335 1703 1185 2000

 � Creatinine level (mg/dL) 
(normal range 0.6–1.2)

1.2 0.9 1.1 1.1 1.3

 � IL-6 (pg/mL) (normal range 
0–6.5)

400 1027 336 250 500

 � D-dimer (mg/L) (normal 
range 0–1.9)

0.4 0.3 1.1 0.14 10.28

 � Procalcitonin (ng/mL) 
(normal range <0.046)

0.03 0.02 0.55 0.21 1.72

Tomographic findings
 � Ground-glass pulmonary 

opacities
+++ +++ +++ +++ +++

  Condensation areas ++ + + ++ +
  Crazy-paving + − − ++ +
  Solitary nodule − − − − −
Therapeutic management HFNC oxygen 

therapy, 
meropenem, 
moxifloxacin, 
dexamethasone, 
enoxaparin, 
tocilizumab, 
simvastatin, 
antihypertensives

HFNC oxygen 
therapy, 
meropenem, 
moxifloxacin, 
dexamethasone, 
enoxaparin 
tocilizumab, 
simvastatin

HFNC oxygen 
therapy, 
meropenem, 
moxifloxacin, 
dexamethasone, 
convalescent 
plasma, enoxaparin, 
simvastatin, 
antihypertensives

HFNC oxygen 
therapy, 
meropenem, 
moxifloxacin, 
dexamethasone, 
enoxaparin, 
simvastatin, 
antihypertensives

HFNC oxygen 
therapy and 
mechanical 
ventilation), 
imipenem + cilastatin, 
levofloxacin, 
dexamethasone, 
enoxaparin, 
simvastatin

Intubated No No No No Yes
Survival Yes Yes Yes Yes No

CRP, C-reactive protein; HFNC, high-flow nasal cannula; IL-6, interleukin; RT-PCR, real-time polymerase chain reaction; SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2.
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mesh nebulization provides greater comfort and satisfaction 
than conventional nebulization (Jet).17

Another highlight of the report is the time of intubation in 
our patients.18 Although the Surviving Sepsis Campaign 
Guidelines19 initially recommended early intubation and 
invasive mechanical ventilation in patients with acute res-
piratory failure by COVID-19, recent clinical studies report 
mixed results for analysis of early versus late intubation 
mortality.20 The SARS-CoV-2 in the airways interacts with 
the layers of respiratory surfactant that line the alveoli. Virus 
binding to cells occurs by binding to the S1 domain of the 
Spike protein that binds to the ACE2 receptor on type II 
pneumocytes in the alveoli.21

Surfactant molecules, through their micellar aggregates, 
bind to these specific regions of the S1 domain, impeding the 
virus’s ability to dock with cells. This interference with viral 
binding, brought about by exogenous surfactant application, 
has significant therapeutic potential, potentially altering dis-
ease progression as the surfactant blocks the interaction 
between Spike proteins and ACE2. Moreover, surfactant 
molecules may integrate into the viral envelope, disrupting 
its integrity, and leading to viral inactivation through lysis. 
Consequently, surfactant therapy may offer dual benefits: 
enhancing alveolar function in a traditional sense and pro-
viding antiviral action by both inhibiting cellular entry of the 
virus and causing its direct inactivation. This dual function-
ality underlines the necessity for further research into sur-
factant therapy’s comprehensive role in managing respiratory 
ailments like COVID-19.

The concentration of surfactant at the pulmonary level 
was not determined in any of these clinical cases; however, 
the functional inactivation of viral proteins by adsorption of 
low concentrations of surfactant could be adequate for 
therapeutics.22

Despite biological plausibility,22,23 few studies have eval-
uated the use of surfactants in patients with acute respiratory 
failure due to COVID-19. Piva et al.24 evaluated the efficacy 
of intrabronchial instillation in patients with a ratio of partial 
pressure of arterial oxygen to fraction of inspired oxygen—
the potential of hydrogen (quantitative measure of the acidity 
or basicity of aqueous or other liquid solutions) (PaO2/FiO2 
ratio) >150 through bronchial copies and demonstrated that 
it is safe and does not cause decompensation or hemody-
namic compromise. Furthermore, Busani et  al.25 reported 
positive results in four of five patients with a PaO2/FiO2 ratio 
>100 after instilling surfactant under invasive mechanical 
ventilation.

During the severe COVID-19 wave that overwhelmed the 
medical community, hospitals faced critical shortages, lim-
ited therapeutic options, and mounting pressure for efficient 
solutions. In this setting, we share our experience treating 
five adult patients with COVID-19-induced ARDS using 
surfactant therapy, drawn from neonatal protocols.

Adapting a neonatal protocol, proven safe and effective 
for newborns, for adult use seemed a logical yet 

unconventional choice given the urgency. In our series, four 
of the five patients exhibited significant clinical improve-
ment post-treatment. No significant adverse events were 
observed directly related to surfactant administration. These 
findings underscore surfactant’s potential as a viable inter-
vention for adults with COVID-19-related ARDS.

Despite the occurrence of a hypertensive crisis in Patient 
4, the current evidence does not support a direct link between 
surfactant administration and elevated blood pressure. The 
patient’s existing comorbidities, specifically arterial hyper-
tension and type II obesity, along with the administration of 
dexamethasone—a corticosteroid known for its potential to 
increase blood pressure—suggest a more likely etiology for 
the hypertensive event. While dexamethasone’s anti-inflam-
matory benefits are well-documented, its propensity to cause 
hypertension cannot be overlooked, especially in a patient 
with a history of hypertensive episodes, attributing the 
hypertensive crisis solely to surfactant therapy would be 
unsubstantiated, given the absence of robust data connecting 
the two. Further research is necessary to elucidate any poten-
tial causal relationships between surfactant therapy and 
hypertensive crises.

On the other hand, the delayed administration of sur-
factant therapy on day 10 for Patient 5 was dictated by the 
patient’s clinical trajectory and the critical escalation of 
interventions in response to the progressive respiratory 
decline. Surfactant is often used in severe pulmonary impair-
ment to improve oxygenation and lung mechanics; however, 
its efficacy can be diminished in the presence of advanced 
lung damage, as evidenced by the significant ground-glass 
opacities and crazy-paving pattern seen on tomography. The 
lack of a significant clinical response and the subsequent 
need for invasive mechanical ventilation indicate a missed 
therapeutic window where earlier surfactant administration 
might have been more beneficial.

However, our primary limitation is that this is merely a 
case series, limiting generalization and result comparison. In 
addition, we must consider the possibility that the delivered 
drug dosage to the lungs might be sub-therapeutic due to 
various factors:

a. Surfactant micelle size: Evidence suggests that larger 
molecules, such as those of surfactant micelles, are prone to 
deposition in the upper airways when administered via 
HFNC, potentially leading to insufficient concentrations 
reaching the alveoli.

b. Flow rate and inspiratory flow dynamics: Although 
HFNC flow was maintained at 50–60 L/min, research indi-
cates that aerosol delivery is more effective when the gas 
flow is set below the patient’s inspiratory flow rate. 
Especially in patients with distressed breathing patterns, 
there is an increased likelihood of aerosol deposition in the 
pharynx due to turbulence. This is significant as the dis-
tressed respiratory pattern may result in an inspiratory flow 
that surpasses the set HFNC flow, thus reducing the effi-
ciency of drug delivery to the lower airways. In addition, we 
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recognize that the use of HFNC therapy itself varies in effect 
based on the severity of COVID-19 pneumonia in patients. It 
has been documented that HFNC reduces intubation rates in 
cases of severe hypoxemia due to COVID-1926 and may also 
exert some benefits in patients with milder forms of hypox-
emia.27 However, our study design does not allow us to 
definitively differentiate the impact of surfactant administra-
tion from the effects attributable to high humidified flows 
delivered by HFNC. Hence, the potential benefits observed 
might be confounded by the variable efficacy of HFNC in 
different severities of disease. Future studies with a control 
group not receiving surfactant therapy would be valuable to 
ascertain the independent effect of surfactant in the context 
of HFNC treatment.28

Conclusion

In summary, our case series report during the pandemic high-
lights that surfactant therapy, adapted from neonatal proto-
cols, may offer a promising avenue for adults with 
COVID-19-induced ARDS. With four out of five cases 
responding positively to aerosol therapy using vibratory 
mesh nebulizers for SARS-CoV-2-induced hypoxemia, these 
findings underscore the need for further validation through 
controlled, randomized studies.
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