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ABSTRACT

Insects have been used as an exemplary model in studying longevity, from extrin-
sic mortality pressures to intrinsic senescence. In the highly eusocial insects, great
degrees of variation in lifespan exist between morphological castes in relation to
extreme divisions of labour, but of particular interest are the primitively eusocial in-
sects. These species represent the ancestral beginnings of eusociality, in which castes
are flexible and based on behaviour rather than morphology. Here we present data
on the longevity of the primitively eusocial Neotropical paper wasp P. canadensis,

in a captive setting removed of environmental hazards. Captive Polistes canadensis
had an average lifespan of 193 £ 10.5 days; although this average is shorter than
most bee and ant queens, one individual lived for 506 days in the lab—longer than
most recorded wasps and bees. Natal colony variation in longevity does exist between
P. canadensis colonies, possibly due to nutritional and genetic factors. This study
provides a foundation for future investigations on the effects of intrinsic and extrinsic
factors on longevity in primitively eusocial insects, as well as the relationship with
natal group and cohort size.
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INTRODUCTION

Death comes to all, yet many seemingly ordinary insects have evolved some of the
most dramatic and extraordinary lifespans, delaying the call of death for remarkable
periods (Finch, 1990). Variation in insect longevity spans from Ephemera simulans males
that live as adults for just 1.6 days (Carey, 2002) to the ants Pogonomyrmex owyheei and
Lasius niger whose queens can live up to 30 years (Porter ¢ Jorgensen, 1988; Holldobler ¢
Wilson, 1990). Interestingly, eusocial insects such as ants, wasps, and bees feature heavily
as examples of long-lived insects, but great variation exists not only between these species
but also within species and even among genotypes. We understand little about the roles of
ecology, evolution, life-history, and environment in generating variation in longevity in
social insects, largely due to the difficulty of disentangling intrinsic life-span (hence-forth
referred to as longevity) from survival (the abiotic and biotic environment pressures
i.e., extrinsic mortality) on individuals (Holldobler ¢» Wilson, 1990; Keller, 1998; Keeler,
1993; Giraldo ¢ Traniello, 2014).
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Eusocial insects are one of the most dominant, prolific, and diverse groups of organisms
on the planet (Wilson, 1975). Much of this groups’ success is attributed to the division of
labour within the colony in the form of castes, with few or a single reproductive individual
(queen), supported by tens to millions of non-reproductive individuals (workers) that
forage, provision, and care for sibling brood (Crespi, 1994). Caste fate is primarily
determined by environmental conditions, e.g., nutrition during larval development, and
occasionally genetic biasing (Oster ¢» Wilson, 1978; Hélldobler ¢ Wilson, 1990; Hughes
et al., 2003). Within species, variation in longevity can be pronounced between castes,
with queens living as much as 100-fold longer than their related workers (e.g., general:
Kramer ¢ Schaible, 2013; Lucas ¢ Keller, 2014; ants: Holldobler ¢~ Wilson, 1990; Keller
& Genoud, 1997; wasps: Ridley, 1993). This is a remarkable example of a how a single
genome can display plasticity in aging (Keller, 1998; Fjerdingstad ¢ Crozier, 2006; Keeler,
1993). Few individuals are selected to specialise in egg production and therefore colony
survival is likely to be highly associated with and dependent on queen longevity (in
the absence of reproductive succession, see Bourke (2007)). As a result, specialised egg
layers are frequently protected from extrinsic pressures such as predation, for example the
long-lived queens of the Harvester ant (Pogonomyrmex owyheei) live deep within the nest
where they are sheltered (Porter & Jorgensen, 1981). Assuming there are costs associated
with longevity (e.g., nutritional demands during larval development, development time),
evolutionary theory would predict there would be selection for short lifespan in workers,
and long-life span in queens, especially in highly eusocial species where colonies are large
enough to support highly specialised, short-lived workers (Evans, 1958; Carey, 2001; De
Loof, 2011; Ferguson-Gow et al., 2014). This has been shown to be the case with weaver ants
in a protected lab environment whereby major workers (who take on more risky tasks)
have a shorter intrinsic lifespan than minor workers who adopt less risky tasks (Chapuisat
¢ Keller, 2002). The level of social complexity appears to be an important predictor
of longevity in the eusocial insects. Castes are unlikely to have been selected for such
differential longevity in the primitively eusocial species, where colonies are small, each
worker is valuable, and survival of workers may be highly variable depending on the type or
frequency of task each individual performs (Strassmann, 1985).

Between species, individual longevity is often correlated with mature colony size, as
shown in several wasp (Vespa spp.) and ant (Myrmica, Leptothorax, Solenopsis, Cataglyphis)
species (Matsuura ¢» Yamane, 1990; Schmid-Hempel, 1998). In ants, at the colony level, the
first worker brood are often physically smaller with shorter lifespans than those produced
later in the colony cycle, such as nanitic workers of ants (Porter ¢ Tschinkel, 1986). It is
hypothesised that this may be due to the increase in levels of nutrition available to brood as
the colony grows (Oster & Wilson, 1978; Porter ¢ Tschinkel, 1986). As the colony grows, the
ratio of workers to larvae often increases, the larvae will then benefit from increased quality
and quantity of food, which can result in longer adult life-spans (e.g., in honey bees Apis
mellifera: de Groot, 1953; Eischen, 1982). Conversely in the primitively eusocial paper wasp
Polistes exclamans, Strassmann (1985) identified that late emerging workers survived less
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time than early emerging workers in 1977 and 1978. This pattern was not detected in 1979
and its cause was suggested to be due to extrinsic factors.

Extrinsic factors such as parasitism, prey availability, and abiotic conditions can be
powerful determinants of survival to wild individuals (Gibo ¢ Metcalf, 1978; Strassman,
1979; Strassmann, 1981; Tibbetts & Reeve, 2003). To date there have been no studies on
how individual longevity varies with colony size in primitively eusocial insects in the
absence of such extrinsic factors. Based on the larval nutrition quality to adult longevity
theory, we predict the same patterns will occur as in the highly eusocial species, since
individuals emerging early in the colony cycle are subject to low worker:larvae ratio
and therefore low quality nutrition. Conversely, those emerging late in the colony cycle
experience high worker:larvae ratio and thus high quality nutrition (Summner et al., 2007).
Additionally, there may be a genetic link to longevity whereby some colonies are more
likely to produce long living individuals than others, potentially due to heritable differences
in feeding/hunting propensity (VanRaden ¢ Klaaskate, 1993; Herskind et al., 1996; Vollema
& Groen, 1996; Klebanov et al., 2001; Sebastiani et al., 2012; Gems & Partridge, 2013). If
colony effects are important, we predict that variation in longevity will be greater between
colonies than within colony, even in the face of group size variation. Finally, positive
correlations between colony size and longevity may be due to social-behavioural and
metabolic factors such as increased per capita work rate in small colonies (Karsai ¢ Wenzel,
1998).

Here we provide primary data on longevity of females in captive colonies of the
predatory and primitively eusocial Neotropical P. canadensis paper wasp. Primitively
eusocial species, such as those of the paper wasp genus Polistes, have been used to
extensively study the evolution of eusociality, with their lack of morphological differences
and plasticity in caste (Turillazzi & West-Eberhard, 1996; although see Hunt, 2006).
Although some studies have addressed the survivorship and colony phenology of some
Polistes species (e.g., O’Donnell & Jeanne, 1992b; Giannotti, 1997a; Clapperton & Dymock,
1997), there remain few systematic attempts to quantify longevity, and variation of, in this
well-studied genus. Many tropical Polistinae such as P. canadensis, although influenced by
wet/dry seasonality in food abundance (and resulting colony productivity), mate and have
colonies of various life-stages throughout the year (Pickering, 1980; Clutton-Brock, 1991).
These study systems offer an excellent system for testing the influence of ecology, evolution,
and environment on longevity, in the absence of seasonal curtailment of longevity found
in temperate species. Studying insect lifespans in captivity, in the absence of predation and
parasitism, is a valuable approach that allows us to quantify longevity in the absence of
extrinsic mortality pressures (Chapuisat & Keller, 2002). We assess how natal colony size
correlates with longevity under laboratory conditions and follow this up by comparing
longevity in experimentally manipulated group sizes. Understanding variation in longevity
in these organisms provides an excellent foundation to explore similar questions in the
higher-order social vertebrates (Carey, 2001).
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Figure 1 Captive housing of P. canadensis colonies. A, Nest carton supported on reinforced celling with
shade; B, artificial planting; C, ventilation; D, access hatch; El, food provisions; EZ2, construction paper;
E3, artificial planting; E%, liquid sugar cane; E°, distilled water. Photographs by Robin Southon.

METHODS

Collection: We collected ten colonies (M1-M10) of the paper wasp, P. canadensis from the
Province of Colén in Republic of Panama in August 2013 for transportation to the UK
(9°24/03”N 79°52'11”"W). Adult wasps were captured with full nest carton containing
brood (eggs, larvae, and pupae) during dusk. The nest cartons and wasps were transferred
to individual containers (15 ¢cm x 15 ¢cm x 15 cm) with wire mesh ventilation. Colonies
were then provided with sugar solution and water ad libitum during transfer to the United
Kingdom in luggage kept at ambient temperature. Turnaround from capture to settled
maintenance in the laboratory was 48 h. To ensure that no colony was heavily infected
with entomopathogens from the field, a subset (5 individuals per colony) of cadavers
were placed in isolated petri dishes to observe any resulting sporulation of any infecting
fungal entomopathogens. The common fungal agent Aspergillus spp. sporulated from
10% of these cadavers. Aspergillius is an opportunistic and largely ubiquitous fungus,
commonly regarded as non-lethal to social insects unless under extreme stress or ingested
at unnaturally high concentrations (Bailey, 1968; Foley et al., 2014).

Maintenance: Once in the UK, we housed nests in clear transparent acrylic containers
30 cm X 33 cm X 34 cm each with two 525 mm perimeter ventilation ducts (Fig. 1). The
food provided consisted of liquid cane sugar and live wax moth larvae Achroia grisella,
along with distilled water and nest-building materials (cardboard & paper) all were sup-
plied ad libitum. All sugar and food was obtained in batches and haphazardly split between
colonies to ensure equal food quality provided to the adults to prevent any longevity
variability as a result of adult nutrition (Johanowicz & Mitchell, 2000; Harvey et al., 2012).
In addition to food, in each nest-box we provided plastic artificial planting in the form of
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astripof7cm x 7 cm x 2.5 cm grass sp. anda 5 cm x 5cm x 5 cm plastic Hedera sp. for
environmental enhancement to provide shelter from female aggression for males (Polak,
2010). The nest boxes were cleaned regularly with distilled water without disturbing wasps
or nest. Natural conditions from the collection sites were mimicked with temperatures of
25£1°C, 70 £ 5% relative humidity, and a light cycle of 12 h light (12 h dark).

Data collection: The colonies were surveyed three to four times a week and any deceased
adults found immediately removed from the nest box. Total deaths per colony/cohort
were tallied on a weekly basis and this recording method continued until all individuals
were deceased. Whilst newly laid eggs were left in the nest for the adults to tend to, brood
were eventually removed before pupation ensuring that only the original adult wasps
captured from the wild were monitored for longevity and the colony/cohort sizes remained
constant. This ensured all of the adult wasps developed under semi-natural conditions.
Since all nests were collected from the same field site at the same time, local environmental
conditions for development are controlled for as best as possible, though the colonies will
differ from each other genetically.

As we do not know the eclosion date for each adult wasp, measures of longevity will be
underestimates.

Hypothesis 1: Adult longevity of female P. canadensis will show
some positive correlation with the size of the natal group due to
nutrition during colony development theory

Using the data generated from colonies M1-M?7, we were able to quantify variance in
longevity between colonies to determine whether colony identity explains variation in
wasp longevity better than colony size. Using average survival per colony, correlations
between initial colony size upon permanent laboratory setup were investigated.

Hypothesis 2: Group size will correlate positively with mean

female longevity in P. canadensis once the influence of colony
genotype is controlled for

Three colonies (M8, M9, M10) were monitored for a period of 3 months, at which point
their group sizes were of 28, 23 and 23 workers respectively. Each colony was then split, and
randomly allocated between two new nest boxes lacking nest cartons, giving six new groups
in total and consisting of 18, 13, 12, 8, 8 and 9 females. A non-natal male was also added
to each the new colony nest boxes so that females had the opportunity to mate. All cohorts
then started to build nest cartons and lay eggs suggesting mating may have occurred. The
colonies were maintained as above with wasp deaths monitored weekly for 220 days, at
which point all individuals were deceased.

Statistical analyses: Differences in adult survival were analysed using a Cox proportional
hazards regression model where colony was used as a factor. Where differences in survival
were found, we conducted pairwise comparisons between nests using Kaplan—Meier
models with the Breslow x? statistic to highlight specific patterns between the colonies.
Pearson product-moment correlations were carried out to look for patterns between
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Figure 2 Survival details of seven colonies of P. canadensis over 450 days. Survival of adults in seven
Polistes canadensis colonies shown as raw numbers (A) and proportions (B) over a period of 15 months
post capture whilst maintained under laboratory conditions. Their longevity estimates of adult wasps for
each colony as estimated by Kaplan—Meier survival analysis (C) with pairwise differences as calculated by
the Breslow statistic shown by capped horizontal bars (D).

colony size and average colony longevity. All analyses were carried out in SPSS Statistics 21
(IBM, Armonk, NY, USA).

RESULTS

Hypothesis 1: Adult longevity of female P. canadensis will show
some positive correlation with the size of the natal group

Here we found that 57% of adult P. canadensis colonies maintained in the lab can
survive beyond 365 days with one individual living for 506 days, providing data on
longevity for 143 wasps in total (Fig. 2). On average wasps lived for 193 & 10.5 days
with the oldest individual living for 506 days (Fig. 2 and Fig. S1). Colony identity has a
significant influence on adult wasp longevity (Cox proportional hazard survival analyses
Wald =17.134, d.f. =6, P = 0.009 (Fig. 2 and Table S2). There was no correlation between
colony size and the colonies’ average longevity (r = 0.06 n =7 P = 0.89; Fig. 3A). Regular
observations did not identify any behavioural differences between colonies. All colonies
built nests, maintained social cohesion, and regular egg laying was observed throughout.
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Figure 3 Mean longevity per colony against colony size. Correlations between colony size and mean
longevity of adult P. canadensis when maintained in original colony (A) or when manipulated into cohorts
of varying size (B). Standard error bars calculated by Kaplan—Meier model.

Hypothesis 2: Group size will correlate positively with mean

female longevity in P. canadensis once the influence of colony
genotype is controlled for

Group sizes ranged from 9 (M5) to 34 (M7) wasps with average longevity within different
nests ranging from 130 % 39.4 days (in M5) up to 206 £ 41.3 days (in M6). Comparing
the mean adult longevity of colonies M1-M?7 against their original size gives no clear
association (Fig. 3A). Colonies M8—M10 showed no difference in survival prior to splitting
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Figure 4 Survival details of three colonies of P. canadensis over 80 days. Survival of adults in three P.
canadensis colonies (92 adults) shown as raw numbers (A) and proportions (B) over a period of 80 days
post capture whilst maintained under laboratory conditions, along with the survival estimates for each
colony as estimated by Kaplan—Meier survival analysis. (C) Estimations used in C-D are limited to the
largest survival time due to censorship. Standard error bars in (D) calculated by Kaplan—Meier model.

(Wald = 4.016, d.f. = 2, P = 0.134; Fig. 4). However, after splitting into 6 cohorts of
variable size, females exhibited significantly different longevities (Wald = 12.544, d.f. =5,
p = 0.028; Fig. 5). Cohorts from M9 (M9A & M9B) and from M10 (M10A & M10B)
show no significant difference in adult longevity within natal colony identity (x2 = 0.173,
P =10.677; x*> = 0.394, P = 0.530 respectively; Table S3), cohorts from colony M8 (M8A
& M8B) do differ from each other and are, incidentally, the 2 cohorts with the largest
size difference (x? = 3.829, P = 0.05; Fig. 5). Group size shows a positive correlation
with longevity (r = 0.84 n = 6 P = 0.038; Fig. 3B). Regular observations did not identify
any behavioural differences between cohorts. All cohorts built nests, maintained social
cohesion, and regular egg laying was observed throughout.

DISCUSSION

Here we show that with an average lifespan of 193 days, P. canadensis have some of the
longest lifespans of recorded wasps under laboratory conditions to date. The oldest wasp in
our study lived for a staggering 506 days which is one of the longest living lab assisted, or
wild recorded wasp—and most recorded wild and assisted bees, with the notable exception
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Figure 5 Survival details of six cohorts of P. canadensis wasps from 3 natal colonies. Survival of 72
adult Polistes canadensis in 6 conspecific groups split from 3 colonies, shown as raw numbers (A) and
proportions (B) over a period of 220 days post split whilst maintained under laboratory conditions. The
survival estimates of these as estimated by Kaplan—Meier survival analysis are shown (C) with pairwise
differences as calculated by the Breslow statistic shown by capped horizontal bars (D).

of assisted honeybee queens tending to live around live around 3,000 days (Fig. 6 and
Table S3). The natal group was a significant predictor of longevity with wasps living on
average between 260 days and 130 days depending on nest, though the size of the natal
groups had no correlation with longevity. When natal groups were split in to varying
cohort sizes, the largest cohort lived the longest and a correlation between longevity and
cohort size was identified. We discuss the implications of these data in the context of other
species and ecology and evolution of eusociality.

We observed large cohorts of long lived individuals in multiple colonies, although we
cannot say whether individuals were of queen, worker, or in a quiescence (Hunt, 2006)
status/state. In the most general sense, eusocial structure is based on behaviour rather
than the physiological constraints observed in more highly eusocial hymenopterans such
as honey bees and many ants, which incidentally display the largest longevity disparities
between castes. Though there are no directly comparable studies that use Polistes in
a lab setting such as this study, the lifespan estimates on workers of wild or assisted
Polistes species tends to be approximately one month, with the longest average life span
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Figure 6 (...continued)

(Pardi, 1948; Michener, 1969; West-Eberhard, 1969; Matsuura, 1971; Wilson, 1971; Spradbery, 1973;
Miyano, 1980; Haskins ¢ Haskins, 1980; Akre, 1982; Strassmann, 1985; Goldblatt & Fell, 1987; Dazhi
& Yunzhen, 1989; Holldobler & Wilson, 1990; Pamilo, 1991; O’Donnell & Jeanne, 1992a; Giannotti &
Machado, 1994a; Giannotti & Machado, 1994b; Keller, 1998; da Silva-Matos & Garéfalo, 2000; Page Jr &
Peng, 2001; Gamboa, Greig & Thom, 2002; Jemielity et al., 2005; Hurd, Jeanne & Nordheim, 2007; Archer,
2012; Giannotti, 2012; Torres, Gianotti & Antonialli-Jr, 2013; Halcroft, Haigh ¢ Spooner-Hart, 2013; Jeanne,
1975).

being 37 days in P. lanio and shortest life span being 14 days in P. exclamans (Miyano,
1980; Strassmann, 1985; Giannotti ¢ Machado, 1994b; Giannotti, 1997a; Giannotti, 2012;
Gamboa, Greig & Thom, 2002; Torres, Gianotti & Antonialli-Jr, 2013).

The average lifespan of egg laying Polistes wasps can range from a maximum of 209
days in wild Polistes lanio queens down to 66 days in wild queens of Polistes fuscatus
wasps (Giannotti & Machado, 1994b; Gamboa, Greig ¢ Thom, 2002). Whilst there is an
observation from Phil Rau (West-Eberhard, 1969) of a marked wild temperate Polistes
queen living for approximately 2 years, it seems tropical species may have some of the
longest lifespans, although further empirical studies are needed to tease apart seasonal
affects. In each case, the studies were carried out on wild Polistes colonies and so cannot
account for extrinsic mortality (Strassmann, 1985; Giannotti & Machado, 1994b). The
life-span of wasps in more highly eusocial species ranges from 1,000 days in queens
of some wild Vespa spp. to 14.5 days in lab maintained Vespula germanica and Vespula
consobrina (Akre, 1982; Dazhi ¢» Yunzhen, 1989; Holldobler ¢~ Wilson, 1990).

On average there is a positive correlation between the maximum lifespan of eusocial
queens and the degree of eusociality displayed by that species (Carey, 2001; Kramer
¢ Schaible, 2013) and differences found among species tend to be due to extrinsic
mortality (Keller, 1998). Here we cannot differentiate between egg layers and helpers in our
primitively eusocial species, yet evolutionary theory dictates that when a colony is small
and the lifespans of both the reproductive individuals and helpers are equal, the helpers
will resist evolutionary specialisation to workers as that would ultimately reduce their
direct fitness potential (Alexander, Noonan ¢ Crespi, 1991). We may therefore expect to
find similar lifespans in both egg layers and workers in P. canadensis. However differences
in lifespan are observed between helpers and egg layers in other Polistes species (Fig. 6).

These studies use wild species though and describe the extrinsic mortality, unlike our
study which had minimal extrinsic pressures.

Colony identity was a clear predictor of wasp longevity. All colonies were collected at
the same time from the same field site, in which adults on all nests would have shared
the same developmental and environmental conditions. The potential causes for the
effect of colony identity could be: (1) genetic differences between the colonies. Genetic
influences on longevity have been found in a number of model species from mammals
to nematodes and insects (VanRaden ¢ Klaaskate, 1993; Herskind et al., 1996; Vollema ¢
Groen, 1996; Klebanov et al., 2001; Sebastiani et al., 2012; Gems & Partridge, 2013) and
evidence for heritability of increased longevity in the fruit fly and honey bee has been
observed (Rinderer, Collins & Brown, 1983; Luckinbill & Clare, 1985) with some gene
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expression patterns being associated with longevity in queen honey bees (Corona et al.,
2005). (2) Queen ‘quality’ which can be the result of extrinsic or intrinsic factors. Variation
in fecundity of reproductive and dominance over other individuals in a colony is known
as queen quality and this can vary between queens (Harris ¢~ Beggs, 1995; Liebig, Monnin
& Turillazzi, 2005; Holman, 2012). This queen quality variation can be inherited (Rinderer
& Sylvester, 1978; Corona et al., 2005) or driven by environmental factors (Hatch, Tarpy ¢
Fletcher, 1999; Tarpy et al., 2011). (3) Unobserved differences in extrinsic factors that the
nests had experienced before collection. Since the colonies were not monitored for their
entire life cycle, there is the possibility that something affected each one differently in order
to cause varying longevity within their workers. What we can conclude is that although
colony genotype was a predictor of longevity in the adult wasps, this did not correlate with
wasp group size unless the size was manipulated. This suggests that the colony influences
are greater than those of group size, and whilst an overall correlation between manipulated
group size and longevity was identified, only one out of three split colonies displayed this
trend. This suggests that the explanation that larger colonies produce longer lived workers
due to enhanced nutrition during larval development is not a major component.

To investigate the underlying variation in longevity in eusocial insects, data from captive
colonies of a range of eusocial insects is a useful tool and can help uncover variation in
investment for longevity based on extrinsic factors faced by a given species, individual, or
caste (Chapuisat ¢ Keller, 2002). Longevity studies on predatory eusocial insects such as
wasps are underrepresented in the literature, and while several excellent studies have been
identified, no studies have followed maintained Polistes in a protected lab environment.
Here, for the first time we quantify longevity of adult P. canadensis in the absence of
extrinsic mortality and provide some support for the link between group size and adult
longevity but show that natal origin (i.e., genotype) is a more powerful predictor. Our
results suggest that predictions founded on previous research using higher eusocial species
such as honey bees may not be relevant to primitively eusocial species since their caste/fate
is not fixed during development. A particular challenge will be for future studies to
also control for all of the described extrinsic and intrinsic factors such as wild nest site
condition and the presence of symbionts.
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