
Published online 1 May 2018 Nucleic Acids Research, 2018, Vol. 46, No. 14 e83
doi: 10.1093/nar/gky315

MeShClust: an intelligent tool for clustering DNA
sequences
Benjamin T. James1,2, Brian B. Luczak1,2 and Hani Z. Girgis1,*

1Bioinformatics Toolsmith Laboratory, Tandy School of Computer Science, University of Tulsa, 800 South Tucker
Drive, Tulsa, OK 74104, USA and 2Mathematics Department, University of Tulsa, 800 South Tucker Drive, Tulsa, OK
74104, USA

Received February 04, 2018; Revised April 06, 2018; Editorial Decision April 11, 2018; Accepted April 13, 2018

ABSTRACT

Sequence clustering is a fundamental step in ana-
lyzing DNA sequences. Widely-used software tools
for sequence clustering utilize greedy approaches
that are not guaranteed to produce the best results.
These tools are sensitive to one parameter that de-
termines the similarity among sequences in a clus-
ter. Often times, a biologist may not know the ex-
act sequence similarity. Therefore, clusters produced
by these tools do not likely match the real clusters
comprising the data if the provided parameter is in-
accurate. To overcome this limitation, we adapted
the mean shift algorithm, an unsupervised machine-
learning algorithm, which has been used success-
fully thousands of times in fields such as image pro-
cessing and computer vision. The theory behind the
mean shift algorithm, unlike the greedy approaches,
guarantees convergence to the modes, e.g. clus-
ter centers. Here we describe the first application
of the mean shift algorithm to clustering DNA se-
quences. MeShClust is one of few applications of
the mean shift algorithm in bioinformatics. Further,
we applied supervised machine learning to predict
the identity score produced by global alignment us-
ing alignment-free methods. We demonstrate MeSh-
Clust’s ability to cluster DNA sequences with high
accuracy even when the sequence similarity param-
eter provided by the user is not very accurate.

INTRODUCTION

Clustering nucleotide sequences is an essential step in ana-
lyzing biological data. Pioneering sequence clustering tools
have been proposed for reducing redundancy and correct-
ing errors in next-generation sequencing data (1–6) and for
assembling genomes de-novo (7). Sequence clustering tools
were also proposed for barcode error correction (8) and
for taxonomic profiling (9). In addition, d2 cluster (10),

wcdest (11), CD-HIT (3,12), UCLUST (13), DNACLUST
(9), mBKM (14) and d2-vlmc (15) are general-purpose se-
quence clustering tools. These tools are applied to cluster-
ing gene sequences, expressed sequence tags, RNA and re-
ducing a set of sequences to a non-redundant group of se-
quences.

However, the currently available tools suffer from the fol-
lowing three limitations: (i) they are based on greedy algo-
rithms, which may not produce optimal clusters, (ii) these
tools are very sensitive to the sequence similarity threshold
defining clusters, and (iii) the selection of the sequence rep-
resenting the center of a cluster is not optimal.

Widely-used tools for sequence clustering––CD-HIT,
UCLUST, and DNACLUST––depend on greedy algo-
rithms, which are not guaranteed to find the optimal so-
lution. Given the importance of sequence clustering in the
field of computational biology, we propose a much more
advanced approach. The mean shift algorithm is a general-
purpose optimization technique (16), which has been widely
applied in image processing and computer vision (17–19).
Unlike the related greedy approaches, the mean shift algo-
rithm is ‘guaranteed’ to converge to local optimal points,
e.g. a center of a cluster. Although this algorithm has been
applied successfully thousands of times in other fields, it
has been applied only few times in the field of bioinformat-
ics (20–22). Here, we propose a novel software tool, MeSh-
Clust, that utilizes the mean shift algorithm in clustering
nucleotide sequences. Further, our adaptation of the algo-
rithm utilizes a novel classifier to predict the identity score
using four alignment-free sequence similarity measures.

A problem with current clustering applications is that the
underlying sequence similarity that separates clusters is of-
ten unknown; therefore, a biologist may have to guess an
identity score to provide to the clustering tool. If wrong,
this guessed score limits the quality of the predicted clusters
remarkably. For example, if the provided identity score was
higher than the true identity score, a tool would produce
smaller clusters; if it was much lower, a tool would produce
larger clusters. In both situations, the predicted clusters do
not match the real clusters. Popular tools do not account
for this discrepancy.

*To whom correspondence should be addressed. Tel: +1 918 6313645; Fax: +1 918 6312927; Email: hani-girgis@utulsa.edu

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

e83 Nucleic Acids Research, 2018, Vol. 46, No. 14 PAGE 2 OF 10

Another limitation of the available tools is that the se-
lection of the sequence representing the center of a cluster
is not necessarily optimal. In these algorithms, a sequence
that does not belong to any cluster is considered the center
of a new cluster. Once a center is selected, it does not change.
To illustrate, if the center sequence is at the periphery of the
real cluster, then the predicted cluster is very likely to be a
partial cluster.

Because the core of MeShClust is the mean shift algo-
rithm, it overcomes these limitations. Specifically, the mean
shift algorithm is very likely to produce optimal sequence
clusters in practice. MeShClust is flexible and is capable of
correcting the provided identity score to a great extent. The
sequence representing a cluster does change, moving toward
the true center of the cluster. MeShClust provides a sta-
ble clustering algorithm that is not very sensitive to the se-
quence similarity parameter and provides greater accuracy
than its counterparts.

MATERIALS AND METHODS

Overview

Algorithms 1 and 2 give an overview of the methods under-
lying our software tool, MeShClust. The software consists
of these two components: (i) a classifier and (ii) the mean
shift algorithm.

The classifier predicts whether or not two sequences are
similar to each other. The similarity is measured as the
identity score based on the global alignment of the two se-
quences (23,24). Sequences are represented as histograms of
counts of short words in the sequences. The classifier pre-
dicts the identity score due to global alignment (23,24) by
calculating a weighted sum consisting of few alignment-free
similarity measures using a General Linear Model (GLM).

A novel adaptation of the mean shift algorithm (16) is the
core of the second component. Similar to the classifier, the
mean shift algorithm processes the histograms of the input
sequences. The mean shift is an iterative, gradient-ascent al-
gorithm that is capable of finding local optimal points. In
this adaptation of the algorithm, a local maximum repre-
sents the center of a cluster of sequences. In each iteration,
a center is recalculated as the weighted mean of histograms.
This weighted mean is calculated only from the sequences
that are similar to the center of a cluster. Similar sequences
are determined by the classifier or, if the identity score is
<60%, they are determined by the alignment algorithm.
Once updated, a center will shift toward a local maximum.
As these centers move, some of them converge to the same
local maximum; therefore, the algorithm merges them. For
this reason, the user does not need to specify the number of
centers as opposed to other clustering algorithms such as
k-means based applications. Once the algorithm converges,
sequences that contributed to the calculation of a center are
considered members of its cluster. Supplementary Data Sets
1–3 contains the source code and the executables of MeSh-
Clust.

Next, we give the details of each step of the algorithm.
First, we describe how a sequence is represented as a k-mer
histogram. Second, the details of the classifier are given. In
the third step, the initial clusters are formed. We illustrate
the construction of the final clusters in the forth step.

Representing a sequence as a histogram of k-mers

A sequence consists of the nucleotides: A, C, G and T (or
U). A k-mer is a short subsequence of length k. For exam-
ple, AAA, AAC, AAT and AAG are tri-mers. To construct a
histogram from a sequence, A, C, G and T are converted to

PAGE 3 OF 10 Nucleic Acids Research, 2018, Vol. 46, No. 14 e83

0, 1, 2 and 3, so a k-mer is built as a quaternary number of k
digits. Horner’s rule can be used for calculating the quater-
nary numbers of a long sequence efficiently (25). The count
of a k-mer in the histogram is initialized to 1 instead of 0;
these pseudocounts are needed to allow events that ‘seem’
impossible to be able to happen (26). For example, k-mers
that are absent from one sequence could be present in an-
other. Pseudocounts are important while calculating con-
ditional probabilities. The transformation from nucleotide
sequences to k-mer histograms allows for fast, alignment-
free, statistical measures to be used in comparisons.

The selection of this k parameter depends on the size
of the input sequences. MeShClust automatically computes
the k by first taking the log4 of the average sequence length,
then by subtracting 1. We empirically found that this for-
mula preserves enough information to accurately determine
similarity. A smaller k value decreases the amount of mem-
ory needed for each histogram and the time required to cal-
culate the alignment-free statistics by a factor of 4 for each
nucleotide (27).

Once sequences are converted to k-mer histograms, the
classifier is trained in the next stage.

Identifying similar sequences

MeShClust utilizes a classifier to predict similar sequences
to a query sequence. The similarity is determined according
to an identity score obtained by global alignment (23,24).
With regard to a query sequence, similar sequences can be
viewed as one class and dissimilar sequences as the other.
Therefore, this task can be represented as a classification
task. To this end, we used a GLM (28) for classifying these
two classes. Classifiers based on GLMs are simple, yet pow-
erful. We have utilized GLMs in other classification tasks
successfully (29–32). As a first step, MeShClust samples a
roughly equal number of pairs of similar and dissimilar se-
quences based on a user-defined cutoff. A large number
of pairs of sequences is needed to be sampled. Therefore,
about 1500 sequence pairs are sampled. Similar sequences
are labeled with 1’s and the dissimilar sequences with -1’s.
After that, four features are extracted for each pair of se-
quences. These four features are selected according to a
comprehensive evaluation of alignment-free k-mer statistics
(27). The first feature is sequence length difference (Equa-
tion 3) × Czekanowski similarity (Equation 4). Length
difference2 × Manhattan distance2 (Equation 5) represents
the second feature. The third and the forth features are the
Pearson coefficient (Equation 6) and Kulczynski22 (Equa-
tion 7) × length difference2.

LD(A, B) = |length(A) − length(B)| (3)

Czekanowski(A, B) =
N∑

i=0

min(Ai , Bi)
Ai + Bi

(4)

Manhattan(A, B) =
N∑

i=0

|Ai − Bi | (5)

Pearson(A, B) =
∑N

i=0(Ai − Ā)(Bi − B̄)√∑N
i=0(Ai − Ā)2

√∑N
i=0(Bi − B̄)2

(6)

Kulczynski2(A, B) = 4k × (Ā+ B̄)

2ĀB̄

N∑
i=0

min(Ai , Bi) (7)

A and B are the two histograms representing two sequences;
Ai and Bi are the counts of the ith k-mer in A and B; Ā and
B̄ are the average counts of histograms A and B. Next, the
four features are scaled between 0 and 1 and converted to
similarity measures if necessary by subtracting the scaled
value from 1. Then MeShClust utilizes an incremental, au-
tomatic process to train the GLM. Before training, the data
is divided into two sets of equal sizes. Each set has roughly
equal points representing similar and dissimilar sequence
pairs. One set is used for training the classifier and the other
is used for testing it. First, it trains the GLM using the first
two features. If the accuracy calculated on the testing set is
at least 97.5%, the training process is finished. Otherwise, it
continues by adding another feature followed by evaluating
the testing accuracy. This accuracy is measured by the av-
erage of the true positive rate (sensitivity) and the true neg-
ative rate (specificity). Once trained, the GLM is used for
predicting sequences similar to a query sequence. We have
observed that if the similarity is under 60%, it is not cur-
rently possible to accurately classify sequences using align-
ment free statistics, so alignment is used in those cases.

Efficient data storage

Because the algorithm repeatedly selects and removes sim-
ilar sequences to a query sequence, the largest time bottle-
neck was finding and removing multiple sequences from the
input list. As a remedy, a data structure similar to a sepa-
rate chaining hash table was implemented that allowed for
faster retrieval and deletion of elements. This data structure
consists of a list of smaller bins which specify a range of se-
quence lengths. Therefore, searching for similar sequences
within a certain length range only affects a few bins when
sequences are removed from the data structure. Using this
data structure, initial centers can be found with relative ease,
as discussed in the next section.

Finding initial clusters

MeShClust aims at clustering the input sequences into dis-
tinct groups. Figure 1 diagrams this step. MeShClust gath-
ers similar sequences into initial clusters. To start, input se-
quences are sorted based on length. The shortest sequence is
the center of the first initial cluster. Then the classifier or the
alignment algorithm, if applicable, is used for finding simi-
lar sequences to that center. After that, the mean shift is ap-
plied on all sequences in the current cluster to calculate the
updated mean. Next, the sequence closest to the new mean
becomes the center of the cluster. Therefore, at each itera-
tion of the algorithm, a better representative center of the
cluster is found. This new center is used for the addition of
more similar sequences to the cluster. This step is repeated
until no similar sequences are left. At this point, the current

e83 Nucleic Acids Research, 2018, Vol. 46, No. 14 PAGE 4 OF 10

Figure 1. Overview of the initialization step of MeShClust, the first part of Algorithm 1. Before running this step the input sequences are sorted according
to their lengths. The center of the first initial cluster is the shortest sequence in the input. The diagram shows the iterative process of finding initial clusters
of sequences, getting better clusters from the selected sequences, and then finding the next closest cluster.

cluster is set aside, and a new cluster is formed using the next
closest sequence to the last center. The selection of the next
center improves clustering by producing a semi-sorted list
of sequences; neighboring clusters that may be merged later
are grouped near each other. In effect, the combination of
using a binary classifier and running the mean shift repre-
sents a ‘flat kernel’ (16), except it only considers sequences
not already placed in the initial clusters.

After grouping the sequences into initial clusters, the
mean shift is used once again for forming the final clusters.

Clustering

In the previous step, the classifier only considers the un-
placed sequences; therefore, some of the initial clusters may
have similar sequences in the already placed clusters. Fur-
ther, the center of a cluster is updated in the initialization
step by considering its sequences only. In this step, unlike
the initial clustering, the mean shift considers sequences
in neighboring clusters. These neighboring clusters include
five clusters above and below the current cluster. Recall that
these clusters are placed in a semi-sorted list. Centers that
are close to each other, as determined by the classifier or
by the alignment algorithm, are merged. If two centers are
merged, the sequences that belong to each center are also
merged.

RESULTS

We start with defining multiple evaluation measures in or-
der to evaluate MeShClust. These measures are intended to
evaluate the quality of the predicted clusters as well as the
time and the memory requirements of each software tool.
After that, we discuss the results of comparing five sequence
clustering software tools, including MeShClust.

Evaluation criteria

We applied the following seven evaluation measures in eval-
uating MeShClust and four related tools: (i) intra-cluster
similarity, (ii) inter-cluster similarity, (iii) silhouette score,
(iv) purity, (v) normalized mutual information (NMI), (vi)
time requirement and (vii) memory usage. Only clusters of
at least five sequences are considered in our analysis of the
first three measures, except when it is indicated otherwise.
The intra-cluster similarity is the average similarity between
the sequence representing the center of a cluster and the
other sequences in the same cluster. Sequence similarity is
determined by calculating the identity score. To measure the
dissimilarity between different clusters, we applied the inter-
cluster similarity measure, which is the average similarity
between different centers. Our third criterion is a variant of
the silhouette score (33). This measure compares the suit-
ability of placing a sequence in its current cluster to the suit-
ability of placing this sequence in the closest cluster. We de-
fine dc(s) as the distance between the sequence s and the se-
quence representing its own cluster and dn(s) as the distance
between s and the sequence representing the closest ‘neigh-
boring’ cluster. The distance is measured by subtracting the
identity score from 100. Equation (8) defines the silhouette
score.

Silhouette = 1
M

∑
s∈sequences

dn(s) − dc(s)
max(dn(s), dc(s))

(8)

Here, M is the number of sequences in the set. The silhou-
ette score ranges between 1 and –1; when the score is high,
clusters are tighter and more separated from each other.
A perceived problem with the silhouette score is that clus-
ters consisting of a single element always have the value 1.
Therefore, when the silhouette is very high, single element
clusters may be inflating that value. A possible remedy for
this issue is the redefinition of a cluster as a collection of

PAGE 5 OF 10 Nucleic Acids Research, 2018, Vol. 46, No. 14 e83

at least five elements. However, a good silhouette value may
not match actual––according to the ground truth––clusters.
The silhouette is only a measure for combined separation
and tightness, not correctness.

Our fourth and fifth evaluation measures do measure cor-
rectness. They are purity (Equation 9) (34) and NMI (Equa-
tion 12) (34), both of which are applied when the true clus-
ters are known. These measures compare all clusters found,
F, to the actual clusters, A, in a set of N sequences.

Purity (Equation 9) measures how mixed each cluster is; if
a predicted cluster only includes items from one real cluster,
the purity is high. A disadvantage of this measure is that if
every cluster is a single element, the purity will be 1.

purity (F ; A) = 1
N

∑
f ∈F

max
a∈A

| f ∩ a| (9)

NMI corrects this by considering the probability that F
and A contain the same data. To make these values compa-
rable, this mutual information is normalized by the average
entropy of F and of A. Equations (10–12) describe mutual
information, entropy, and NMI.

I (F ; A) =
∑
f ∈F

∑
a∈A

| f ∩ a|
N

log
(

N| f ∩ a|
| f ||c|

)
(10)

H (X) = −
∑
x∈X

|x|
N

log
(|x|

N

)
(11)

NMI (F ; A) = I (F ; A)
[H (F) + H (A)] /2

(12)

Next, we apply these evaluation measures to assessing the
performance of MeShClust and four widely used tools.

Comparison to related tools

We utilized both synthetic and real data sets in compar-
ing the performance of MeShClust to the performances
of UCLUST (13), CD-HIT (3,12), DNACLUST (9) and
wcdest (11), which are widely used clustering tools. All re-
lated tools were ran using the default values for all parame-
ters except the sequence identity parameter, for which we
tried multiple values. However, wcdest does not have an
identity parameter; the authors of wcdest provide an exam-
ple parameter values equivalent to 96% identity, given as
‘-N 4 -l 100 -T 40 -H 72 –show clusters’. Therefore, we com-
pared to wcdest only using the 96% identity when applica-
ble. All other tools were also evaluated at 96% for compar-
ison. Evaluations were done on a Dell OptiPlex 990 with 4
Intel i5-2500 processors running GNU/Linux (CentOS 7).

Evaluation on synthetic data sets

As a start, we generated three data sets, which we call the
10%, the 25%, and the 100-centers sets (Supplementary
Data Set 4–6). The three synthetic data sets were generated
at 10%, 25%, and 25% mutation rates, respectively. Each of
the 10% and the 25% data sets has 10 clusters, each of which
consists of about 25 sequences. The 100-centers set has 100

clusters each of size 10. The length of a sequence is 1000
base pairs (bp) approximately.

To test the tolerance of the five tools to the identity pa-
rameter, we ran the tools using five identity scores (up to
10% above and below the actual identity score). Two of
these identity scores are above the real identity score, and
two are below it, and one approximately matches the iden-
tity score used for generating the clusters. These identities
were selected to demonstrate to what degree a tool is tol-
erant to an inaccurate identity score. Table 1 shows the re-
sults of evaluating the four tools on the 10% data set using
these identity scores: 75%, 80%, 85%, 90% and 95%. The
true identity score is between 85% and 90%.

When the true clusters are known, the performance is
best measured by purity and NMI. On most synthetic data
sets, the purity values achieved by all tools were 1, and the
lowest value found was above 0.9. Thus, NMI becomes the
de-facto measure. On four out of the five tests, MeShClust
obtained perfect NMI and purity scores. On those tests,
MeShClust found perfect clusters, even though the identity
parameter was inaccurate. Among the three related tools,
UCLUST obtained almost perfect NMI score in one test
only. CD-HIT and DNACLUST did not obtain perfect or
close to perfect results on any of the five tests. Further,
MeShClust achieved much better results in terms of the sil-
houette and the intra-cluster similarity scores. Compared to
MeShClust’s intra-cluster score of 90 and silhouette of 0.81,
the next highest of any tool on any identity was UCLUST
with 84 similarity on the 80% identity and UCLUST with
a silhouette of 0.66 on the 75% identity. Similar results
were obtained on the 25% and the 100-centers data sets (see
Supplementary Table S1). These results demonstrate that
MeShClust is tolerant to inaccurate identity score. This tol-
erance is evident by the consistency of the high quality clus-
ters obtained on different synthetic data sets at different
identity levels.

Evaluation on a comprehensive microbiome

Next, we aimed at evaluating the tools on real data; there-
fore, we obtained sequences from a microbiome study (35).
We call this set the Costello set. About 1.1 million sequences
comprise this set. Sequences in this set range between 200
and 400 bp. Before evaluating the tools on the Costello set,
we generated similar, smaller synthetic sets because the real
clusters are unknown. We generated the 15K and the 150K
sets consisting of 15 000 and 150 000 sequences, respectively
(Supplementary Data Sets 7 and 8). A synthetic cluster con-
tains around 75 sequences, forming 200 and 2000 actual
clusters, respectively. These clusters were generated using
3% mutation rate; however, the actual mutation rate is usu-
ally higher than 3% due to randomization.

As before, we evaluated the tools using the following
identity scores: 83%, 87%, 90%, 93%, 96% and 97% (Sup-
plementary Table S2). On the 15K set, MeShClust ob-
tained perfect or almost perfect NMI in six tests, demon-
strating its ability to find the real clusters even when the
sequence similarity parameter is inaccurate. CD-HIT ob-
tained perfect or almost perfect NMI in four tests, whereas
UCLUST obtained its best, 0.98 and 0.95 NMI, in two
tests. DNACLUST performed well in one test only, its best

e83 Nucleic Acids Research, 2018, Vol. 46, No. 14 PAGE 6 OF 10

Table 1. Comparison of the performances of MeShClust, UCLUST, CD-HIT and DNACLUST on the 10%-mutation-rate synthetic data set

Tool Identity NMI Intra Inter Silhouette Real time Max memory
(%) (%) (%) (%) (min:sec) (MB)

CD-HIT 75 NA NA NA NA NA NA
DNACLUST 75 0.60 - - - 0:04.6 392
MeShClust 75 1.00 90 48 0.81 0:07.7 79
UCLUST 75 0.98 81 48 0.66 0:00.2 4
CD-HIT 80 0.89 82 48 0.34 0:00.2 35
DNACLUST 80 0.60 - - - 0:03.2 392
MeShClust 80 1.00 90 48 0.81 0:07.8 79
UCLUST 80 0.79 84 48 0.40 0:00.3 6
CD-HIT 85 0.83 82 48 0.29 0:00.2 35
DNACLUST 85 0.59 - - - 0:02.0 392
MeShClust 85 1.00 90 48 0.81 0:05.8 79
UCLUST 85 0.60 - - - 0:00.6 9
CD-HIT 90 0.60 - - - 0:01.0 39
DNACLUST 90 0.59 - - - 0:01.1 392
MeShClust 90 1.00 90 48 0.81 0:05.6 79
UCLUST 90 0.60 - - - 0:00.3 9
CD-HIT 95 0.60 - - - 0:00.1 39
DNACLUST 95 0.59 - - - 0:00.5 392
MeShClust 95 0.59 100 46 1.00 0:05.5 80
UCLUST 95 0.59 - - - 0:00.2 9

The 10% data set contains 10 clusters, each of which is generated by mutating approximately 10% of the bases comprising a template sequence. Each
cluster consists of around 25 sequences. The silhouette score ranges between -1 and 1. MeShClust was the only tool that was capable of finding perfect
clusters according to the NMI in four tests, whereas UCLUST succeeded in finding almost correct clusters in one test only. CD-HIT is not designed to
cluster sequences that have identity scores less than 80%; therefore we list results of CD-HIT using 75% identity as Not Applicable (NA). Since a cluster is
considered when there are at least five sequences, a ‘-’ indicates that the software tool did not produce any clusters with at least five sequences to measure.

NMI was 0.89. When the identity threshold is 96%, wcdest
has 0.88 NMI, outperforming all other tools except MeSh-
Clust, which achieved nearly 1.00 NMI. With respect to
time required, MeShClust takes more time than UCLUST
or CD-HIT, but MeShClust is faster than DNACLUST and
wcdest. In terms of memory use, MeShClust takes more
memory than UCLUST, CD-HIT, and wcdest, but it uses
only ∼90MB, which is readily available on modern hard-
ware. MeShClust has the highest silhouette scores except for
a few cases where DNACLUST or wcdest has higher values.
However, DNACLUST at 97% only had 0.2% of its clus-
ters containing at least five sequences. Thus, DNACLUST’s
silhouette of 0.99 is due to a small number of clusters be-
cause the majority of its clusters are too small. A similar
phenomenon happens with wcdest.

MeShClust achieved similar, even better, results on the
150k data set (Supplementary Table S2). Specifically, it ob-
tained an NMI of 1 in all but one test, where it has NMI of
0.98, outperforming all related tools on this data set. The
second best performance was achieved by CD-HIT, which
scored perfect or almost perfect NMI in four tests. The
silhouette scores obtained by wcdest and MeShClust were
comparable (0.94 versus 0.93). Even though wcdest had a
slightly higher silhouette score, again wcdest only had 0.6%
of its clusters with at least five sequences; therefore, its sil-
houette of 0.94 is due to 0.6% only of wcdest’s output. In
contrast, MeShClust had >95% of its clusters containing
at least 5 sequences except on the 97% identity test. Inter-
estingly, the clusters produced by MeShClust were stable
across all identity cutoffs demonstrated by almost the same
values of NMI, silhouette, intra-clustering similarity, and
the inter-clustering similarity.

After that, we evaluated the five tools on the Costello set
(Table 2 and Supplementary Table S2), which consists of

1.1 million real sequences. MeShClust obtained higher sil-
houette and intra-cluster similarity scores than the four re-
lated tools in the six tests. With respect to the time required,
MeShClust took 8–17 min to cluster the Costello set. On
average, MeShClust takes 20.4% longer time than the other
tools, and ∼6 min more than UCLUST. However, on com-
puters with many CPU cores, this time gap will be lowered
because of MeShClust’s parallel algorithm. Regarding the
memory usage, MeShClust takes a manageable amount of
memory of ∼1GB, which is available on almost all personal
computers. Concerning the quality of the clusters, MeSh-
Clust has the highest silhouette of any tool besides wcdest,
averaging 0.19 higher silhouette than the next highest sil-
houette on the Costello data set (excluding wcdest). How-
ever, the percent of clusters produced by wcdest at or above
five sequences was 2.4%, implying that wcdest missed the
majority of the real clusters. In contrast, all the other tools
had at least 72 times as many clusters at or above five se-
quences as wcdest. These results show that the clusters pro-
duced by MeShClust are more separable and more compact
than those produced by the related tools.

Evaluation on viral genomes

Entire viral genomes (36) were used for testing MeShClust
on much longer sequences, with sequence lengths averag-
ing 6625 base pairs and with some sequences over 13 000
bp. The data set contained seven different families or gen-
era, totaling 96 sequences (Table 3). Genomes from gen-
era Badnavirus, Caulimovirus, Reptarenavirus, Soymovirus
and Spumavirus were used, and genomes from families
Amalgaviridae and Birnaviridae were combined to create
this data set. Since the taxonomic data was known, the real
clusters were created by grouping every genera/family into

PAGE 7 OF 10 Nucleic Acids Research, 2018, Vol. 46, No. 14 e83

Table 2. Comparison of the performances of the five tools on the Costello data

Tool Identity Silhouette Intra Inter Real time Max memory
(%) (%) (%) (min:sec) (MB)

CD-HIT 83 0.17 82 64 10:25.1 491
DNACLUST 83 0.17 82 63 2:26.5 1127
MeShClust 83 0.45 89 65 8:23.3 910
UCLUST 83 0.27 86 65 2:24.6 412
CD-HIT 87 0.21 86 65 10:28.0 492
DNACLUST 87 0.22 86 64 3:30.1 1123
MeShClust 87 0.42 90 64 8:49.7 916
UCLUST 87 0.27 88 66 3:35.5 413
CD-HIT 90 0.20 88 66 12:03.7 494
DNACLUST 90 0.20 88 65 4:23.9 1120
MeShClust 90 0.44 92 65 9:08.7 922
UCLUST 90 0.26 90 66 1:09.4 412
CD-HIT 93 0.18 90 66 9:18.6 498
DNACLUST 93 0.19 91 66 1:33.5 1126
MeShClust 93 0.45 93 66 11:41.9 968
UCLUST 93 0.20 92 67 8:05.9 412
CD-HIT 96 0.21 93 67 14:34.4 510
DNACLUST 96 0.18 94 67 4:28.9 1123
MeShClust 96 0.48 95 66 11:56.1 997
UCLUST 96 0.16 95 67 2:09.6 412
WCDEST 96 0.68 91 64 39:11.7 205
CD-HIT 97 0.16 94 67 17:30.7 521
DNACLUST 97 0.16 95 67 2:48.1 1123
MeShClust 97 0.50 96 67 16:58.2 1029
UCLUST 97 0.06 96 68 7:44.1 416

The Costello data set was obtained from a popular microbiome study (35). About 1.1 million sequences comprise this data set. Sequence lengths range
between 200 and 400 base pairs. The performances were compared using these six identity scores: 83%, 87%, 90%, 93%, 96% and 97%. MeShClust achieved
the highest Silhoutte scores and the highest intra-cluster sequence similarity scores in the six tests. Clusters with fewer than 5 elements were not considered
for evaluation.

Table 3. The viral data set

Genome Average length
Sequences in

cluster

Complete genome Badnavirus 7574 42
Segment B Birnaviridae 2836 8
Complete genome Spumavirus 12307 6
Complete genome Amalgaviridae 3369 8
Complete genome Caulimovirus 7940 11
Complete genome Soymovirus 8088 5
Segment S Reptarenavirus 3400 4
Segment A Birnaviridae 3173 8
Segment L Reptarenavirus 6900 4

The viral data set consists of 9 clusters and 96 viral genomes. Viral gen-
emons were obtained from viruSITE (36).

a cluster. Therefore, purity and NMI values can be calcu-
lated for this test.

An analysis of the real clusters showed an intra-cluster
similarity of 59% and an inter-cluster similarity of 40%.
Therefore, identities 43%, 47%, 50%, 53%, and 57% were
used for comparing MeShClust and UCLUST. These iden-
tities were too low for CD-HIT or DNACLUST; therefore
they were not included in this test.

Table 4 shows the results on the viral set. MeShClust
and UCLUST had very similar purity values over the viral
data sets. However, MeShClust outperformed UCLUST on
those tests via NMI by an average difference of 0.25 on a
scale from 0 to 1, while using similar memory requirements
and a manageable amount of time.

On the 53% test, MeShClust found an NMI of 0.87 and
a silhouette of 0.59, while UCLUST found an NMI of 0.60

and a silhouette of 0.84. The silhouette of the real clusters
is 0.27. Thus, a higher silhouette score does not directly im-
ply having more accurate clusters in this case. Using a cut-
off of 53%, UCLUST found 55 clusters, each averaging 2
sequences, whereas MeShClust found 19 clusters, each av-
eraging 5; this data set consists of 9 real clusters (Genomes
of Reptarenavirus and Birdnavirus are broken up into two
segments). These statistics can be found in Supplementary
Table S3. Because UCLUST’s median cluster size is 1, many
of its sequences will get a silhouette value of 1 and very high
intra cluster values. Therefore, a higher silhouette score does
not indicate better clusters in this case. However, MeSh-
Clust’s clusters overlap with the real clusters more than the
ones produced by UCLUST, evident by higher NMI.

DISCUSSION

Added benefits of the classifier

Recall that when the identity cutoff is greater than 60%,
MeShClust uses a classifier to predict the identity score
from a combination of alignment-free k-mer statistics. To
assess the added benefits of the classifier over the alignment
algorithm, we evaluated the performances of the two ver-
sions of MeShClust on the 15k data set. As expected, the
alignment-only version is 16 minutes (198 times) slower, on
average, than the classifier-based version (Supplementary
Table S4). Using only alignment does not give higher qual-
ity clusters; in no case does the alignment-only version have
higher NMI values than the classifier-based version. These
results demonstrate the remarkable time reduction due to
the classifier.

e83 Nucleic Acids Research, 2018, Vol. 46, No. 14 PAGE 8 OF 10

Table 4. MeShClust and UCLUST were used for clustering viral genomes

Tool Identity Purity NMI Intra Inter Silhouette Real time Max memory
(%) (%) (%) (min:sec) (MB)

MeShClust 43 0.57 0.58 52 50 0.30 0:25.0 81
UCLUST 43 0.47 0.00 38 - 0.38 0:11.1 72
MeShClust 47 0.67 0.68 55 45 0.27 0:31.3 81
UCLUST 47 0.70 0.49 63 43 0.30 0:19.0 74
MeShClust 50 0.92 0.87 72 39 0.50 1:28.1 82
UCLUST 50 1.00 0.73 91 38 0.83 0:32.1 76
MeShClust 53 1.00 0.87 78 37 0.59 2:48.8 82
UCLUST 53 1.00 0.60 93 38 0.84 0:34.1 77
MeShClust 57 1.00 0.69 91 38 0.82 6:15.5 82
UCLUST 57 1.00 0.58 96 39 0.91 0:35.6 78
Ground
truth

NA 1.00 1.00 59 40 0.27 NA NA

The viral data set containing 96 genomes was obtained from viruSITE (36). Since the clusters were so small, the intra, inter, and silhouette considered
any cluster, not just clusters of at least 5 elements. The purity was not 1 all around, getting as low as 0.47. Overall, MeShClust had similar purity values;
however, MeShClust had 61% higher NMI values than UCLUST, on average. On the 43% data set, UCLUST only found 1 cluster; therefore, its inter-cluster
distance could not be measured (labeled as ‘-’) and its NMI was 0.

Related algorithms

DBSCAN (37) is a ‘density-based’ clustering algorithm.
Like the mean shift, it is based upon the principle that clus-
ters consist of densely-packed points. Both the mean shift
and DBSCAN can discover the number of clusters on their
own. DBSCAN depends on two parameters, the minimum
number of close points and the minimum distance between
close points. In contrast, the mean shift algorithm depends
on only one parameter, the cluster bandwidth, which is the
distance among points in the same cluster. The average time
of DBSCAN is O (n log (n)) when using an efficient data
structure such as R* tree. However, this degrades into a
quadratic time if an efficient data structure is not used. Sim-
ilarly, the mean shift is a quadratic algorithm in theory be-
cause each point represents the center of an initial cluster.
However, using a reasonable similarity threshold, our im-
plementation should take O (mn), where m is the number
of clusters in the data set. This run time may degenerate to
quadratic time if the similarity threshold is too high. DB-
SCAN considers adding a new point to a cluster if it is close
to a at least a minimum number of points in the cluster. This
new point and the points close to it are added to the cluster.
For this reason, DBSCAN can find clusters of many differ-
ent shapes. Overall, the structure of the algorithm is simi-
lar in nature to MeShClust’s implementation of the mean
shift, except MeShClust uses the average histogram as the
new center; points that are close to the average are added to
the cluster.

MCL (38,39) is a graph based clustering algorithm. It
uses random Markov walks to collect ‘flow’ in a graph, that
is, if a random walk is performed in a graph, most likely that
walk will end in the same cluster as it started. Using an all-
vs-all adjacency matrix, MCL finds clusters by converting
the distances into transition probabilities, i.e. constructing a
stochastic matrix, in which each column sums to 1. The core
of this algorithm is a process involving squaring the stochas-
tic matrix. An entry in the newly-squared matrix represents
the probability of reaching a node from another directly or
via one more node. In other words, squaring the matrix sim-
ulates a step along another edge. This process is performed
until each element is either 0 or 1. Although it consists of

matrix operations, efficient structures such as sparse matri-
ces allow for fast computation. Using a BLAST-style input,
the alignments can be pre-computed for reuse, and the pa-
rameters are determined by BLAST, not by the algorithm
itself. In sum, MCL uses a different approach that is based
on graph theory, whereas the mean shift is based on density-
based optimization.

Convergence

We have developed a test to assess the convergence of the
mean shift algorithm. If all centers do not change from the
previous iteration, convergence is achieved. On the small,
synthetic data sets, convergence was immediate; nullifying
the effect of the second part of the mean shift algorithm.
On larger data sets, such as the 15k data set (Supplementary
Data Set 7), the second part of the algorithm, which involves
the merging step, is needed. These merges would sometimes
be done in the first few iterations––15 iterations are the
default––of the algorithm. In 37 out of 100 tests performed,
the algorithm converged in a few iterations. However, os-
cillations occurred in 63 out of the 100 tests, making con-
vergence impossible automatically. These oscillations were
sequences that were considered close to a center, but when
the new center was calculated from the close points, a new
point displaces the old one, which will change the center in
the next iteration. Out of the 63 times that oscillations oc-
curred on the 15k data set (15 000 sequences), 33 of them
had 1 center oscillating, 26 trials had 2 centers and 4 trials
had 3 centers. When the number of threads was limited to 1,
no oscillations occurred, and the algorithm converged in a
few iterations. Therefore, the limit of 15 iterations is enough
for the algorithm to converge.

CONCLUSION

DNA sequence clustering algorithms have many applica-
tions. Nonetheless, the widely applicable tools depend on
greedy algorithms, which do not necessarily produce the
best results. Further, the related tools are sensitive to the
sequence similarity parameter provided by the user. Often

PAGE 9 OF 10 Nucleic Acids Research, 2018, Vol. 46, No. 14 e83

times, the exact value of this parameter is not known, result-
ing in inaccurate clusters. Our clustering software, MeSh-
Clust, is a novel tool that utilizes the mean shift algorithm.
MeShClust is the first application of the mean shift to
clustering DNA sequences and one of few applications of
the mean shift algorithm in bioinformatics. Unlike the re-
lated greedy approaches, the theory behind the mean shift
guarantees convergence to local optimal points, resulting
in higher quality clusters. Further, most sequence cluster-
ing tools use a slow quadratic algorithm for sequence align-
ment. In contrast, MeShClust reduces the dependency on
alignment algorithms by using a novel, machine-learning-
based, alignment-assisted method for computing sequence
similarity. Furthermore, this is the first attempt to formu-
late the task of identifying similar sequences as a classifica-
tion task. When tested on multiple synthetic and real data
sets, MeShClust outperformed the related tools with a clear
margin, advancing the methodology in the field of sequence
analysis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are thankful to the anonymous reviewers for taking the
time to review this manuscript. Their comments and sug-
gests have improved the software and the manuscript. We
would like to thank Joseph Valencia and Robert Geraghty
for their help with coding the GLM and the alignment al-
gorithm.

FUNDING

College of Engineering and Natural Sciences and the
Faculty Research Grant Program at the University of
Tulsa; Oklahoma Center for the Advancement of Sci-
ence and Technology [PS17-015]. Funding for open access
charge: The University of Tulsa and OCAST.
Conflict of interest statement. None declared.

REFERENCES
1. Bao,E., Jiang,T., Kaloshian,I. and Girke,T. (2011) SEED: efficient

clustering of next-generation sequences. Bioinformatics, 27, 2502.
2. Chong,Z., Ruan,J. and Wu,C.-I. (2012) Rainbow: an integrated tool

for efficient clustering and assembling RAD-seq reads.
Bioinformatics, 28, 2732.

3. Fu,L., Niu,B., Zhu,Z., Wu,S. and Li,W. (2012) CD-HIT: accelerated
for clustering the next-generation sequencing data. Bioinformatics,
28, 3150.

4. Comin,M., Leoni,A. and Schimd,M. (2015) Clustering of reads with
alignment-free measures and quality values. Algorithms Mol. Biol.,
10, 4.

5. Shimizu,K. and Tsuda,K. (2011) SlideSort: all pairs similarity search
for short reads. Bioinformatics, 27, 464.

6. Solovyov,A. and Lipkin,W.I. (2013) Centroid based clustering of high
throughput sequencing reads based on n-mer counts. BMC
Bioinformatics, 14, 268.

7. Warren,R.L., Sutton,G.G., Jones,S. J.M. and Holt,R.A. (2007)
Assembling millions of short DNA sequences using SSAKE.
Bioinformatics, 23, 500.

8. Zorita,E., Cusc,P. and Filion,G.J. (2015) Starcode: sequence
clustering based on all-pairs search. Bioinformatics, 31, 1913.

9. Ghodsi,M., Liu,B. and Pop,M. (2011) DNACLUST: accurate and
efficient clustering of phylogenetic marker genes. BMC
Bioinformatics, 12, 271.

10. Burke,J., Davison,D. and Hide,W. (1999) d2 cluster: a validated
method for clustering EST and full-length cDNA sequences. Genome
Res., 9, 1135–1142.

11. Hazelhurst,S., Hide,W., Lipták,Z., Nogueira,R. and Starfield,R.
(2008) An overview of the wcd EST clustering tool. Bioinformatics,
24, 1542–1546.

12. Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences.
Bioinformatics, 22, 1658.

13. Edgar,R.C. (2010) Search and clustering orders of magnitude faster
than BLAST. Bioinformatics, 26, 2460–2461.

14. Wei,D., Jiang,Q., Wei,Y. and Wang,S. (2012) A novel hierarchical
clustering algorithm for gene sequences. BMC Bioinformatics, 13,
174.

15. Liao,W., Ren,J., Wang,K., Wang,S., Zeng,F., Wang,Y. and Sun,F.
(2016) Alignment-free transcriptomic and metatranscriptomic
comparison using sequencing signatures with variable length Markov
chains. Sci. Rep., 6, 37243.

16. Cheng,Y. (1995) Mean shift, mode seeking, and clustering. IEEE
Trans. Pattern Anal. Mach. Intell., 17, 790–799.

17. Comaniciu,D. and Meer,P. (1999) Mean shift analysis and
applications. In: Proc IEEE Int Conf Comput Vis. Kerkyra, pp.
1197–1203.

18. Comaniciu,D. and Meer,P. (2002) Mean shift: a robust approach
toward feature space analysis. IEEE Trans. Pattern Anal. Mach.
Intell., 24, 603–619.

19. Girgis,H.Z., Mitchell,B.R., Dassopoulos,T., Mullin,G. and Hager,G.
(2010) An intelligent system to detect Crohn’s disease inflammation in
Wireless Capsule Endoscopy videos. In: Proc IEEE Int Symp Biomed
Imaging. pp. 1373–1376.

20. Barash,D. and Comaniciu,D. (2004) Meanshift clustering for DNA
microarray analysis. In: IEEE Computational Systems Bioinformatics
Conference. pp. 578–579.

21. Wang,L.-y., Abyzov,A., Korbel,J.O., Snyder,M. and Gerstein,M.
(2009) MSB: a mean-shift-based approach for the analysis of
structural variation in the genome. Genome Res., 19, 106–117.

22. de,Brito D., Maracaja-Coutinho,V., de,Farias S., Batista,L. and
do,Rêgo T. (2016) A novel method to predict genomic islands based
on mean shift clustering lgorithm. PLoS ONE, 11, e0146352.

23. Needleman,S.B. and Wunsch,C.D. (1970) A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. J. Mol. Biol., 48, 443–453.

24. Gotoh,O. (1982) An improved algorithm for matching biological
sequences. J. Mol. Biol., 162, 705–708.

25. Girgis,H.Z. (2015) Red: an intelligent, rapid, accurate tool for
detecting repeats de-novo on the genomic scale. BMC Bioinformatics,
16, 227.

26. Compeau,P. and Pevzner,P. (2015) Bioinformatics Algorithms: An
Active Learning Approach. Active Learning Publishers, La Jolla.

27. Luczak,B.B., James,B.T. and Girgis,H.Z. (2017) A survey and
evaluations of histogram-based statistics in alignment-free sequence
comparison. Brief. Bioinformatics, doi:10.1093/bib/bbx161.

28. McCullagh,P. (1984) Generalized linear models. Eur. J. Oper. Res., 16,
285–292.

29. Girgis,H.Z. (2008) Machine-learning-based meta approaches to protein
structure prediction, PhD thesis, The State University of New York,
Buffalo.

30. Girgis,H.Z. and Corso,J.J. (2008) Stp: the sample-train-predict
algorithm and its application to protein structure meta-selection.
Technical Report 16, The State University of New York, Buffalo.

31. Girgis,H.Z., Corso,J.J. and Fischer,D. (2009) On-line hierarchy of
general linear models for selecting and ranking the best predicted
protein structures. Conf. Proc. IEEE Eng .Med. Biol. Soc., 2009,
4949–4953.

32. Girgis,H.Z. and Sheetlin,S.L. (2013) MsDetector: toward a standard
computational tool for DNA microsatellites detection. Nucleic Acids
Res., 41, e22.

33. Rousseeuw,P.J. (1987) Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. J. Comput. Appl.
Math., 20, 53–65.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gky315#supplementary-data

e83 Nucleic Acids Research, 2018, Vol. 46, No. 14 PAGE 10 OF 10

34. Manning,C.D., Raghavan,P. and Schütze,H. (2008) Introduction to
Information Retrieval. Cambridge University Press, Cambridge.

35. Costello,E.K., Lauber,C.L., Hamady,M., Fierer,N., Gordon,J.I. and
Knight,R. (2009) Bacterial community variation in human body
habitats across space and time. Science, 326, 1694–1697.

36. Stano,M., Beke,G. and Klucar,L. (2016) viruSITE - integrated
database for viral genomics. Database, 2016, baw162.

37. Ester,M., Kriegel,H.-P., Sander,J. and Xu,X. (1996) A Density-based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. AAAI Press, Portland , pp. 226–231.

38. van Dongen,S. (2000) Graph Clustering by Flow Simulation, PhD
thesis, University of Utrecht.

39. Enright,A.J., Van,Dongen S. and Ouzounis,C.A. (2002) An efficient
algorithm for large-scale detection of protein families. Nucleic Acids
Res., 30, 1575–1584.

