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Due to lower limb paralysis, individuals with spinal cord injury (SCI) rely on their upper limbs formobility.The prevalence of upper
extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on
the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants
with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with
the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel.
Mean absolute errors (MAE) andmean absolute percentage of error (MAPE) were calculated. Intraclass correlation coefficients and
Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer
placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for
stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke
number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for
monitoring temporal parameters of wheelchair propulsion.

1. Introduction

According to the 2010 Survey of Income and Program
Participation (SIPP), about 3.6 million people aged 15 years
and older in the USA use a wheelchair [1]. Most of these
individuals use a manual wheelchair for mobility [2]. Manual
wheelchair users often rely on their upper extremities for
almost all activities of daily living (ADLs). Some of their
daily activities such as wheelchair propulsion and transfers
require high forces and repetitiveness of upper extremities
movements. Therefore, it is not surprising that the incidence
of upper extremity pain and injury amongmanual wheelchair
users is high, ranging from 49% to 78% [3–11].

Given the negative impact that upper extremity pain and
injury may have on the lifestyle and quality of life of manual
wheelchair users [9, 12–14], the Consortium for Spinal Cord
Medicine published the monograph, Preservation of Upper
Extremity Function Following Spinal Cord Injury: A Clinical
Practice Guideline for Health Care Professionals, where it pro-
vides concise ergonomic and equipment recommendations

based on the review of published evidence [15].The guideline
recommends reducing the frequency of repetitive upper
limb tasks, minimizing forces required to complete tasks,
and minimizing extremes of wrist and shoulder motions.
It also makes recommendations on wheelchair propulsion
techniques such as reducing the stroke number and push
frequency.

Temporal parameters of wheelchair propulsion such as
the stroke number and push frequency have been quantified
in laboratory settings using motion capture systems and
SMARTWheels (Three Rivers Holdings, LLC) a force sensing
wheel that can replace the wheelchair wheel to collect propul-
sion parameters [5, 16–18]. Unfortunately, due to the cost
and intricate settings, these valuable tools are not appropriate
for assessing upper extremity movement in the home and
community environment. Therefore, the repetitiveness of
upper extremity movement for wheelchair propulsion out of
clinical settings is unclear. With the recent advancement of
sensors and miniature technologies, accelerometers emerge
as a possible solution for monitoring wheelchair propulsion
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Figure 1: Instrumentation setup.

Re
su

lta
nt

 ac
ce

le
ra

tio
n

Threshold 

Time between strokes

Peaks above threshold

Samples (s)

1.6
1.4
1.2
1.0
0.8
0.6

50 100 150 200 250 300 350 400 450 500 550

Mean

Figure 2: Visual example for stroke number and push frequency estimation.

parameters, potentially contributing to the understanding
and prevention of upper extremity pain and injury among
manual wheelchair users.

Previous studies have used accelerometers and other
sensors to track gross mobility of manual wheelchair users. A
pilot study conducted byKumar et al. used a customized data-
logging device to determine driving characteristics including
distance, speed, and driving time of 19 power wheelchair
soccer players [19]. A similar study conducted by Coulter et
al. used two triaxial accelerometers placed on the wheels of a
wheelchair to estimate grossmobility of 14manualwheelchair
users with spinal cord injury (SCI). The results showed
that the accelerometers were able to recognize wheelchair
propulsion episodes with an overall accuracy of 92% [20]. A
study conducted by Gendle et al. investigated the revolutions,
duration, and direction of movements. They found that the
activity counts from the accelerometer were significantly
different between light and moderate effort [21]. Other
researchers have evaluated the performance of accelerome-
ters in detecting manual wheelchair users’ activities. A study
conducted by Postma et al. used six two-axis accelerometers
placed around the wrists, thighs, and along the sternum,
respectively, to detect wheelchair propulsion episodes and its
intensity from a range of ADLs among 10 manual wheelchair
users. All six accelerometers were wired to a data recorder
attached to the waist. Wheelchair propulsion episodes were
identified using a wheelchair detection knowledge based
on different body postures. The study showed that the six
accelerometers were able to detect wheelchair propulsion
episodes with an overall agreement of 92%. However, having

6 accelerometers on the body may prevent the user from
moving freely in a natural environment [22]. Despite the
fact that gross mobility and its intensity are, to some extent,
indicative ofmanualwheelchair users’ upper extremitymove-
ments, they cannot tell the exact amount and repetitiveness
of upper extremity movements for wheelchair propulsion.

Knowing the repetitiveness of upper extremity move-
ments for wheelchair propulsion that occur on a daily
basis could be important for understanding and preventing
upper extremity pain and injury. However, research looking
into using wearable sensors to directly estimate temporal
parameters of wheelchair propulsion is limited. A study
conducted by Koontz et al. estimated temporal parameters of
wheelchair propulsion including push time, propulsion time,
and recovery time based on hand acceleration collected via a
6-camera VICON motion analysis system among 29 manual
wheelchair users. Position of the third metacarpal phalangeal
joint was converted into instant velocity and instant accel-
eration. Push, propulsion, and recovery time were estimated
by detecting acceleration sign change. Estimated parameters
were compared with temporal parameters obtained from
the SMARTWheels (Three Rivers Holdings, LLC). Results
showed high intraclass correlation between the estimated and
criterion measures [23]. This study showed the feasibility of
using hand acceleration to determine propulsion parameters.
However, the hand acceleration in this study was derived
from the 6-camera VICON system instead of a wearable
accelerometer. A study conducted by Turner investigated
the use of an accelerometer placed beneath the chair and
a wheel-mounted magnet to detect wheelchair propulsion
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Table 1: Participant demographics.

Demographic variables Mean ± standard deviation
Sex

Female 6
Male 20

Age (years) 40 ± 14

Weight (lb.) 159 ± 41

Manual wheelchair usage (years) 13 ± 8

Injury level range
Paraplegia (T4 and below) 20
Tetraplegia (T3 and above) 6

Self-reported pain (WUSPI) 7 ± 10

Table 2: Criterion and estimated stroke number.

Video Arm Wrist Seat
Level surface 24.6 ± 4.1 24.6 ± 4.0 24.6 ± 4.6 25.0 ± 4.3
Sloped surface 18.1 ± 1.1 17.2 ± 1.3 17.0 ± 1.4 17.7 ± 2.0
Overall 22.4 ± 3.6 22.2 ± 3.6 22.1 ± 4.0 22.6 ± 3.8

Table 3: Criterion and estimated push frequency (stroke/sec).

SMARTWheel Arm Wrist Seat
Level surface 0.95 ± 0.15 0.93 ± 0.09 0.94 ± 0.09 0.82 ± 0.19
Sloped surface 1.06 ± 0.09 1.02 ± 0.04 1.03 ± 0.13 0.94 ± 0.22
Overall 0.98 ± 0.11 0.96 ± 0.06 0.98 ± 0.09 0.86 ± 0.18

parameters including the stroke number, push frequency,
distance, and speed. Tenmanual wheelchair users were asked
to propel their wheelchair on indoor and outdoor surfaces.
Estimated parameters were compared with criterion values
obtained from OptiPush wheels. Results showed the average
percentage of errors were −1.0% for the stroke number and
−1.7% for push frequency [24].

The purpose of this study is to assess the validity of a
triaxis accelerometer placed at three locations (i.e., wrist,
upper arm, and underneath thewheelchair seat) in estimating
temporal parameters of wheelchair propulsion including
the stroke number and push frequency. The information
obtained can guide the use of accelerometers for monitoring
temporal parameters and upper extremitymovements during
wheelchair propulsion.

2. Material and Methods

2.1. Study Participants. The Institutional Review Board at
the University of Pittsburgh approved this study. A total
of 26 manual wheelchair users with SCI volunteered and
provided informed consent prior to their participation in
the study. Subjects were identified through the IRB approved
wheelchair user registries developed by the Human Engi-
neering Research Laboratories (HERL) and the Department
of Physical Medicine and Rehabilitation at the University of
Pittsburgh. Subjects were included in the study if they (1) were
18 years of age or greater; (2) use a manual wheelchair as a
primary means of mobility; and (3) have SCI. Subjects were

excluded if they were unable to tolerate sitting for 2 hours
and/or have upper limb pain that limits their mobility.

2.2. Instrumentation. Subjects were fitted with four moni-
toring devices and a SMARTWheels (Three Rivers Holdings,
LLC). As shown in Figure 1, the four monitoring devices
included a custom wheel rotation monitor attached to the
wheelchair wheel and three off-the-shelf triaxis accelerom-
eters (Shimmer Research, Dublin) worn on the dominant
upper arm, dominant wrist, and underneath the wheelchair
seat, respectively.

(i) The wheel rotation monitor was developed at the
HERL. It is a lightweight and self-contained device
that can be easily attached to the wheelchair’s wheel
without any modifications to the wheelchair. It
tracks the wheel rotation through three reed switches
mounted 120∘ apart on the back of the printed circuit
board and a magnet mounted at the bottom of a
pendulum. As the wheel rotates and exceeds 120∘ of
rotation, one of the reed switches is triggered, and
a date and time stamp is recorded. This information
can be further processed to obtain the distance,
speed, and time ofmovement [25].Thewheel rotation
monitor has been used in previous studies to collect
mobility characteristics of manual wheelchair users
with different diagnoses [19, 26, 27].

(ii) The triaxis accelerometer (Shimmer Research,
Dublin) used in this study is a small low-power
device that can record the motion data into a micro
SD card. The two upper arm accelerometers were
sampled at 20Hz and the accelerometer underneath
the seat was sampled at 60Hz.

(iii) The SMARTWheels (Three Rivers Holdings, LLC) is
a 3D force and torque-sensing wheel that measures
push forces, push smoothness, push frequency, speed,
and push length in every push cycle. It is sampled
at 240Hz. Subjects’ wheelchair wheels were replaced
with a SMARTWheels (Three Rivers Holdings, LLC) at
the dominant side and a dummy wheel at the other
side to balance the weight of the SMARTWheels (Three
Rivers Holdings, LLC). The use of SMARTWheels

(Three Rivers Holdings, LLC) did not change the
camber or the axle position.

2.3. Experimental Protocol. Subjects were asked to pay two
visits to HERL with each visit lasting about 2.5 hours. During
the first visit, subjects completed a demographics survey and
the Wheelchair Users Shoulder Pain Index Questionnaire
(WUSPI).TheWUSPI questionnairemeasures shoulder pain
based on 15 questions using a 10 cm visual analogue scale,
resulting in a total score from 0 (no pain) to 150 (extreme
pain) [28]. After subjects were fittedwith the instrumentation
described in the previous section, they were asked to propel
their own wheelchairs on two surfaces including a level
surface of 33 meters and a sloped surface of 15 meters with 5
degrees of incline. A total of 24 level-surface trials performed
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Table 4: Mean absolute error (MAE) and mean absolute percentage of error (MAPE) for the stroke number.

MAE MAPE %
ARM WRIST SEAT ARM WRIST SEAT

Level surface 1.7 ± 1.5 2.4 ± 2.3 2.9 ± 3.5 7.7 ± 6.6 11.0 ± 10.2 13.5 ± 16.4

Sloped surface 1.5 ± 1.2 1.8 ± 1.3 2.4 ± 2.1 8.6 ± 7.0 10.3 ± 7.9 13.4 ± 11.8

Overall 1.6 ± 1.4 2.2 ± 2.1 2.7 ± 3.2 8.0 ± 7.1 10.8 ± 9.8 13.4 ± 15.6

Table 5: Mean absolute error (MAE) and mean absolute percentage of error (MAPE) for the push frequency.

MAE MAPE %
ARM WRIST SEAT ARM WRIST SEAT

Level surface 0.1 ± 0.1 0.2 ± 0.2 0.3 ± 0.2 16.1 ± 16.7 21.5 ± 21.4 25.4 ± 16.9

Sloped surface 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 6.4 ± 4.6 8.0 ± 6.1 21.8 ± 14.6

Overall 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 12.9 ± 15.1 17.2 ± 19.3 24.2 ± 16.6

Table 6: Stroke number and push frequency intraclass correlation
coefficient (ICC 3, 1).

ICC 95% CI 𝑃 value

Stroke number
ARM 0.994 0.988∼0.997 <0.001
WRIST 0.990 0.980∼0.995 <0.001
SEAT 0.984 0.972∼0.991 <0.001

Push frequency
ARM 0.916 0.843∼0.953 <0.001
WRIST 0.889 0.802∼0.936 <0.001
SEAT 0.690 0.071∼0.868 <0.001

CI: confidence interval.

at self-selected speed, low speed, and fast speed, and 12
sloped-surface trials at a self-selected speed were completed
by each subject. All trials were videotaped using a hand-held
digital video recorder.

During the second visit, participants were first asked to
perform the propulsion trials as detailed for the first visit.
Participants were then asked to complete a training session
where they watched a multimedia instructional program
on a laptop computer that aimed to teach appropriate
propulsion techniques. The multimedia instructional pro-
gram was developed by a previous study based on propulsion
biomechanics literature and the Clinical Practice Guideline,
which emphasized reducing push frequency and increasing
push angle [29]. Examples of good and bad techniques were
provided. After subjects practiced the propulsion techniques
following the video training, they were asked to perform the
same propulsion trials. This visit allowed us to assess if the
accelerometers were capable of capturing propulsion changes
due to training.

2.4. Data Collection and Analysis. Videos recorded during
the two visits served as the criterion measure of the stroke
number. Two investigators independently counted the stroke
number for each propulsion trial, and video footages were
reexamined when there was a discrepancy between the
two investigators. The criterion push frequency was directly
obtained from the SMARTWheels (Three Rivers Holdings,
LLC).

Data from the wheel rotation monitor was converted
to the wheel speed, which was used to identify wheelchair
propulsion episodes and segment the acceleration data for
each trial. Acceleration signals obtained from the accelerom-
eters on the wrist, upper arm, and underneath the seat were
filtered to remove high frequency noise using an 8th-order
Butterworth low-pass filter. Butterworth filters have response
characteristics that are appropriate for filtering wheelchair
propulsion kinematic data as shown in previous studies [30–
32]. Butterworth filters are commonly used to filter noisy
signals because they introduce almost no distortion on the
pass band while zeroing the noise on higher frequencies.
A higher order filter (8th-order) was used to narrow the
transition bandwidth which is wide in this type of filters
[33]. The cutoff frequency was defined by the fundamental
frequency calculated based on each propulsion trial with
values ranging from 2 to 6Hz. For the arm and wrist
accelerometers, the resultant accelerations (the vector sum
of three directions) were used to obtain the stroke number.
For the seat accelerometer, only the longitudinal component
(parallel to the propulsion direction) was used. An algorithm
was developed to extract the stroke number from each
propulsion trial. The algorithm first calculated a threshold
defined as the mean acceleration plus 0.5 standard deviation
over each trial. The stroke number was then counted as the
number of acceleration peaks over the established threshold.
Push frequency was calculated as the mean propulsion time
between each two consecutive strokes. Figure 2 shows a
visual example of the stroke number and push frequency
estimation.

Custom MATLAB (Version 7.11.0 R2010b, The Math-
works, Inc., USA) programs were used to process the acceler-
ation signals.

The estimated stroke number and push frequency from
the three accelerometers were compared with the criterion
by calculating the mean absolute error (MAE) which was cal-
culated as the average of the absolute difference between the
estimated and the criterion, and mean absolute percentage
of error (MAPE) calculated as the average ratio between the
absolute difference and the criterion MAE = (1/𝑛)∑𝑛

𝑖=1

|𝐸
𝑖
−

𝐶
𝑖
| and MAPE = (1/𝑛)∑𝑛

𝑖=1

(|𝐸
𝑖
− 𝐶
𝑖
|/𝐶
𝑖
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Table 7: Criterion and estimated stroke number before and after training, change, and 𝑃 value.

Stroke number Change
𝑃 valueBefore After

Mean Mean Mean

Video
LS 25.5 ±7.6 22.3 ±5.7 −3.2 ±0.96 0.09
SS 18.2 ±6.2 16.7 ±4.4 −2.1 ±1.13 0.68
OA 21.8 ±7.8 19.6 ±5.8 −2.6 ±1.02 0.16

Arm
LS 25.2 ±7.2 22.7 ±5.6 −2.5 ±0.94 0.17
SS 17.1 ±5.9 15.8 ±4.8 −1.9 ±1.06 0.70
OA 21.2 ±7.7 19.3 ±6.2 −2.2 ±0.98 0.26

Wrist
LS 25.0 ±7.0 23.2 ±5.7 −1.8 ±0.93 0.30
SS 16.9 ±6.0 16.1 ±4.1 −1.4 ±1.08 0.93
OA 20.9 ±7.7 19.7 ±6.1 −1.6 ±0.98 0.47

Seat
LS 26.3 ±8.9 25.2 ±6.4 −1.1 ±0.84 0.12
SS 18.0 ±6.7 17.3 ±5.6 −0.7 ±1.06 0.66
OA 22.1 ±8.9 21.3 ±6.8 −0.8 ±0.95 0.19

LS: level surface propulsion trials, SS: sloped surface propulsion trials, and OA: level surface and sloped surface combined.

Table 8: Criterion and estimated push frequency before and after training, change, and 𝑃 value.

Push frequency (stroke/sec) Change
𝑃 valueBefore After

Mean Mean Mean

SMW
LS 0.96 ±0.16 0.88 ±0.16 0.09 ±0.12 0.06
SS 1.13 ±0.18 0.98 ±0.15 0.18 ±0.20 0.001
OA 1.04 ±0.19 0.93 ±0.16 0.13 ±0.17 0.001

Arm
LS 0.94 ±0.14 0.89 ±0.13 0.05 ±0.13 0.197
SS 1.05 ±0.14 0.95 ±0.13 0.14 ±0.19 0.007
OA 1.00 ±0.15 0.92 ±0.14 0.09 ±0.17 0.007

Wrist
LS 0.93 ±0.11 0.90 ±0.12 0.03 ±0.09 0.327
SS 1.08 ±0.19 0.98 ±0.14 0.13 ±0.21 0.024
OA 1.00 ±0.17 0.94 ±0.13 0.08 ±0.17 0.022

Seat
LS 0.84 ±0.17 0.77 ±0.14 0.07 ±0.14 0.134
SS 0.98 ±0.30 0.87 ±0.29 0.04 ±0.40 0.081
OA 0.91 ±0.25 0.82 ±0.19 0.06 ±0.30 0.028

SMW: SmartWheel, LS: level surface propulsion trials, SS: sloped surface propulsion trials, and OA: level surface and sloped surface combined.

Table 9: Stroke number and push frequency ICC (3, 1) before and
after training.

ICC 95% CI 𝑃 value

Stroke number
ARM 0.980 0.964∼0.989 <0.001
WRIST 0.969 0.916∼0.986 <0.001
SEAT 0.870 0.773∼0.925 <0.001

Push frequency
ARM 0.856 0.684∼0.899 <0.001
WRIST 0.822 0.711∼0.923 <0.001
SEAT 0.568 0.248∼0.752 <0.001

CI: confidence interval.

the estimated measure and 𝐶
𝑖
is the criterion measure. In

addition, the intraclass correlation coefficients (ICC 3, 1) were
used to assess their agreements. Bland-Altman plots were
performed to provide a visual analysis of their agreements.

Each point on the Bland and Altman plot represents the
mean (𝑥-axis) and the difference (𝑦-axis) of the criterion and
estimated values for each propulsion trial [34]. Propulsion
trials during the first and the second visit were compared
to assess the agreement between the estimation and the
criterion.

Intraclass Correlation Coefficients (ICC 3, 1) were calcu-
lated to assess the validity of the accelerometers in detecting
changes after training. Independent paired 𝑡-test was per-
formed to evaluate significant differences before and after
training. All statistical analysis was performed using SPSS
software (ver. 18.0, SPSS Inc., Chicago, IL, USA).

3. Results

Thedemographics of the participants are described in Table 1.
Tables 2 and 3 show the mean and standard deviation of the
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Figure 3: Stroke number Bland-Altman plots from the arm (a), wrist (b), and seat (c) accelerometers.

criterion and estimated stroke number and push frequency.
Table 4 shows the MAE and the MAPE between the crite-
rion and estimated stroke number from each accelerometer.
Table 5 shows theMAE andMAPE between the criterion and
estimated push frequency from each accelerometer. Table 6
shows the ICC (3, 1) between the criterion and estimated
temporal parameters for each accelerometer. Table 7 shows
the criterion and estimated stroke number before and after
training, changes, and 𝑃 values. Table 8 shows the criterion
and estimated push frequency before and after training,
changes, and 𝑃 values. Table 9 shows the ICC (3, 1) for
the criterion and estimation before and after training. All
variables were calculated for the level surface trials, the sloped

surface trials, and the overall trials. Figures 3 and 4 show
the Bland-Altman plots between the criterion and estimated
stroke number and push frequency from each accelerometer,
respectively.

4. Discussion

This study provides insight into the usage of portable devices
(e.g., triaxis accelerometers and wheel rotation monitor) to
track upper extremity movements for wheelchair propulsion.
The small discrepancies between the criterion and estimated
parameters shown in Tables 4 and 5 suggest that wearable
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Figure 4: Push frequency Bland-Altman plots from the arm (a), wrist (b), and seat (c) accelerometers.
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sensors have the potential to not only detect gross mobility
levels of manual wheelchair users [20, 22, 35] but also
to quantify the quality of upper extremity movements for
wheelchair propulsion in terms of the repetitiveness.

In terms of estimating the stroke number and push fre-
quency, the arm accelerometer showed the highest accuracy
among the three accelerometers with a MAPE of 8.0% for
stroke number and 12.9% for push frequency, indicating
that the upper arm could be a good location for detecting
temporal parameters of wheelchair propulsion. The wrist
accelerometer showedhigherMAPE than the armaccelerom-
eter and this could be because the wrist accelerometer can be
more sensitive to small upper extremity movements, possibly
leading to the increased error.The seat accelerometer showed
the lowest accuracy with a MAPE of 13.4% for the stroke
number and 24.2% for the push frequency. The estimation
errors for the seat accelerometer were greater than the study
by Turner where an accelerometer was placed beneath the
wheelchair seat to estimate the stroke number and push
frequency among 10manual wheelchair users. Unfortunately,
the data analysis results were not described in detail. The
study only reported an average percent error (i.e., −1.0% for
stroke number and −1.7% for push frequency) instead of the
MAPE averaged by each trial of each subject. An average
percent error only indicates the estimation bias and may not
be sufficient to show the estimation accuracy, as the positive
andnegative estimation errors from the trialsmay cancel each
other, resulting in smaller overall errors [24].

Compared with the stroke number estimation, push
frequency estimation was less accurate, which could be due
to the estimation of the total cycle time comprised of push
and recovery phases. The estimation algorithm based on the
accelerometer signals was able to identify the push phase
more accurately but unable to accurately determine the end
of recovery phases, possibly leading to the inaccuracy when
estimating the cycle time.

Tables 7 and 8 showed that subjects reduced the stroke
number and push frequency after the propulsion training
program, but there was only statistically significant difference
on the push frequency along the upsloped surfaces. The
accelerometers on the arm and wrist were also able to detect
the difference. The ICC (3, 1) values in Table 9 also show that
the accelerometers especially the ones on the arm and wrist
were consistent with the criterion measures for detecting
changes in stroke number and push frequency after the
propulsion training.The responsiveness of the accelerometer
and its estimation algorithm for propulsion parameters could
potentially enable the evaluation of training interventions out
of clinical settings, contributing to the preservation of upper
limb functions of manual wheelchair users with SCI [36].

Considering the negative impact that upper extremity
pain and injuries can have on manual wheelchair users with
SCI, it is important to monitor and understand how the use
of upper limbs during wheelchair propulsion and other ADLs
are related to such pain and injury. The Clinical Practice
Guideline on the Preservation of Upper Limb Function
Following Spinal Cord Injury stresses the importance of
reducing the frequency of repetitive upper limb tasks [15].
This study could result in a potential tool that can monitor

the actual usage of upper extremities in terms of the repet-
itiveness during wheelchair propulsion and provide clinical
professionals and researchers with an indication of activity
levels as well as propulsion skills of manual wheelchair users
in their daily life. Results in this study suggest that the use of
accelerometers andwheel rotationmonitors could potentially
provide an objective measure of the repetitiveness of upper
extremity movements of wheelchair users. This information
may help clinicians to better understand and prevent upper
extremity pain an injury among manual wheelchair users.

With the accelerometry technology getting cheaper and
smaller, it is also possible to provide near real-time feedback
to manual wheelchair users about their upper limb use
and repetitiveness, further contributing to the prevention
of upper limb pain and injury among this population. We
envision the tools described in this study will be used during
everyday living as follows: the wheelchair rotation monitor
attached to the wheelchair wheel continuously monitors
the wheelchair movement and determines the wheelchair
propulsion episodes based on the wheelchair speed. If the
wheelchair is determined to be moving continuously for a
certain amount of time (e.g., 30 seconds), the accelerometer
data for that period will be analyzed using the method
described earlier, yielding the estimated stroke number and
push frequency. The method can also accommodate the
variations in propulsion style and speed within and between
individual users by using their own movement data as
reference.The estimated parameters could be used to provide
feedback to the user in near real-time (if paired with a display
or smartphone) or summary format to inform their progress
over time. The push efficiency calculated by stroke number
per feet or meter could also be obtained as an indicator of
the user propulsion performance. The summary information
could also help clinicians justify wheelchair prescription by
knowing whether a user propels more efficiently using a
specific type of wheelchair over another for a period of time
at his/her home and community and evaluate the effect of
interventions such as a propulsion training program or a
new wheelchair/seating component. The devices could also
support research that investigates the relationship between
upper extremity usage and upper extremity pain and injury in
a more accurate manner, contributing to our understanding
of the etiology and prevention of upper extremity pain and
injury prevalent in this population.

One limitation of the study is that the testing protocol
was highly structured and involved only straight courses.
Also using the wheel rotation monitor to identify self-
propulsion episodes may not be accurate in real-life settings.
Our previous study showed that the monitors we used
here were able to detect self-propulsion, external pushing,
sedentary activities, and other activities with an accuracy
of 90% using a laboratory-based protocol [37]. Future
testing should consider real-life testing with a mixture of
wheelchair propulsion and other activities of daily living in
the home and community settings and combine the detection
of wheelchair episodes with the estimation of propulsion
parameters when assessing the overall estimation accuracies
of temporal propulsion parameters.
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5. Conclusion

Results in this study suggest that the use of triaxis accelerom-
eters and a wheel rotation monitor could be a viable option
to accurately monitor temporal parameters of wheelchair
propulsion such as stroke number and push frequency
especially when the accelerometer is worn on the upper arm.
This study could result in a potential tool that canmonitor the
actual usage of upper limbs in terms of the repetitiveness and
contribute to the preservation of upper limb functions among
manual wheelchair users with SCI.
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