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Abstract

Fibroblast growth factor receptor substrate 2 (FRS2a) is a signaling adaptor protein that regulates downstream signaling of
many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and
forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and
the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine
binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1
knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of
flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been
shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding
domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network
containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine
kinase signaling, especially the mitogen activated protein kinase pathway.
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Introduction

Fibroblast growth factor receptor substrate 2 (FRS2/FRS2a/

SNT1) is a membrane linked docking protein originally identified

as a protein that becomes tyrosine phosphorylated upon nerve

growth factor (NGF) or fibroblast growth factor (FGF) stimulation

in PC12 cells [1,2,3]. Together with FGF receptor substrate 3

(FRS3/FRS2b/SNT2), it belongs to the FRS adaptor protein

family [4]. In this paper, we will use the name FRS2 for FRS2a/

SNT1, and FRS3 for FRS2b/SNT2 for the sake of clarity.

FRS2 and FRS3 share a similar structure and 48% of amino

acid sequence identity. In the N-terminus, they contain a

consensus myristoylation sequence which is important for the

membrane localization [1]. This sequence is followed by a

phosphotyrosine binding (PTB) domain that is highly similar

between the two proteins. The PTB domain binds specific peptides

of certain receptor tyrosine kinases (RTKs) with or without

tyrosine phosphorylated residues [5,6].

FRS2 is ubiquitously expressed with the highest expression in

brain, kidney, lung, ovary and testis and can be detected at all

developmental stages of a mouse [7]. FRS2 knockout mice show

embryonic lethality due to severe problems in gastrulation [8,9],

demonstrating how crucial FGF signaling is in animal development.

In contrast to FRS2, the expression of FRS3 protein begins around

day 9 and is restricted to tissues of neuronal origin [7,10]. When

exogenously expressed in FRS2-null mouse embryonic fibroblasts,

FRS3 compensates for the loss of FRS2 by stimulating FGF induced

activation of extracellularly regulated kinase (ERK), a member of

the mitogen activated protein (MAP) kinase family [10].

Both FRS2 and FRS3 are tyrosine phosphorylated in response

to NGF, FGF [9,11] and glial derived neurotrophic factor (GDNF)

[12,13], but only FRS2 is threonine phosphorylated. Phosphor-

ylation of 8 threonine residues in FRS2 occurs as a response to

stimulation with FGF, epidermal growth factor (EGF), insulin and

platelet derived growth factor (PDGF). This represents a negative

feedback mechanism in which activated ERK inhibits further

tyrosine phosphorylation of FRS2 by phosphorylating its threo-

nine residues [14,15]. FRS2 plays an important role in FGF

dependent proliferation and migration of the cells [1] and in

differentiation of PC12 cells by regulating sustained ERK activity

upon FGF or NGF stimuli [1,16,17]. It is tyrosine phosphorylated

upon insulin treatment, but its precise role in insulin signaling

pathway remains largely unknown [18].

The C-terminus of FRS proteins bears multiple tyrosine

phosphorylation sites (6 Tyr in FRS2), which, when phosphory-

lated by specific RTKs, recruit SH2-domain containing proteins

such as adaptor protein Grb2 (4 Tyr in FRS2) and protein tyrosine

phosphatase Shp2 (2 Tyr in FRS2) [1,19]. The recruitment of

Grb2 eventually results in a strong activation of PI3-kinase

signaling and moderate activation of ERK pathway [9,20], while

phosphorylation and subsequent activation of Shp2 will result in a

strong activation of ERK signaling [9].
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The two members of the flotillin/reggie protein family, flotillin-

1/reggie-2 (flot-1) and flotillin-2/reggie-1 (flot-2) are associated

with specific membrane microdomains enriched in cholesterol and

sphingolipids, also called rafts (For a review, see [21,22]). Their

membrane association is mediated by palmitoylation (both flot-1

and flot-2) and myristoylation (flot-2 only), but neither protein

contains a transmembrane domain [23,24]. Flotillins are widely

expressed and well conserved between species, but their molecular

function has remained somewhat enigmatic. Flotillins have been

shown to participate in various signaling processes, including

insulin and EGF receptor signaling [25,26,27,28], in endocytosis

[29], phagocytosis [30] and cell adhesion [27]. In addition, a role

in neuronal regeneration has been suggested in goldfish and

zebrafish [31,32], but the evidence for such a role in mammalian

animal models is lacking. Our earlier results show that flot-2

becomes Tyr phosphorylated by Src kinases and is endocytosed

together with flot-1 in EGF stimulated cells [25,27].

Although functional implications for flotillins in diverse cellular

processes have been accumulating, in many cases the exact

molecular mechanisms of flotillin action and the interaction

partners remain to be identified. One of the known interaction

partners of flotillins is the Cbl-associated protein (CAP), also

known as Ponsin, which is an adaptor protein containing multiple

SH3 (Src homology 3) domains and one or two sorbin homology

(SoHo) domains [33]. During insulin receptor signaling, CAP is

responsible for recruiting the ubiquitin ligase Cbl into membrane

rafts by means of interacting with flotillin-1 [26]. Furthermore,

CAP has been shown to be localized in focal adhesions and to

mediate processes requiring actin remodeling [34]. Our recent

findings also suggest that CAP is involved in signaling and

becomes phosphorylated by the Abl kinase [35].

Here, we have identified the PTB-domain containing adaptor

proteins FRS2 and FRS3 as novel interaction partners of flot-1.

Membrane association and cellular localization of FRS2 was

shown to be partly dependent on flot-1. We observed an

interaction between flot-1 and FRS2 in mouse tissues. Intriguingly,

FRS2 appears to be more Tyr phosphorylated in flot-1 knockdown

cells, indicating that the interaction with flot-1 regulates the

downstream signaling of FRS2. Moreover, since flot-1 binds to the

PTB domain of FRS2, it competes for the binding with the FGF

receptor. Furthermore, flot-1 is necessary for the signaling induced

recruitment of FRS2 into lipid rafts. In addition to flot-1, FRS2

was also found to interact with CAP, which has been linked to flot-

1 during insulin signaling [26]. The binding domains of these three

proteins overlap, and thus flot-1 and CAP compete for the binding

to FRS2. Here, we have dissected the putative role of these

proteins during receptor tyrosine kinase signaling.

Results

In search of novel interaction partners of flotillins, we performed

a yeast two-hybrid (Y2H) screen of a human brain library using rat

flot-1 as a bait, in which several clones containing a partial

sequence of FRS3 were obtained (data not shown). Since FRS3

shows a high homology to the more ubiquitously expressed FRS2,

we tested the possibility of a direct interaction of flot-1 with FRS2

and characterized the interacting domains in a Y2H assay

(Fig. 1A). The constructs used for this are shown in Suppl. Fig.

S1A. Interaction was detected as growth of the transformed yeast

colonies on nutrient deficient plates and blue colour (Fig. 1A). Full-

length (FL) flot-1 was found to interact with the FL FRS2 and the

PTB domain of FRS2, whereas no interaction was detected with

the C-terminal part of FRS2. Interestingly, flot-2 did not interact

with any of the FRS2 fragments. We also attempted to produce

deletion fragments of flot-1 (see Suppl. Fig. S1A), but the C-

terminal parts flot-1-CT (amino acids 226–428) and flot-1-CC

(327–428) displayed autoactivity, resulting in blue colonies without

any interaction partner. Furthermore, flot-1-NT (amino acids 1–

253) was poorly expressed, preventing any conclusions about its

interaction with FRS2. However, a deletion mutant of flot-1

missing 100 amino acids from the C-terminal end (Flot-1-

STOP328) was unable to interact with any of the FRS2 fragments,

indicating that the interaction domain may reside in the far C-

terminus of flot-1. Suppl. Fig. S1B shows the expression in the

yeast of the constructs used in Fig. 1A and a test for autoactivation

in the yeast.

We next used GST-pulldown analysis to verify the interaction

between FRS2 and flot-1 (Fig. 1B–C). FL FRS2, the PTB and CT

domains were expressed as GST fusions and immobilized on

glutathione beads (Fig. 1B). All three variants of FRS2 were

capable of binding substantial amounts of flot-1 from HeLa cell

lysates. To demonstrate a direct interaction, we used bacterially

expressed, purified proteins. FL Flot-1-GST and Flot-1-CT-GST

were immobilized on sepharose beads and tested for their binding

to His-tagged FRS2 (Fig. 1C). FRS2 was clearly bound by FL and

even more by the CT of flot-1. Thus, our yeast two-hybrid and

pulldown data suggest that FRS2 interacts with flot-1 but not with

flot-2, and the interaction involves both the PTB domain and C-

terminus of FRS2 and the C-terminal part of flot-1.

To verify the interaction between flot-1 and FRS2 in vivo, we

performed coimmunoprecipitation from mouse tissues (Fig. 1D).

FRS2 was immunoprecipitated using same amounts of homoge-

nized mouse tissues which express the highest amounts of FRS2

(brain, liver and kidney; see right part of Fig. 1D for relative

expression levels). Coimmunoprecipitation of flot-1 with FRS2 was

seen from all three tissues, whereas no precipitation of flot-1 was

detected when an isotype-matched control antibody was used.

To study the possible colocalization of flot-1 with FRS2 in

animal cells, we chose Hep3B cells which express high amounts of

endogenous FRS2 and flotillins. Immunofluorescence staining of

FRS2 and flotillins revealed that in serum-grown Hep3B cells,

FRS2 was mainly localized at the plasma membrane with some

diffuse and vesicle-like staining in the cytoplasm (Fig. 2). Flot-1

(Fig. 2, upper row) and flot-2 (Fig. 2, lower row) were both

detected at the plasma membrane, where they colocalized with

FRS2. However, little if any colocalization was detected in the

endosomes, which contained high amounts of flotillins.

Our previous findings have shown that upon knockdown of flot-

1 in HeLa cells, EGF-stimulated activation of MAP kinase

signaling is inhibited (Amaddii et al., under revision). Furthermore,

it has been shown that overexpression of FRS2 results in a dose-

dependent enhancement of ERK activation upon EGF signaling

[15]. Thus, we tested if overexpression of FRS2 would be able to

compensate for the MAP kinase activation defects upon receptor

tyrosine kinase stimulation in flot-1 knockdown cells. However,

since the best characterized function of FRS2 lies within FGF

receptor (FGFR) signaling, where it also mediates an increase of

MAP kinase activation, we here used FGF stimulation instead of

EGF. Phosphorylation of Akt and ERK2 after 5 min of FGF

stimulation were found to be reduced in flot-1 knockdown cells as

compared to the control cells (Fig. 3A), consistent with our

previous findings (Amaddii et al., under revision). Overexpression

of FRS2-CFP did not result in correction of the diminished

phosphorylation of these proteins after FGF stimulation in flot-1

knockdown cells. Expression of FRS2-CFP and the knockdown

efficiency of flot-1 were verified by means of Western Blot (Fig. 3A).

We observed a considerable shift in the gel motility of FRS2 after

FGF treatment, most likely due to phosphorylation, in both

FRS2 Interaction with Flotillin-1 and CAP
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Figure 1. Identification of interaction domains in FRS2 and flot-1. (A) Yeast two-hybrid analysis of the interaction between FRS2 and flot-1
domains. Interaction is indicated as growth of blue colonies on nutrient deficient plates containing a-X-galactoside. (B) FRS2 domains were produced
as GST fusion proteins, immobilized on glutathione beads and tested for the interaction with endogenous flot-1 from HeLa cell lysates. Upper blot:
detection of bound flot-1, lower blot: ponceau staining of the respective GST proteins. (C) FL flot-1 or its C-terminal half were produced as GST fusion
proteins, immobilized on beads and incubated with purified FRS2-His. Upper blot: detection of bound FRS2-His, lower blot: ponceau staining of the
purified GST proteins. Specific bands for the GST fusions are marked with *. (D) FRS2 was immunoprecipitated from lysates of 25 mg of mouse tissue
(brain, liver and kidney), and the coprecipitation of flot-1 was studied. Antibody against flag tag (IgG control) was used as a control for the
immunoprecipitation. Right part shows a blot for FRS2 with total tissue lysates (equal total protein amount).
doi:10.1371/journal.pone.0029739.g001

FRS2 Interaction with Flotillin-1 and CAP
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control and flot-1 knockdown cells. Thus, although the growth

factor induced phosphorylation of FRS2 appears to take place in

flot-1 knockdown cells, FRS2 is not able to compensate for the

observed downstream signaling defects.

FRS2 binds to FGFR cytoplasmic domain by means of its PTB

domain but independently of Tyr phosphorylation [6]. Since we

could show that this domain also at least partly mediates the

interaction to flot-1, we tested if FGFR and flot-1 would compete

for the binding to FRS2 (Fig. 3B). For this, we used purified FRS2-

GST immobilized on beads and lysates of Hela cells transfected

with increasing amounts of myc-tagged FGFR (0.5–2 mg of DNA

used for transfection, Fig. 3D). As a transfection control, the empty

vector pcDNA3 was used. The binding of endogenous flot-1 to

FRS2-GST in the presence of FGFR was found to decrease the

more FGFR was present in the lysates (Fig. 3B), but we were

unable to obtain a full loss of flot-1 binding by FRS2 due to FGFR.

Significantly reduced binding of flot-1 to FRS2 was observed upon

increased expression of FGFR (Fig. 3C).

For studies of the function of endogenous FRS2, which is

expressed in HeLa cells only in very minor amounts, in the

absence of flot-1, we generated stable Hep3B clones in which flot-2

or flot-1 were knocked-down using lentivirus-mediated RNA

interference. It has to be noted that knockdown of flot-2 results in

a concomitant destabilization and downregulation of flot-1 at the

protein level, whereas flot-1 depletion only mildly affects flot-2

expression (Suppl. Fig. S1C), as shown by us and others for various

cell lines [25,36]. Suppl. Fig. S1D shows that very little flot-2 or

flot-1 could be detected by means of immunofluorescence staining

in the knockdown cells, demonstrating that a high degree of

depletion of flotillins was achieved in virtually all cells of the

respective clone.

To see if knockdown of flotillins affects the phosphorylation

status of FRS2, we used the stable Hep3B knockdown cells. FRS2

was immunoprecipitated from serum-grown cells, and the blots

were probed with anti-phospho-Tyr antibodies (Fig. 4A). Interest-

ingly, we could detect a tendency to increased Tyr phosphoryla-

tion of FRS2 in flot-2 knockdown cells and a significantly

increased phosphorylation in the flot-1 knockdown cells (Fig. 4B).

Since Tyr and Thr phosphorylation of FRS2 have been described

to be reciprocally regulated [14,15], one would expect that the

increased Tyr phosphorylation would result in decreased Thr

phosphorylation of FRS2 in flotillin knockdown cells. We thus

aimed at detecting the Thr phosphorylation of FRS2, which is

mediated by ERK, by means of antibodies directed against

phosphorylated recognition sites of the ERK kinase. Unfortunate-

ly, although a tendency to decreased Thr phosphorylation of

FRS2 was indeed visible after depletion of flot-2 or flot-1, the

signals were generally very weak and did not allow for any definite

conclusions (Data not shown).

FRS2 has been described to associate with cellular membranes

by means of myristoylation. Since myristoylation alone can only

provide a weak membrane attachment [37], we studied by means

of immunofluorescence studies if the cellular localization of FRS2

might depend on flotillins. Although FRS2 was localized at the

plasma membrane in the control cells, knockdown of flot-1 or flot-

2 resulted in a slight increase in the cytoplasmic staining and some

loss of membrane localization of FRS2 (Fig. 4C), indicating that in

the absence of flotillins, FRS2 is less membrane associated. In

addition, some nuclear staining for FRS2 was detected in flot

knockdown cells but not in the control. These results suggest that

the membrane association of FRS2 may be facilitated by the

presence of flotillins. Since flot-2 and flot-1 knockdown cells gave

virtually identical results in these assays, it is likely that the changes

in FRS2 membrane association are more attributable to the

absence of flot-1 expression, considering that flot-2 knockdown

cells also lack flot-1 (Suppl. Fig. S1B).

Previous data have shown that in some cell types, FRS2 is

constitutively associated with membrane rafts [38,39]. Thus, the

interaction between flot-1 and FRS2 might facilitate the

localization of FRS2 into these domains. To test this, we again

used the Hep3B cells which were either serum starved or starved

and then stimulated with pervanadate to enhance Tyr phosphor-

ylation. Detergent resistant membranes (referred to as rafts below)

were isolated using density gradients after detergent extraction

[40]. In these gradients, rafts are mainly present in fractions 1–3,

as evidenced by the enrichment of cholera toxin in these fractions

Figure 2. Endogenous flot-1 and flot-2 colocalize with FRS2 in Hep3B cells. Cells were grown in a medium containing FCS and stained with
antibodies against endogenous FRS2 (green) and flot-1 or flot-2 (red). Scale bars 10 mm.
doi:10.1371/journal.pone.0029739.g002

FRS2 Interaction with Flotillin-1 and CAP
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(Fig. 5). Flot-1 was found to reside in fractions 2–5 in starved cells,

whereas in pervanadate stimulated cells, a shift towards raft

fractions was observed (Fig. 5, upper part). We were not able to

detect FRS2 in the raft fractions in starved cells, whereas in

pervanadate stimulated cells, some FRS2 was found in fractions 2–

3 together with flot-1. Intriguingly, pervanadate did not induce a

shift of FRS2 towards raft fractions in flot-1 knockdown cells

(Fig. 5, lower part), implicating that flot-1 is necessary for the

stimulation induced recruitment of FRS2 into detergent insoluble

membranes in these cells. However, only a fraction of FRS2

becomes raft associated during signaling, contrary to previous

findings from other cell types [38,39].

Flot-1 has previously been described to interact with Cbl-

associated protein (CAP). We thus tested in our raft fractions if the

localization of CAP would be altered after flot-1 knockdown. In

control cells, CAP displayed a broad distribution in the heavier

fractions, without localizing to rafts. Although CAP underwent a

shift towards lighter membranes upon pervanadate stimulation, it

remained concentrated in fractions 5 and 6, without localizing to

rafts (Fig. 5, upper part). In flot-1 knockdown cells, CAP was found

to reside in fractions 5 and 6 both in starved and stimulated cells

(Fig. 5, lower part). Thus, although CAP exhibits a flot-1

dependent localization in these gradients, flot-1 does not recruit

CAP into rafts.

Previous findings have shown that during signaling of the

neurotrophic receptor TrkA, flot-1, FRS2 and CAP all localized

into rafts [38]. However, a direct molecular connection between

these three proteins has so far not been established. Since flot-1

interacts with both FRS2 and CAP, we tested if FRS2 would be

capable of interacting with CAP. Our Y2H analysis showed that

FL CAP indeed interacted with FL, PTB and CT domain of

FRS2, whereas the sorbin homology (SoHo) domain of CAP

only showed an interaction with FRS2 PTB domain (Fig. 6A).

Since both FRS2 and CAP posses multiple domains that mediate

protein-protein interactions and both CT and PTB in FRS2

appeared to interact with CAP, we used GST pulldown to

characterize the interaction domains more closely. Various GST

fusion proteins containing CAP domains were generated

(Fig. 6B). The purified GST proteins were incubated with

purified FRS2-His. A strong interaction was seen between FL

proteins (Fig. 6C and D). Interestingly, a CAP mutant lacking

the SoHo domain (DSoHo) showed a similar binding to FRS2 as

Figure 3. Overexpression of FRS2 does not compensate for the signaling defects in flot-1 knockdown cells. FGF receptor and flot-1
compete for the binding to FRS2. (A) Flot-1 was knocked down in HeLa cells by means of siRNAs and the cells were transfected with FRS2-CFP.
Starved cells were stimulated with FGF for 5 min, and the activation of Akt (uppermost blot) and ERK2 (3rd blot) was measured with phospho-specific
antibodies. The third blot from the bottom shows the analysis of the transfection efficiency of FRS2-CFP and of the 2nd one the knockdown efficiency
of flot-1. Lowermost blot (GAPDH) shows equal protein loading. (B) Purified FRS2-GST was immobilized on sepharose and incubated with lysates of
HeLa cells transfected with increasing amounts of FGFR-myc (0.5 to 2 mg). The binding of endogenous flot-1 from these lysates was tested (upper
blot). (C) Quantification of the flot-1 bound to FRS2. In the presence of increasing amounts of FGFR, the binding is significantly reduced. (D)
Expression of FGFR was verified by Western blot.
doi:10.1371/journal.pone.0029739.g003

FRS2 Interaction with Flotillin-1 and CAP
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Figure 4. Increased Tyr phosphorylation and solubility of FRS2 in flotillin knockdown cells. (A) FRS2 was immunoprecipitated from
serum grown Hep3B cells. The Tyr phosphorylation of FRS2 was measured by means of phospho-Tyr antibodies and found to be increased both in
flot-1 and flot-2 knockdown cells. (B) Densitometric quantification of FRS2 phosphorylation with SD (5 independent experiments). F1-KD cells display
a significantly increased P-Tyr of FRS2. (C) Hep3B cells were grown under serum, fixed and stained with antibodies against FRS2 (left column) and
flotillins (middle). In control cells, FRS2 was localized at the plasma membrane and within the cytosol, whereas in flot-1 or flot-2 knockdown cells, a
cytosolic staining was evident. In addition, especially in flot-2 knockdown, some nuclear staining was observed. Right column: overlay with DAPI
staining. Scale bars 10 mm.
doi:10.1371/journal.pone.0029739.g004

FRS2 Interaction with Flotillin-1 and CAP
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the FL CAP, whereas the SoHo-GST interacted less strongly

(Fig. 6D). Of the three SH3 domains (src-homology domain 3) of

CAP, only the third one (SH3C) was found to bind FRS2.

Quantification of the binding showed that full-length CAP,

DSoHo and SH3C all displayed a significant binding to FRS2

(Fig. 6E). These results imply that multiple domains in FRS2 and

CAP are involved in their interaction. These in vitro results were

verified by coimmunoprecipitation of the endogenous proteins

from Hep3B cells, in which a strong coprecipitation was

detected. A similar degree of coprecipitation was detected in

control and flot-1 or flot-2 knockdown cells (Fig. 6F), although

the coprecipitation may even be slightly increased in flot-1

knockdown cells.

Since the SoHo domain of CAP and the PTB domain of

FRS2, which were found to interact, are the domains that also

mediate the interaction of the respective proteins with flot-1, we

tested the hypothesis that CAP and flot-1 might compete for the

binding to FRS2. CAP-GST was immobilized on sepharose

beads and incubated in the presence of increasing concentra-

tions of purified FRS2-His, and the binding of endogenous flot-1

from HeLa lysates was tested (Fig. 7). The presence of increasing

concentrations of FRS2-His indeed was capable of abolishing

the interaction of flot-1 with CAP, demonstrating that rather

than forming a trimeric complex, FRS2, flot-1 and CAP may

compete for the binding of each other due to their partly

overlapping interaction domains. Since the amount of FRS2

bound by CAP only modestly increases upon incubation with

higher amounts of purified FRS2, whereas CAP-bound flot-1 is

clearly reduced, FRS2 most likely binds to flot-1 in the lysate,

prevents it from binding to CAP and keeps it in the soluble

fraction.

Discussion

Here we have shown that the signaling adaptor protein FRS2

directly interacts both in vivo and in vitro with the membrane raft-

associated flot-1. This interaction is mediated by the PTB domain

and, to a lesser extent, the C-terminus of FRS2 and by the C-

terminus of flot-1. We were able to coprecipitate flot-1 together

with FRS2 from mouse tissue lysates, demonstrating that this

interaction also takes place in vivo. Interestingly, flot-2, which

shows a high homology to flot-1 and forms stable oligomeric

complexes with it [25], does not appear to directly interact with

FRS2. However, coprecipitation of flot-2 with FRS2 was detected

from cell lysates, which is probably due to the strong association of

flot-2 with flot-1 and not a result of a direct interaction with FRS2.

Further proof for the functional role of the interaction of flot-1

with FRS2 was provided by our results showing that depletion of

flot-1 affects the cellular localization of FRS2 in that it appeared to

be more soluble. Furthermore, in vanadate stimulated cells, a

small fraction of FRS2 was recruited into detergent resistant

membranes, which did not take place in the absence of flot-1.

Even more importantly, FRS2 was not able to rescue the

phosphorylation deficiency of ERK in flot-1 knockdown cells.

Overexpression of FRS2 has previously been shown to result in

increased ERK activation [15]. If the ERK activation pathways

that flot-1 and FRS2 participate in were separate, one would

expect that FRS2 overexpression would result in normal ERK

phosphorylation. However, if FRS2 and flot-1 are functionally

interconnected, FRS2 probably residing upstream of flot-1, no

compensation would take place, as observed here. Thus, the

interaction of FRS2 and flot-1 during FGFR signaling may be

required for a proper activation of MAP kinases.

Figure 5. Flotillin-1 is required for the recruitment of FRS2 into light membranes in pervanadate treated cells. Hep3B cells (control:
upper panels, flot-1 knockdown: lower panels) were starved overnight and then stimulated with pervanadate. Detergent resistant light membranes
were prepared using density gradient centrifugation and found in fractions 1–3 of the gradient. The localization of FRS2, flot-1 and CAP was analyzed.
Western blots for transferrin receptor (TfnR), GAPDH and GM1-bound cholera toxin subunit B (CTX-B) were used to control the gradient.
doi:10.1371/journal.pone.0029739.g005

FRS2 Interaction with Flotillin-1 and CAP
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Flot-1 does not contain any typical PTB domain binding motifs

(NPXY or NPXpY) although its interaction with FRS2 is to the

most part mediated by the FRS2 PTB domain. Thus, other binding

motifs must be responsible for the interaction. Consistently, the PTB

domain of FRS2 can bind to both phosphorylated and nonpho-

sphorylated sequences. It has been shown to interact with the Trk A

receptor by means of a classical NPXpY motif, whereas its

interaction with the juxtamembrane region of FGF receptor 1

involves an amino acid sequence lacking both Tyr and Asn residues

[5,6,41]. However, Tyr phosphorylation was found to increase the

binding of the full-length FRS2 but not of the PTB domain to

FGFR1 [42]. We here observed an increased Tyr phosphorylation

of FRS2 in the absence of flot-1. Previous studies have shown that

Tyr and Thr phosphorylation of FRS2 are reciprocally regulated

[14,15,39]. Unfortunately, we were not able to measure FRS2 Thr

phosphorylation, which is mediated by ERK, but it is likely to be

reduced. This may even be a direct consequence of the reduced

ERK activity in flot-1 knockdown cells, since inhibition of ERK

activity has been shown to result in decreased Thr and

concomitantly increased Tyr phosphorylation of FRS2 [15].

Another novel interaction partner of FRS2 discovered in the

present study is CAP, an adaptor protein with three SH3 domains.

Figure 6. FRS2 directly interacts with Cbl-associated protein. (A) Yeast two-hybrid analysis of the interaction between FRS2 and CAP
domains. (B) Structure of the CAP-GST constructs used. (C) and (D) Interaction of purified FRS2-His and CAP-GST proteins. CAP-GST fusion proteins
were immobilized on sepharose and tested for the binding of purified FRS2-His. Upper blot shows the bound FRS2-His (anti-His antibody), lower blot
the ponceau staining of the GST proteins. 1 mg of FRS2-His was used as a positive control. (E) Quantification of the binding of FRS2 to various CAP
domains. A binding of FRS2 significantly higher than background was seen with the full-length CAP, delta-SoHo and the third SH3 domain. (F)
Endogenous FRS2 was immunoprecipitated from Hep3B cells, and the binding of endogenous CAP was tested. Please note that several isoforms of
CAP are present in Hep3B cells, of which only one appears to bind FRS2.
doi:10.1371/journal.pone.0029739.g006
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Both the PTB domain and CT of FRS2 were found to mediate this

interaction, whereas in CAP, the SoHo domain, together with the

third SH3 domain, seems to bind to FRS2. In our GST pulldown

assays, deletion of the CAP SoHo domain did not result in a major

reduction in binding to FRS2. Furthermore, both the FL CAP and

the third SH3 domain showed about similar binding efficiency to

FL FRS2, implicating a co-operative mode of binding. SH3

domains bind to proline rich sequences, several of which are

present in FRS2, one of them even residing within the PTB

sequence [2]. In the Y2H assay, the SoHo domain only bound to

the PTB domain, whereas FL CAP bound to FRS2 CT as well.

Thus, this would suggest that the SH3 domain of CAP may also be

capable of interacting with the poly-Pro sequences in the more C-

terminal part of FRS2.

Interestingly, CAP has previously been linked to flot-1 during

insulin signaling [26]. Furthermore, it has been postulated that the

activated NGF receptor TrkA is translocated into flotillin-

containing membrane rafts. Differentiation and neurite growth

of PC12 cells can be induced by NGF, which binds to its receptor

TrkA and induces a signal transduction through rafts. In PC12

cells, a very transient association of TrkA with CAP, which in turn

interacted with flot-1 with similar kinetics, was observed. However,

CAP was detected in a constitutive complex with an adaptor

protein APS [43], which has been shown to associate only with the

activated TrkA [44]. This would suggest that during TrkA

signaling, CAP associates with flot-1 and activated TrkA only

very shortly, possibly mediating raft recruitment of TrkA, but then

dissociates from them. Intriguingly, FRS2 has been shown to

reside in the rafts in which the activated TrkA is recruited [38],

and it is already long recognized that FRS2 is an important

regulator of TrkA signaling [2,3,11,14,17,38,45], and may even

participate in insulin signaling [18]. However, FRS2 has never

been connected either with flot-1 or CAP before. Since flotillins

were originally discovered as neuronal regeneration proteins [32],

and knockdown of flotillins in neuronal N2A cells causes reduced

neurite outgrowth [31], flotillins might indeed modulate neuronal

differentiation together with FRS2 and CAP, most likely by

regulating the activation of MAP kinases.

We here show that FRS2 can bind to both flot-1 and CAP,

whereas previous studies have shown that CAP and flot-1 also

interact with each other, and this interaction also requires the

SoHo domain of CAP [26,33]. The interaction of flot-1 with FRS2

may be required for the recruitment FRS2 to membranes or even

membrane rafts, as has been suggested for the interaction of flot-1

with CAP [33]. This might in turn be necessary for a productive

interaction of FRS2 with its signaling partners, such as FGF

receptor. Although we cannot exclude that a trimeric complex

between FRS2, flot-1 and CAP exists in the cells, the overlapping

binding domains would rather suggest that these proteins compete

for the binding to each other, as we also observed for the binding

of FGFR and flot-1 to FRS2. Alternatively, FRS2, CAP and flot-1

may bind to each other in a successive manner, thus regulating the

formation of downstream signaling complexes. In line with this,

FRS2 has been shown to be connected by means of the growth

factor binding protein-2 (Grb2) with the ubiquitin ligase cCbl

during FGFR signaling [46]. On the other hand, cCbl regulates

insulin receptor signaling by means of its interaction with CAP,

which then binds to flot-1 [26]. Thus, the signalosomes that are

formed by FRS2, flot-1 and CAP may vary according to the

signaling receptor and the respective cellular response. Impor-

tantly, strong evidence connects all three proteins to MAPK

activation, and FRS2 has been suggested to act as a scaffolder

during MAPK signaling [1,14,34,38,47,48,49]. Our unpublished

results imply that during EGF receptor signaling, flot-1 is found in

complex with RAF, MEK and ERK kinases, suggesting a

scaffolding function (Amaddii et al, under revision). Very

interestingly, we identified another putative MAP kinase scaf-

folder, mitogen activated protein kinase organizer-1, MORG1

[50,51] as a further interaction partner of flot-1 in our yeast two-

hybrid screen (our unpublished results). Thus, the most likely

mechanism how the interaction of FRS2 with flot-1/CAP

modulates signal transduction is the regulation of MAP kinase

function and the cellular activities resulting from MAP kinase

activity, such as proliferation and differentiation.

Materials and Methods

Plasmid constructs
FRS2 cDNA (NM_006654.3) was obtained by reverse tran-

scription using the primers:

59-CTATAGAATTCATGGGTAGCTGTTGTAGCTG-39

59-CTATAAGATCTAGCATGGGCAGATCAGTACTATT-

G-39

and cloned into vectors pECFP-N1 or pGADT7 (Clontech). A

sequence encoding the PTB domain of FRS2 was generated by

PCR using the primers

59-CTATAGAATTCATGGGTAGCTGTTGTAGCTG-39

59-CTATAAGATCTTCATATACTATTATTTTGCATAAT

CTC-39

and the C-terminal region with the primers

59-CTATAGAATTCAATGTGGTGGAAGAGCCAGTTG-39

59-CTATAAGATCTAGCATGGGCAGATCAGTACTATT-

G-39

GST-fusion constructs of FRS2 were constructed by subcloning

into vector pGEX-4T-1 (GE Healthcare), and FRS2-His was

Figure 7. Flot-1 and CAP compete for the binding to FRS2. CAP-
GST was immobilized to sepharose and incubated with HeLa cell lysates
in the presence of increasing amounts (1–5 mg) of purified FRS2-His.
The binding of endogenous flot-1 from the lysates was analyzed by
Western blot (upper blot). Middle panel shows the blot for FRS2-His and
the lowermost one a ponceau staining of the GST proteins.
doi:10.1371/journal.pone.0029739.g007
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obtained by subcloning into pSCherry2 (Eurogentec, Seraing,

Belgium). The flot-1 (NM_022701.2) constructs in pGBKT7

vector have been described previously [24,52]. Rat flotillin-1 in

pET41a was generated by PCR cloning. CAP-Flag (murine

isoform 1, GenBank accession number: U58883) and SoHo-BD

were a kind gift of Dr. A. Saltiel. Other CAP constructs were

generated using PCR. FGFR-Myc construct was a kind gift of I.

Kovacevic (University of Frankfurt).

Antibodies
Rabbit polyclonal antibodies against FRS2 (Western blotting)

and ERK1/2 and the monoclonal antibody against pERK1/2

were from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Rabbit polyclonal antibodies against Flag tag and FRS2 (for

immunoprecipitation and immunofluorescence) were from Sigma-

Aldrich (Taufkirchen, Germany). Rabbit polyclonal antibodies

against Akt, phospho-Akt (Ser473) and phospho-Tyr were from

Cell Signaling Technology (Danvers, MA, USA). Monoclonal

antibodies against flot-1 and flot-2 were from Transduction

Laboratories (Franklin Lakes, NJ, USA) and anti-CAP was from

Upstate (Lake Placid, NY, USA). A mouse monoclonal antibody

against GAPDH was from Biozol (Eching, Germany). The

primary antibodies used for immunofluorescence were detected

with a Cy3-conjugated goat anti-mouse antibody (Jackson

Immunoresearch, West Grove, PA, USA) and with an Alexa

Fluor 488 donkey anti-rabbit antibody (Molecular Probes,

Karlsruhe, Germany). Secondary antibodies goat anti-mouse and

goat anti-rabbit coupled to horseradish peroxidase (HRP) were

from Southern Biotechnologies (Birmingham, AL, USA) and

Zymed (Invitrogen, Karlsruhe, Germany), respectively.

Yeast-two-hybrid analysis
50 ml YPDA was inoculated with several fresh colonies of the

yeast strain AH109, and the culture was incubated with shaking at

30uC for 16 h to stationary phase (OD600.1.5). An aliquot of the

culture was transferred to 300 ml YPDA medium and incubated

at 30uC with shaking until OD600 0.560.1. Preparation of

competent cells and cotransformation with bait and prey

constructs were done according to the manufacturer’s protocol

(Matchmaker GAL4 Two-Hybrid System 3, Clontech). Transfor-

mants were plated on SD/-Leu/-Trp plates for selection. After a

few days, colonies were picked and transferred onto SD/-Ade/

-His/-Leu/-Trp/X-a-gal plates for the detection of galactosidase

activity and onto SD/-Leu/-Trp plates for growth control. Plates

were photographed 3 days after plating.

Preparation of yeast lysates
Yeast cell pellet from a 2.5 ml overnight culture was washed

and snap-frozen in liquid nitrogen. The pellets were resuspended

in 100 ml cracking buffer (8 M urea, 5% w/v SDS, 40 mM Tris-

HCl, 0.1 mM EDTA, 0.4 mg/ml bromphenolblue) supplemented

with protease inhibitor cocktail, 5 mM PMSF and 10% b-

mercaptoethanol. Thereafter, 100 ml of glass beads were added

into the mixture which was vigorously vortexed and incubated for

10 min at 70uC. Insoluble material was pelleted by centrifugation

at 21 900 g for 5 min. The supernatant was kept, while the

insoluble pellet was further cooked for 5 min and then

centrifugated for 5 min at 21 900 g. The supernatants of these

two extractions were pooled and analyzed by Western blot.

Cell culture and transfection
HeLa cells were cultured at 8% CO2 and 37uC in Dulbecco’s

modified Eagle’s medium (DMEM, Invitrogen, Karlsruhe,

Germany), containing high glucose, 10% fetal calf serum

(FCS, Invitrogen), 100 U/ml penicillin and 100 mg/ml strepto-

mycin (Sigma-Aldrich, Taufkirchen, Germany). Hep3B cells

were maintained in the same medium but at 5% CO2. For

transient transfections, Hela cells were seeded out on 6 well

plates and grown to a confluency of 90%, after which they were

transfected with 1 mg plasmid DNA using Lipofectamine 2000

(Invitrogen).

GST-protein expression
The following bacterial strains were used for the expression of

fusion proteins: BL21 transformed with either pGEX-4T-1 or

FRS2-GST constructs and the strain Rosetta transformed with

either pET41a, full length CAP-GST, flot-1-GST or one of the

deletion constructs of CAP. The bacteria were grown at 37uC until

OD600 0.4–0.6 and then induced with 1 mM IPTG for 5 h at

37uC, or with 50 mM IPTG over night at 16uC (in case of flot-1-

FL-GST and flot-1-CT-GST). The cells were pelleted and lysed in

lysis buffer (50 mM Hepes pH 7.5, 150 mM NaCl, 1 mM EDTA,

5% glycerol, 0.1% NP-40) supplemented with with 100 mg/ml

lysozyme, 1 mM PMSF, 1 mM dithiothreitol (DTT) and 1 mM

aprotinin, leupeptin and pepstatin. GST proteins from the lysates

were allowed to bind to glutathione-sepharose beads (GE

Healthcare), washed with PBS and left on the beads for pull-

downs.

His-tagged protein expression and purification
The bacterial expression strain SE1 transformed with FRS2-

His was grown and induced as above. The bacteria were lysed in

His-lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 5% glycerol,

0.1% NP-40) containing 100 mg/ml lysozyme, 1 mM PMSF,

5 mM imidazole, 2 mM b-mercaptoethanol and 1 mM of each of

the protease inhibitors (aprotinin, leupeptin, pepstatin). FRS2-His

was bound to Ni-NTA agarose beads (Qiagen, Hilden,

Germany). The beads were washed with the lysis buffer

supplemented with increasing concentrations of imidazole, and

FRS2-His was eluted from the beads with lysis buffer containing

250 mM imidazole. To remove excess salt and imidazole, which

might interfere with binding in further experiments, the protein

was dialysed against the dialysis buffer (50 mM Tris-HCl pH 7.6,

300 mM NaCl, 1 mM EDTA, 1 mM DTT, 20% glycerol) at 4uC
over night.

GST-pulldowns
HeLa or Hep3B cells were lysed for 30 min on ice in lysis buffer

(50 mM Tris pH 7.4, 0.15 M NaCl, 2 mM EDTA, 1% NP-40)

supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich).

Cell lysates were incubated with either GST or GST-tagged

proteins immobilized on glutathione-sepharose beads over night at

4uC. The beads were washed three times with 1 ml lysis buffer.

The samples were resuspended in loading buffer containing

50 mM DTT, boiled 5 min at 94uC and separated by SDS-

PAGE.

GST pulldown using purified proteins
Direct GST pulldown experiments were performed on ice for

3 h with flicking, using 5 mg of the purified proteins (GST, CAP-

GST, FRS2-His). The beads were washed three times with a

buffer containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl,

1 mM EDTA, 1 mM DTT, 0.01% Triton X-100, resuspended

in 26 SDS sample buffer containing 50 mM DTT, heated for

5 min at 94uC and separated by SDS-PAGE.
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Stable knockdown of flotillins using lentiviruses
Hep3B cells were seeded on a 96-well plate at a density of

32 000 cells/well one day prior to transduction. The cells were

infected with MISSION shRNA Lentiviral Transduction Particles

(Sigma-Aldrich) with a multiplicity of infection of 5.6. Hexadi-

methrine bromide (100 mg/ml) was used to increase the efficiency

of infection. Knockdown of flot-2 was achieved by using viral

clones TRCN0000149396 and TRCN0000150223, whereas for

the knockdown of flot-1, clones TRCN0000029310 and TRCN-

0000029309 were used. Viruses were removed one day after

infection. Selection for stable cell lines was started two days post-

infection using 2 mg/ml of puromycin.

Transient knockdown of flot-1 using siRNA oligos
HeLa cells were grown on 12 well plates to a confluency of 80%

and transfected with 85 nM siRNA oligonucleotide duplexes

targeting flot-1 (StealthTM siRNA; Invitrogen) using Lipofectamine

2000 (Invitrogen). As a control, an oligo which does not target any

human sequence (StealthTM RNAi Negative Control Duplexes

medium GC, Invitrogen) was used. These duplexes have

previously been well characterized by us [25,27] and routinely

result in more than 80% knockdown of flot-1 in about 95% of the

cells. No off-target effects have been detected so far.

Growth factor treatment
Hep3B cells were starved 18 h prior to treatment with 100 mM

sodium pervanadate for 30 min. HeLa cells were serum starved

for 24 h and then treated with 50 ng/ml bFGF (Sigma-Aldrich)

and 10 mg/ml heparin.

Immunofluorescence
Hep3B cells were grown on coverslips and fixed with ice-cold

methanol. Unspecific binding was blocked with 1% BSA/PBS,

and the cells were labeled with primary antibodies for 1 h and

stained with Cy3 and AlexaFluor 488 conjugated secondary

antibodies for 45 min. The samples were embedded in Gelmount

(Biomeda, Foster City, CA, USA) supplemented with 1,4-

diazadicyclo(2,2,2)octane (DABCO, Fluka, Neu-Ulm, Germany).

Images were taken with a confocal laser-scanning microscope

(Zeiss LSM510 Meta).

Coimmunoprecipitation
Cells were lysed for 30 min on ice in coimmunoprecipitation

buffer (100 mM Tris pH 8.0, 0.15 M NaCl, 1 mM MgCl2, 1%

Triton X-100), supplemented with Protease Inhibitor Coctail,

60 mM n-octyl-b-D-glucopyranosid (AppliChem) and 1 mM

vanadate. Mouse tissues were grinded in liquid nitrogen. 25 mg

of powdered frozen tissue were homogenized in a tissue lyzer

(Retsch, Germany) in 500 ml coimmunoprecipitation buffer. The

lysates were precleared three times with 50 ml Pansorbin beads

(Calbiochem, Nottingham, UK). Precipitation was performed

using antibody-coupled Protein A Dynabeads (Invitrogen) for 16 h

at 4uC. The beads were washed three times with lysis buffer.

Precipitated proteins were solubilized in loading buffer containing

50 mM DTT and boiled 5 min at 94uC. Proteins were separated

by SDS-PAGE and subjected to immunoblotting with specific

antibodies.

Preparation of detergent insoluble membranes
Hep3B cells were grown in 15 cm dishes, starved overnight and

treated or not with 100 mM sodium pervanadate for 30 min. Lipid

rafts were prepared using density gradient centrifugation as

described [40]. 1.2 ml fractions of the gradients were collected,

supplemented with SDS (final concentration 2%) and mixed with

46 loading buffer containing 100 mM DTT and 20% b-

mercaptoethanol. The samples were boiled for 5 min at 94uC.

Equal volumes were analyzed by SDS-PAGE and Western

blotting. In order to detect the ganglioside GM1, 5 ml of the

fractions were slot-blotted onto nitrocellulose and incubated with

0.5 mg/ml cholera toxin subunit B (CTX-B; Invitrogen, Karls-

ruhe, Germany) conjugated with HRP.

Statistics
Unless otherwise stated, all experiments were performed at least

three times. For the statistical analysis, Western blots were

quantified by scanning densitometry using Quantity One Software

(Biorad, Munich, Germany). Data are shown as mean 6 SD.

Statistical comparisons between groups were made using one way

ANOVA analysis (Bonferoni test) using GraphPad Prism 4

software. Values of p,0.05 were considered significant (*) while

values of p,0.01 and p,0.001 were defined very significant

(**) and extremely significant (***), respectively.

Supporting Information

Figure S1 Expression of the proteins during yeast two-
hybrid analysis and analysis of knockdown efficiency of
flotillins in the stable Hep3B cells. (A) Flot-1 and FRS2

domain constructs used for identification of the interacting

domains in yeast two-hybrid assay. (B) Yeast lysates were prepared

from the transformed cells used for the yeast two-hybrid analysis,

and the expression of the fusion proteins was detected.

Autoactivation test was done by plating yeast colonies transformed

with the bait onto the selective plate containing the substrate of a-

galactosidase (–T+a-X-Gal plate). (C) Western blot analysis of

knockdown efficiency of flot-1 and flot-2. GAPDH was used as an

equal loading control. (D) Immunofluorescence staining of

endogenous flotillins in control (left column), flot-2 knockdown

(upper right) and flot-1 knockdown (lower right) cells. Scale bars

10 mm.

(TIF)
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