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Abstract
Background Hepatocellular carcinoma (HCC) is a complex and heterogeneous 
disease wherein cancer stem cells (CSCs) play a pivotal role in driving tumorigenesis, 
metastasis, and resistance to therapy. This study sought to map the stemness 
landscape of HCC and identify patients who may benefit from immunotherapy.

Methods A total of 26 stem cell gene sets were obtained from the StemChecker 
database. A stemness risk model was constructed based on data from TCGA, GEO 
databases, and bioinformatics methods. The hub genes identified in the model 
underwent significant preliminary in vitro and in vivo phenotypic validation, which 
included evaluating their effects on tumor stemness and their functional roles and 
interactions in TME. This basic verification emphasized the clinical relevance of hub 
genes and confirmed the practicality of the model in HCC stemness risk assessment 
and immune infiltration risk assessment, thereby providing a basis for potential 
treatment strategies.

Results HCC patients exhibited three subtypes; C1 showed the worst prognosis, 
which was linked to high stemness risk and immunosuppressive features. The hub 
gene PXMP2 demonstrated tumor-suppressive properties by inhibiting tumor stemness 
in both in vitro and in vivo experiments, promoting the infiltration of anti-tumor M1 
macrophages while simultaneously suppressing the infiltration of immunosuppressive 
M2 macrophages and neutrophils. Moreover, the high expression of PXMP2 was 
correlated with a favorable prognosis for the patients.

Conclusions This study identified three distinct stemness-based subtypes of HCC 
and established a novel three-gene prognostic risk model. Our findings highlight the 
critical role of PXMP2 in tumor biology and its potential as a therapeutic target, paving 
the way for personalized immunotherapy and chemotherapy approaches to enhance 
clinical outcomes in HCC patients.
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1 Introduction
Hepatocellular carcinoma (HCC) is one of the most prevalent liver cancers, marked by 
a high incidence and a poor prognosis [1]. Surgical resection is considered an effective 
treatment for early stage HCC [2]. However, despite the availability of diverse treatment 
modalities, such as surgical resection, liver transplantation, ablation, and chemotherapy, 
their effectiveness is often hindered by the high recurrence rates and limited accessibil-
ity to surgery or transplantation due to the typically late-stage diagnosis of the disease 
[3–5].

Cancer stem cells (CSCs) exhibit characteristics akin to normal stem cells, including 
self-renewal and differentiation potential [6]. Different types of CSCs have been iden-
tified in various malignancies, such as lung cancer, pancreatic cancer, breast cancer, 
prostate cancer, colon cancer, gliomas, and HCCs [7–10]. CSCs are highly tumorigenic, 
metastatic, and resistant to both chemotherapy and radiation, which contributes signifi-
cantly to tumor relapse after treatment. Moreover, CSCs can evade multidrug resistance 
through diverse intrinsic and extrinsic pathways [11].

The CSCs specific to HCC are known as liver CSCs (LCSCs). LCSCs display tissue-
specific traits, including tumorigenesis, chemoresistance, metastasis, and recurrence, 
often mirroring the phenotypes observed in xenotransplanted tumors [12]. These cells 
are instrumental in drug tolerance, facilitating both metastasis and recurrence [13]. 
When compared to other tumor cell types, LCSCs exhibited superior internal circulation 
capabilities, which enhance their ability to metastasize and establish secondary tumors. 
This unique ability contributes to HCC recurrence by promoting the growth of primary 
cancer cells and facilitating the spread of secondary malignancies [14]. Consequently, 
LCSCs are strongly associated with metastasis, recurrence, and multidrug resistance, 
making them valuable diagnostic markers for HCC. Recent research has increasingly 
focused on targeting LCSCs to mitigate tumor recurrence [15].

In this study, we analyzed HCC patient transcriptomes for stemness using ssGSEA on 
26 gene sets, classifying patients into three subtypes with distinct survival outcomes and 
tumor microenvironment (TME) patterns. A Stemness Subtype predictor was developed 
and validated in independent cohorts. WGCNA identified hub genes linked to stemness 
and prognosis, which were further validated through in vitro experiments, including cell 
proliferation, migration assays, and stemness-related marker expression analysis. Addi-
tionally, in vivo experiments utilized HCC xenograft models to assess tumor growth 
and metastasis, confirming the functional relevance of identified genes in the stemness 
subtypes.

In conclusion, our study findings facilitate individualized survival predictions and pro-
vide better treatment options for physicians and HCC patients based on the novel stem-
ness-based model and molecular classification.

2 Materials and methods
2.1 Clinical samples and data acquisition

The RNA expression profiles were obtained from the GEO database  (   h t t p s : / / w w w . n c b i . 
n l m . n i h . g o v / g e o /     ) (GSE116174/GSE76427) and the TCGA database (n = 342)  (   h t t p s : / / c 
a n c e r g e n o m e . n i h . g o v /     ) . The inclusion criteria of LIHC samples were as follows: (i) gene 
expression profiling of LIHC were available in the dataset; (ii) complete clinical data of 
LIHC patients were required, including gender, age, TNM stage, and overall survival. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/


Page 3 of 23Ye et al. Discover Oncology         (2025) 16:1141 

Finally, a total of 342 LIHC patients were enrolled in the study. Two independent datas-
ets from the GEO database were used in this study, including GSE116174 and GSE76427 
datasets. The GSE116174 included 64 HCC samples, and GSE76427 included 115 HCC 
samples with available clinical information. For validation purposes, data from the ICGC 
database (https://icgc.org/) were also used. COMBAT algorithm (empirical Bayes  f r a m e 
w o r k ) was applied to harmonize distributions between TCGA/GEO/ICGC datasets. The 
single-cell RNA sequencing (scRNA-seq) data were obtained from the GEO database 
(accession number: GSE149614).

2.2 Stemness signatures, TME exploration, and prognostic modeling in HCC

This study gathered 26 stem gene sets(e.g., Hs_EC_Skotheim, Hs_ESC_Sato) and 
employed ssGSEA for enrichment scoring, followed by consensus clustering of HCC 
samples. The TME characteristics were analyzed using ESTIMATE and IOBR tools. 
Chemotherapy sensitivity was predicted via TIDE and IC50 calculations. A prognostic 
stemness model was constructed based on Cox regression analysis, validated by time-
dependent ROC curves, and evaluated using clinical decision curve analysis (DCA). 
The mRNA expression-based stemness index (mRNAsi) was derived via one-class logis-
tic regression (OCLR). Furthermore, weighted gene co-expression network analysis 
(WGCNA) identified clinically relevant hub genes, with co-expression modules (e.g., 
palevioletred3) generated by clustering genes sharing similar expression patterns.

2.3 Cell culture

Hep3B and 293T cells were purchased from the Cell Bank of the Chinese Science 
Academy. Hep3B and 293T cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM; WISENT, 319-005-CL) containing 10% fetal bovine serum (FBS; WISENT, 
086–150) and 1% penicillin and streptomycin (WISENT, 450-201-EL) at 37 °C with 5% 
CO2.

2.4 Plasmid construction and lentiviral packaging

shRNA sequences targeting the gene of interest were retrieved from an experimentally 
verified online database. Restriction enzyme sites were added, and double-stranded 
DNA oligos were synthesized to create shRNA expression constructs with sticky ends. 
The pSicoR-mCherry vector was linearized using HpaI and XhoI to produce asymmet-
ric sticky ends, into which the shRNA constructs were inserted and transformed into 
competent Escherichia coli cells. Positive clones were confirmed by PCR and sequenc-
ing, yielding a plasmid containing the shRNA scaffold.

For lentivirus packaging, the Lenti-X™ HTX system (Clontech) was used. Lenti-X 293T 
cells were seeded at 4–5 × 106 cells per 100-mm plate and incubated overnight. Following 
the manufacturer’s protocol, the transfection reagent and polymer were mixed, added to 
the cells, and incubated. After 4 h of incubation, the medium was changed, and the cells 
were cultured for an additional 48 h. The viral supernatant was harvested, centrifuged at 
500 xg for 10 min to eliminate debris, and stored at -80 °C. Viral titer was assessed using 
Lenti-X GoStix™ or a serial dilution method, and the infection efficiency was calculated 
to determine the titer.

https://icgc.org/
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2.5 Quantitative reverse transcription PCR

The total RNA of the cells was extracted by using the Total RNA Isolation Kit (Vazyme, 
RC101- 01) and reverse transcribed into cDNA by using the Reverse Transcription Kit 
(Vazyme, R223). Quantitative PCR was performed with SYBR Green (Q221; Vazyme) 
on the QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems, CA, USA). All 
experiments were independently repeated at least three times. GAPDH were used as an 
endogenous control to normalize the relative expressions. The primers used in the study 
are listed in the Supplementary Table S3.

2.6 Western blotting

The cells were washed thrice with PBS and lysed in RIPA buffer (Beyotime, P0013B) 
containing phosphatase and protease inhibitors. The cell extracts were electrophoresed 
using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and sub-
sequently transferred onto polyvinylidene fluoride membranes. The membranes were 
then blocked with milk for 1 h and then incubated with the corresponding primary anti-
bodies overnight at 4 °C. The membranes were washed thrice with TBST and incubated 
with the corresponding secondary antibodies at room temperature. Protein bands were 
detected by using the ChemiDocTM MP Imaging System (Bio-Rad). All experiments 
were independently repeated at least three times. The antibodies used in this study are 
listed in Supplementary Table S4.

2.7 Multiplex immunohistochemistry staining

Clinical samples were obtained with informed consent from 90 HCC patients who 
underwent surgery between 2016 and 2018 at the First Affiliated Hospital of Anhui 
Medical University (AHMU). Tissue microarrays were constructed from paraffin-
embedded cancerous and adjacent non‐tumor tissues. In the study, all experimental 
procedures were approved by the Ethics Committee of The First Affiliated Hospital of 
Anhui Medical University and conformed to the requirements of the Declaration of Hel-
sinki and the International Ethical Guidelines for Biomedical Research Involving Human 
Subjects(Approval No.: LLSC20221301). The tissue samples were stained using the 
PANO 7-plex multicolor immunofluorescence kit (Panovue, 0004100100) according to 
the manufacturer’s instructions. The sections were incubated with the primary antibod-
ies. These samples were then incubated with the corresponding secondary antibodies. 
The nuclei were stained with DAPI (Vector, H-1200-10), and photos were taken using a 
fluorescence scanning microscope (Olympus, BX-UCB).

2.8 Tumor cell spheroid formation assay

Liver cancer cells in the logarithmic growth phase were digested with trypsin. After 
detachment, the cells were centrifuged to remove trypsin and washed thrice with ster-
ile PBS. The cells were then resuspended in DMEM/F12 (ThermoFisher, 11320033) to 
prepare a single-cell suspension, supplemented with 4 µg/mL heparin, 4 µg/mL heparin 
B27, 20 ng/mL recombinant human EGF, and 20 ng/mL recombinant human FGF. Cells 
were seeded in low-attachment 96-well plates at densities of 500, 400, 300, 200, and 100 
cells/mL, with at least three replicate wells per concentration. The cells were cultured 
for 10 to 14 days. Spheroid formation was observed under a microscope, and the images 
were captured to assess and count the spheroids from day 0 to day 14.
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2.9 Cell colony formation assay

Liver cancer cells in the logarithmic growth phase were digested with trypsin, cen-
trifuged, and resuspended in sterile PBS to create a single-cell suspension, which was 
mixed with DMEM containing 10% fetal bovine serum. Approximately 200 cells were 
plated in each well of a 6-well plate (with at least three replicate wells per sample) and 
incubated at 37 °C in a 5% CO2 atmosphere with saturated humidity for 2–3 weeks until 
visible colonies appeared. The supernatant was discarded, and the wells were washed 
twice with sterile PBS.

Next, 2 mL of paraformaldehyde was added for fixation for at least 30 min, followed 
by the removal of the fixative and the addition of the crystal violet staining solution for 
10–30 min. Excess dye was washed off with running water, and the plates were air-dried. 
A transparent grid overlay was placed on top for direct colony counting, or colonies with 
> 50 cells were enumerated under a low-power microscope. The colony formation rate 
was calculated using the following formula:

Colony Formation Rate = (Number of Colonies/Number of Inoculated Cells) × 100%

2.10 Extreme limiting dilution assay

shPXMP2-stable 3B cell lines and control 3B cell lines were seeded at densities of 25, 
50, 100, 250, 500, and 1000 cells/well in uncoated 96-well ultra-low attachment plates 
(Corning Inc., Corning; NY, USA). The serum-free stem cell medium was refreshed 
weekly. The spheres were allowed to grow for 14 days before manual scoring of the 60 
inner wells. Extreme limiting dilution analysis was conducted using publicly available 
software from the Extreme Limiting Dilution Analysis website [16].

2.11 Cell migration and invasion assay

For the migration assay, no Matrigel (Corning® Matrigel, #356234) was used. In the 
invasion assay, frozen Matrigel was thawed at 4 °C for 24 h, diluted 1:40 in serum-free 
medium, and 100 µL of the mixture was spread on the upper chamber surface, with at 
least three replicate wells per concentration, followed by incubation at 37 °C for 1–2 h to 
solidify.

Liver cancer cells were digested with trypsin, washed thrice with serum-free medium, 
and counted. The cells were resuspended at a density of 1 × 106 cells/mL. In a 24-well 
plate, 500 µL of DMEM with 10% fetal bovine serum was added, and the Matrigel-coated 
upper chamber was washed with the serum-free medium before adding 100 µL of the 
cell suspension. The cells were incubated at 37 °C in a 5% CO2 atmosphere for 24 h.

After incubation, the transwell chambers were removed, the medium was discarded, 
and the chambers were washed twice with sterile PBS. They were then fixed with 500 µL 
of 4% paraformaldehyde for 30 min. After removing the fixative, the cells were stained 
with 0.1–0.2% crystal violet for 5–10  min at room temperature, washed thrice with 
PBS, and the upper surface cells were wiped off with cotton swabs. Six random fields 
were observed under a microscope at high magnification for cell counting and statistical 
analysis.

2.12 Blood vessel ring formation assay

The cells from both experimental and control groups were cultured in the logarithmic 
growth phase and harvested at equal numbers (100,000 to 200,000). They were seeded 
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in a 6-well plate with 1–2 mL of the culture medium until reaching 60–70% confluency, 
followed by incubation for 24–36 h.

Matrigel was melted overnight at 4  °C and kept on ice. Pre-sterilized 200 µL pipette 
tips were cooled at 4 °C, and 50 µL of Matrigel was added to each well of a pre-cooled 
96-well plate, avoiding air bubbles. The plate was tapped gently and placed in a 4  °C 
refrigerator for 10–20 min and then transferred to a cell culture incubator for 20–30 min 
for solidifying.

Cell growth was monitored, and once confluency reached 80–90% with a slightly yel-
low medium, the supernatant was collected and centrifuged at 2000  rpm for 5  min. 
Healthy HUVECs were digested, counted, and resuspended to seed 12,000 to 15,000 
cells/well. The collected conditioned medium was added to the resuspended cells, mixed 
thoroughly, and 100 µL of it was pipetted into each well of a coated 96-well plate with at 
least three replicate wells per concentration.

After a 10-min incubation, the cells were examined under a microscope for uniform 
distribution and appropriate density before returning to the incubator. The cells were 
observed every 2 h, with peak ring formation typically occurring at 6–8 h post-seeding. 
Photographs were taken to document the formation of vascular structures for counting 
and statistical analyses.

2.13 Subcutaneous tumor xenograft assay in nude mice

Male BALB/c nude mice, aged 5 weeks, were randomly assigned into six groups of 5 
each and acclimatized for a week prior to tumor cell injection. Liver cancer cells were 
digested with trypsin in adherent culture, centrifuged, and resuspended in sterile PBS 
to create a single-cell suspension. After cell counting, the suspension was mixed with 
high-concentration Matrigel (1:1 ratio), and an appropriate volume of the mixture was 
injected into the axillary regions on both sides of the mice. Different cell densities were 
injected, with a volume of 100 µL per mouse. Tumor growth was monitored using the 
IVIS Lumina bioimaging system. After 30 days of tumor growth, the mice were anes-
thetized using inhaled anesthetics and euthanized via cervical dislocation. Subcutaneous 
tumors were excised and measured for size. Tumors were photographed against a white 
background and then divided into two parts: one part was fixed in 4% paraformaldehyde 
for subsequent pathological analysis and the other part was stored at − 80 °C for future 
molecular analyses. All animal experiments and experimental procedures were approved 
by the Ethics Committee of The First Affiliated Hospital of Anhui Medical University 
and also complied with the guidelines of the Guide for the Care and Use of Laboratory 
Animals prepared by the National Academy of Sciences and published by the National 
Institutes of Health (NIH Publication 86 − 23, revised 1985).

2.14 Statistical analyses

Statistical analyses were conducted using R software (v4.4.0). For pairwise comparisons 
between the two groups, the Wilcoxon test was employed, while the Kruskal–Wallis 
test was applied for comparisons among multiple groups. Survival analysis was per-
formed using the Kaplan–Meier method and log-rank test. The optimal cutoff value for 
the stemness risk score was determined using the “surv_cutpoint” function from the 
survminer R package (v0.5.0). p < 0.05 was considered to indicate statistical significance.
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3 Results
3.1 Landscape of stem cell gene set enrichments and identification of three stemness 

subtypes

The ssGSEA algorithm was used to quantify the enrichment scores of 26 stem cell gene 
sets for each HCC sample. Through univariate and multivariate Cox analyses, 12 prog-
nostic stem gene sets were identified (p < 0.05). These gene sets were used to establish a 
prognostic stemness network, which highlights their interactions, lineages, and impacts 
on OS in patients with HCC (Fig. 1A). Based on the ssGSEA scores of the 26 gene sets, 
patients with HCC were stratified into three distinct clusters using unsupervised cluster-
ing through the ConsensusClusterPlus package (Fig. 1B). Spearman correlations among 
the ssGSEA scores of the 26 stemness-related gene sets are provided in Additional File 1: 
Supplementary Fig. S1A.

Among the three clusters, C1 (211 patients) and C3 (64 patients) showed significant 
enrichment for most stem cell gene sets, whereas C2 (226 patients) exhibited relatively 
low enrichment levels (Fig.  1C, D). Kaplan–Meier analysis revealed that patients with 
HCC in C1 had significantly poorer prognoses than those in the other clusters (log-rank 
p = 0.0455, Fig. 1E).

To further delineate the TME characteristics of the stemness subtypes, CIBERSORT 
and ESTIMATE analyses were conducted to evaluate TME fractions as well as immune 
and stromal scores (Fig. 1F). Among the three clusters, C1 exhibited immunosuppressive 
features, as characterized by the predominance of M0 and M2 macrophages, alongside 
elevated immune and stromal scores. Cluster C2 demonstrated moderate TME infil-
tration, with notable populations of activated memory CD4 + T cells, follicular helper 
T-cells, activated NK cells, M2 macrophages, and activated dendritic cells, accompanied 
by a prominent stromal score. Conversely, C3 was enriched with anti-tumor TME com-
ponents, including CD8 + T-cells, activated memory CD4 + T-cells, M1 macrophages, 
and activated mast cells.

3.2 Prediction of chemotherapy sensitivity and immunotherapy response

Chemotherapy remains a cornerstone in the management of advanced HCC, while 
immunotherapy and targeted therapies are gaining prominence. To evaluate sensitiv-
ity to various therapeutic agents, the IC50 values for chemotherapeutic drugs, immu-
notherapeutics, and targeted therapies were estimated using the pRRophetic algorithm, 
and comparisons were made across the stem cell clusters. The IC50 values for bleomycin, 
bosutinib, camptothecin, cytarabine, doxorubicin, etoposide, gemcitabine, lenalidomide, 
methotrexate, sorafenib, and sunitinib were significantly lower in C1 (Fig. 1G), suggest-
ing higher sensitivity of this cluster to these agents. On the other hand, clusters C2 and 
C3 exhibited enhanced sensitivity to elesclomol, gefitinib, imatinib, and lapatinib.

Immunotherapy responses were further analyzed using the TIDE algorithm. Reflect-
ing the TME landscape, which highlighted enriched tumoricidal immune cell infiltration 
in C3, an estimated 63% of patients in C3 and 57% in C2 were predicted to benefit from 
immunotherapy, compared with 44% in C1 (Fig. 1H). The limited response rate in C1 
may be attributed to the higher prevalence of immunosuppressive M0 and M2 macro-
phages, coupled with a reduced presence of M1 macrophages and CD8 + T-cells.
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Fig. 1 Prognostic Stemness Gene Network and Clinical Implications in HCC. A Prognostic stemness gene network 
landscape in hepatocellular carcinoma (HCC) patients, illustrating the interactions, lineages, and their impacts on 
overall survival (OS) for 12 prognostic stemness gene sets. B Consensus clustering analysis revealed three distinct 
clusters of HCC, displaying differences in stemness gene set enrichment scores. C Heatmap depicting the distribu-
tion of ssGSEA stemness scores across the three clusters. D Box plot comparing the differences in 26 ssGSEA stem-
ness scores among the three clusters, as assessed by the Kruskal—Wallis test, with ***P < 0.001. E Kaplan—Meier 
OS curves for different stemness subtypes in HCC patients. F Box plot illustrating the differences in 22 infiltrating 
immune cells, stromal, and immune scores among the three clusters, as analyzed by using the Kruskal—Wallis test; 
ns indicates no significance, ∗P < 0.05, ∗∗P < 0.01, ***P < 0.001. OS indicates OS and HCC denotes HCC. G Box plot 
displaying the estimated IC50 values of chemotherapy drugs among the three stemness subtypes. H The distribu-
tion of responders and non-responders to immunotherapy across distinct stemness clusters, as estimated by the 
TIDE algorithm
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3.3 Construction of prognostic stemness signature and establishment and validation of a 

nomogram survival model

We utilized mRNA sequencing data from TCGA, comprising 342 samples, along with 
data from the GEO database (GSE76427 and GSE116174, containing 95 and 64 samples, 
respectively) to create the training dataset. The International Cancer Genome Consor-
tium dataset, which includes 203 samples, served as an independent validation data-
set. Clustering, TNM stage, and stemness risk scores were incorporated to construct a 
nomogram survival model.

Univariate and multivariate Cox regression analyses identified 12 stem gene sets sig-
nificantly associated with HCC prognosis (Fig. 2A). Based on these gene sets, the stem-
ness risk score was calculated, leading to the development of a nomogram for predicting 
prognosis (Fig. 2B). Time-dependent receiver operating characteristic analysis demon-
strated that the area under the curve for OS at 1, 3, and 5 years was 0.722, 0.716, and 
0.713, respectively, in the training dataset (Fig. 2C). A well-fitted calibration curve con-
firmed the model’s predictive accuracy (Fig. 2E). Decision curve analysis indicated that 
the nomogram model offers a positive net benefit for patients, underscoring its clinical 
relevance (Fig. 2G). Using an optimal cutoff value for the stemness risk score in all 502 
patients with HCC, we found that the high-stemness risk group exhibited significantly 
worse OS than the low-stemness risk group (log-rank test, P = 1.9e-16) (Fig. 2I). These 
findings were confirmed in the validation datasets (Fig.  2D, F, H, J). Furthermore, the 
distribution of patients across the three stemness clusters has been visualized in the San-
key diagram (Fig. 2K).

3.4 Identification of characteristic genes in HCC subtypes via WGCNA

Considering the poor survival outcomes and limited benefits of immunotherapy 
observed in patients with C1 HCC, we performed WGCNA to identify the charac-
teristic genes in the GSE14520 cohort. To construct a scale-free network, the optimal 
soft-threshold power (β) was determined to be 14 (scale-free R2 = 0.86) (Fig. 2L). A mini-
mum of 30 genes per module was set, yielding 14 modules clustering genes with similar 
expression patterns (Fig. 2M).

Among these modules, the palevioletred 3 modules exhibited the strongest positive 
correlation with the C1 subtype (ME = 0.78, P = 7.1e − 47) and the most significant nega-
tive correlations with the C2 subtype (ME = − 0.47, P = 6.9e − 3) and C3 (ME = − 0.73, 
P = 5.7e − 38). In addition, the palevioletred 3 module was moderately correlated with 
the survival status (ME = − 0.22, P = 1.1e − 3) and TNM stage (ME = − 0.32, P = 1.1e − 6) 
(Fig.  2N). Consequently, the palevioletred 3 module was selected as the hub module, 
yielding 23 candidate hub genes based on the filtering criteria of module member-
ship > 0.8 and GS > 0.5 (Fig. 2O).

To explore the biological functions of the hub genes within the palevioletred 3 mod-
ules, GO and KEGG pathway enrichment analyses were conducted. The key GO terms 
for biological processes, cellular components, and molecular functions included small 
molecule metabolic processes, catabolic processes, mitochondrial function, and cata-
lytic activity (Fig. 3A). KEGG analysis indicated that the palevioletred 3 module genes 
were primarily enriched in the metabolic pathways, peroxisome function, butanoate 
metabolism, beta-alanine metabolism, pyruvate metabolism, and tryptophan metabo-
lism (Fig. 3B).
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Fig. 2 Prognostic Analysis and Model Development for HCC Based on Stemness Gene Sets. A Forest plot illus-
trating the 12 prognostic stemness gene sets. B Analysis of the association among three distinct clusters of HCC, 
TNM staging, and stemness risk score with HCC prognosis led to the incorporation of prognostic factors into the 
development of a nomogram model. C Receiver operating characteristic (ROC) curves with calculated areas under 
the curve (AUCs) for assessing the prognostic value of the nomogram model for 1, 3, and 5 year outcomes in 
the training sets. D ROC curves for the validation sets. E Calibration curve diagrams for the training set indicate 
a good agreement between the predicted and actual probabilities, yielding S: p > 0.05. F Calibration curve dia-
grams for the validation set exhibiting similar results. G Decision curve analysis (DCA) demonstrating significant 
enhancement of clinical net benefit in the 1, 3, and 5 year training sets. H DCA results for the validation sets. I 
Kaplan—Meier survival analysis of the nomogram model in the training sets. J Kaplan—Meier survival analysis 
in the validation sets. K Alluvial diagram depicting the distributions of all HCC patients across different clusters, 
TNM staging, stemness risk score, and their survival outcomes. L a Scale independence and mean connectivity 
of multiple soft-thresholding powers (β) from 1 to 30. M Using the cluster dendrogram developed by weighted 
correlation coefficients, genes with similar expression patterns were clustered into co-expression modules, with 
each color representing a module. N Heatmap of the correlation between module eigengenes (MEs) and clinical 
traits as well as stemness subtypes. O Scatter plot displaying the relationship of module membership (MM) in the 
palevioletred3 module with gene significance for C1 and C3
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Fig. 3 Functional Enrichment and Immune Microenvironment Analysis of the Palevioletred3 Module Hub Genes. 
A The top ten enriched biological process (BP), cellular component (CC), and molecular function (MF) GO terms 
of palevioletred3 module hub genes. B KEGG analysis of Cluster palevioletred3 module hub genes. C Forest plot 
illustrating the hub genes of the palevioletred3 module, highlighting the results of univariate and multivariate Cox 
regression analyses associated with the prognosis of HCC patients. D The Kaplan—Meier survival curve of the low-
risk group and the high-risk group by univariate and multivariate Cox regression analyses. E Heatmap manifesting 
the relationship between TIME infiltration and stemness-risk score as well as clinical pathological parameters. F The 
fraction of TIME cells (z-score transformed) in the high and low stemness-risk groups. Wilcoxon test, ns, not signifi-
cance; *p < 0.05; **p < 0.01; ***p < 0.001. TIME, Tumor immune microenvironment. G Radar charts exhibiting the 
immune cell infiltration abundances in the low stemness-risk groups. H Radar charts showing the immune cell in-
filtration abundances in the high stemness-risk groups. I Comparison of markers associated with M2 macrophage 
polarization between the high and low stemness-risk groups
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Univariate and multivariate Cox regression analyses further identified three hub genes 
significantly associated with HCC prognosis (Fig. 3C, D).

3.5 Correlation between stemness risk signature and TME infiltration patterns

Using CIBERSORT and ESTIMATE, we analyzed TME and immune cell infiltrates, 
including immune and stromal scores, which were visualized in a heatmap (Fig.  3E). 
Our findings revealed that as the stemness risk scores increased, the proportions of M0 
and M2 macrophages, along with both immune and stromal scores, also increased. In 
contrast, the proportions of antitumor immune cells—such as M1 macrophages, acti-
vated NK cells, CD8 + T-cells, and follicular helper T-cells—were significantly lower. 
Wilcoxon analysis confirmed that the levels of naïve B cells, eosinophils, M0 macro-
phages, M2 macrophages, monocytes, neutrophils, resting NK cells, plasma cells, and 
naïve CD4 + T-cells were significantly higher in the high-stemness risk group than in the 
low-stemness risk group. Conversely, several key antitumor immune cell types, includ-
ing activated dendritic cells, M1 macrophages, activated NK cells, activated memory 
CD4 + T-cells, CD8 + T-cells, and follicular helper T-cells, were more abundant in the 
low-stemness risk group than in the high-stemness risk group (Fig.  3F). In addition, 
the average TME distributions for each group were visualized (Fig.  3G, H). The low-
stemness risk group demonstrated enhanced antitumor immunity, whereas the high-
stemness risk group was dominated by immunosuppressive cells, particularly M0 and 
M2 macrophages. Notably, the regulators of M2 macrophage polarization were highly 
expressed in the high-stemness risk group (Fig. 3I).

In conclusion, these results suggested that patients in the high-stemness risk group 
have reduced sensitivity to immunotherapy. This finding likely reflects the immunosup-
pressive influence of stromal components and M2 macrophages within TME.

3.6 Stemness risk score as a predictor of chemotherapy sensitivity and immunotherapy 

response

Our previous results indicated that the C1 subtype was more sensitive to several che-
motherapeutic agents (Fig.  1G), but exhibited reduced sensitivity to immunotherapy 
(Fig. 1H). Similarly, we found that the high-stemness risk group was more responsive to 
drugs such as bleomycin, bosutinib, camptothecin, cytarabine, cisplatin, docetaxel, eles-
clomol, and imatinib (Fig. 4A). We then examined the relationship between the stem-
ness-risk model and predicted immunotherapy responses by using the TIDE method. 
Stemness risk scores were significantly lower in patients who responded to treatment 
than in nonresponders (Wilcoxon test, p < 0.001) (Fig.  4B). Moreover, the proportion 
of immunotherapy responders in the low-stemness risk group was almost double that 
in the high-stemness risk group (56% vs. 29%, chi-square test, p < 0.001) (Fig. 4C). The 
model was further applied to a real-world immunotherapy cohort (the IMvigor210 
cohort, treated with anti-PD-L1). In this cohort, responders to anti-PD-L1 therapy had 
significantly lower stemness risk scores than nonresponders (Wilcoxon test, p = 8.0e-3) 
(Fig.  4D). Additionally, patients in the high-stemness risk group showed significantly 
lesser benefit from treatment than those in the low-stemness risk group (20% vs. 30%, 
chi-square test, p = 0.036) (Fig.  4E). Survival analysis also revealed that patients in the 
high-stemness risk group had significantly shorter survival times than those in the 
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Fig. 4 Chemotherapy Response and Stemness Risk Analysis in HCC. A Box plots of the estimated IC50 values of 
several chemotherapy drugs between the high and low-stemness-risk groups. B TIDE results of the differences 
in the stemness-risk score between the respond and non-respond groups. C The distributions of responder and 
non-responder across distinct stemness-risk groups. D Differences in the stemness-risk score in SD/PD and CR/PR 
groups in the IMvigor210 cohort. E The distributions of anti-PD-L1 therapeutic response in distinct stemness-risk 
groups in the IMvigor210 cohort. F Kaplan–Meier survival analysis revealed a high stemness-risk score, which was 
correlated with a worse prognosis in the IMvigor210 cohort. G The overview of the correlation between mRNAsi 
and clinical features as well as stemness clusters and risk scores. H Box plot showing the comparison of the mRNAsi 
among three stemness Clusters. I Box plot of the comparison of the mRNAsi among the stemness-risk groups. J 
The Spearman correlation of stemness-risk score with mRNAsi. K Kaplan–Meier survival analysis revealed high 
mRNAsi, which was correlated with a better prognosis in HCC patients
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low-stemness risk group (hazard ratio = 1.32, 95% confidence interval: 0.99–1.75, log-
rank p = 0.047) (Fig. 4F).

3.7 mRNAsi levels were reduced in C1 and negatively correlated with the stemness risk 

score

Using the OCLR algorithm, we calculated the mRNAsi for each HCC patient based 
on the gene expression profiles and subsequently examined the relationship between 
mRNAsi and stemness subtypes. Ranking mRNAsi from low (left panel) to high (right 
panel), we observed that the C1 stemness subtype was primarily located in regions with 
low mRNAsi (Fig. 4G), whereas the C2 and C3 subtypes exhibited the highest mRNAsi, 
as confirmed by comparative analysis (Fig. 4H). Moreover, the low-stemness risk group 
had significantly higher mRNAsi (Wilcoxon test, p = 3.5e-22) (Fig. 4I), and a strong nega-
tive correlation was found between mRNAsi and the stemness risk score (Spearman cor-
relation = − 0.50, p = 1.0e-33) (Fig. 4J). Kaplan–Meier analysis also indicated that patients 
with HCC with low mRNAsi had poorer OS than those with high mRNAsi (Fig. 4K).

3.8 Low expression of PXMP2 correlates with improved survival in HCC

Among the three genes examined, PXMP2 was identified as the most significant gene 
associated with HCC stemness through ssGSEA stemness scoring, with higher expres-
sion correlating with better patient prognosis( Supplementary Fig. S1B and S1C). We 
have now incorporated a systematic pan-cancer analysis of PXMP2 expression using 
TCGA data (new Supplementary Fig. S1D), revealing that PXMP2 exhibits significantly 
higher expression in HCC compared to other cancer types. To further validate its poten-
tial role, we functionally assessed PXMP2 in relation to LCSC properties (Fig.  5A, B). 
Analysis of the TCGA database revealed that the PXMP2 expression was closely associ-
ated with tumorigenesis and CSC pathways, including the PI3K-Akt, Wnt, and Hippo 
signaling pathways (Fig. 5C).

The study of tumor and adjacent tissues from 36 patients, as well as tissue microar-
rays from 90 patients revealed that PXMP2 transcription was significantly reduced in 
the tumor tissues than in the paired adjacent tissues (Fig.  5D–F). Furthermore, tissue 
microarray analysis confirmed that low PXMP2 expression was associated with poorer 
prognosis in patients with HCC (Fig.  5G). The low PXMP2 expression also correlated 
with advanced tumor stage and increased metastasis (Supplementary Fig. S2A and S2B).

Multiplex fluorescence immunohistochemistry revealed a negative correlation 
between PXMP2 expression and the stemness markers ANPEP and SOX2 in HCC tis-
sues (Fig. 5H,I, J). Both ANPEP and SOX2 were associated with poor prognosis in HCC 
(Supplementary Fig. S2C and S2D). Single-cell bioinformatics analysis of liver cancer 
revealed that PXMP2 expression was lower in liver LCSCs than in hepatocytes (Fig. 5K–
N). Moreover, PXMP2 levels were higher in M1 macrophages than in M2 macrophages, 
while the expression in neutrophils was relatively low (Fig. 5L and Supplementary Fig. 
S3D).

3.9 PXMP2 knockdown promotes the proliferation and recruit or regulate M2 macrophage 

infiltration of HCC cells

We successfully inhibited PXMP2 expression in 3B cells using specific shRNAs 
(shPXMP2-1, shPXMP2-2, and shPXMP2-3) (Supplementary Fig. S3A and 6  C). To 
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Fig. 5 Clinical Analysis of PXMP2 in HCC. A The Spearman correlation between PXMP2 and the ssGSEA stemness 
enrichment score. B Kaplan–Meier survival analysis revealed the correlation of high PXMP2 with a better prognosis 
in HCC patients using TCGA. C Top KEGG pathways associated with differentially expressed genes between the 
high and low expression groups of PXMP2. D A bidirectional bar chart illustrating the expression of PXMP2 in 36 
pairs of HCC tumors and adjacent non-tumor tissues. E Immunofluorescence staining of the PXMP2 expression 
in HCC tumors and adjacent non-tumor tissues through tissue microarrays. F A paired raincloud plot depicting 
the mean fluorescence intensity of the PXMP2 expression in HCC tumors and adjacent non-tumor tissues using 
tissue microarrays. G Kaplan–Meier survival analysis revealed that a high PXMP2 expression was correlated with 
a better prognosis in HCC patients through tissue microarrays. H Representative images of PXMP2 (green), CD13 
(red), and SOX2 (yellow) in HCC patients using tissue microarrays. Nuclei were stained with DAPI (blue). Scale bar = 
50 μm. I A scatter plot illustrating the correlation between the mean fluorescence intensity of PXMP2 and CD13 by 
tissue microarrays. J A scatter plot illustrating the correlation between the mean fluorescence intensity of PXMP2 
and SOX2 using tissue microarrays. K Joint UMAP visualization of cell types and subclusters. L The expression of 
markers for the 12 clusters, as well as the expression of PXMP2 and stemness indicators, was assessed. M PXMP2 
co-expresses with LCSC marker HNF4A in distinct clusters. N PXMP2 Co-expresses with stemness marker ALDH1A1 
in distinct clusters
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assess the stemness characteristics of PXMP2, limiting dilution analysis was performed. 
The results revealed that transfection with shPXMP2-1 and shPXMP2-2 significantly 
increased both the number and size of spheres in 3B cells (Supplementary Fig. S3B and 
Fig. 6D), indicating enhanced stemness properties in HCC cells (Fig. 6A, B).

In the transwell assay, silencing PXMP2 in 3B cells significantly enhanced their migra-
tion and invasion abilities (Fig.  6E). The colony formation assay further revealed that 
PXMP2 silencing promoted the proliferation of HCC cells (Fig. 6F). In addition, the tube 
formation assay showed that tumor angiogenesis capacity was significantly increased 
when PXMP2 was silenced (Fig. 6G).

To evaluate the in vivo effects of shPXMP2, tumorigenesis was assessed using limiting 
dilution assays (Supplementary Fig. S3C). Hep3B cells with shPXMP2 showed signifi-
cantly increased tumorigenesis (Fig. 6H–J). Multiplex fluorescence immunohistochem-
istry revealed that PXMP2 knockdown enhanced the expression of stemness markers 
ANPEP and SOX2 within tumor tissues (Fig. 6K).

To further explore the potential connection between PXMP2 and the tumor immune 
microenvironment, we examined immune cell infiltration in tumor tissues. Our findings 
demonstrated that PXMP2 knockdown promoted the infiltration of M2 macrophages 
and neutrophils while suppressing M1 macrophage infiltration (Fig. 6L). These findings 
provide additional evidence of the close association between PXMP2 and tumor stem-
ness, suggesting that reduced PXMP2 expression facilitates the infiltration of M2 macro-
phages and neutrophils, which contributes to tumor progression.

3.10 PXMP2 inhibits HCC progression through the PI3K/AKT/mTOR and WNT pathways

In both in vivo and in vitro studies, PXMP2 knockdown significantly enhanced the pro-
liferation and metastasis of HCC cells. To identify the biological functions and signaling 
pathways associated with PXMP2, we performed KEGG and GO enrichment analyses by 
categorizing PXMP2 expression into high and low groups (Fig. 5C). The analysis revealed 
that the PI3K-AKT and WNT-signaling pathways were primarily linked to PXMP2 
expression in HCC (Fig. 7A, B). To further validate these findings, we conducted West-
ern blotting to assess protein alterations in the PI3K-AKT and WNT pathways following 
PXMP2 silencing in 3B cells.

Our results showed that silencing PXMP2 did not affect the AKT protein levels, rather 
led to increased levels of phosphorylated AKT, β-catenin, and phosphorylated β-catenin 
(Fig. 7C). These changes were further confirmed through multiplex fluorescence immu-
nohistochemistry, which revealed similar alterations in these pathway proteins in vivo 
(Fig. 7D, E). These results suggested that PXMP2 knockdown promoted HCC progres-
sion by activating the PI3K-AKT and WNT-signaling pathways.

These findings establish PXMP2 as a critical oncogenic driver in HCC that exerts its 
tumor-promoting effects through dual activation of PI3K-AKT and WNT/β-catenin 
signaling pathways (Supplementary Fig. S3E, F). Using specific pharmacological inhibi-
tors (MK-2206 and MSAB), we demonstrate that PXMP2 knockdown enhances multiple 
malignant phenotypes including tumor stemness (Fig.  7F), proliferation (Fig.  7G), 3D 
growth (Fig. 7H), and angiogenesis(Fig. 7I), all of which are completely reversed by path-
way inhibition. Our results not only elucidate the mechanistic basis of PXMP2-medi-
ated HCC progression but also identify PI3K-AKT and WNT signaling as promising 
therapeutic targets for HCC patients with elevated PXMP2 expression, highlighting the 
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Fig. 6 Functional Analysis of PXMP2 Knockdown in HCC Cells. A qRT-PCR displaying the induction of CD44 mRNA 
expression in 3B cells by shPXMP2 treatment. B qRT-PCR showing the induction of the CD13 mRNA expression in 
3B cells by shPXMP2 treatment. C Western blotting shows the expression of PXMP2, CD44, and CD13 protein in 3B 
cells via shPXMP2 treatment. D 3B frequency with shPXMP2 treatments was determined by using in vitro limiting 
dilution analysis (LDA). E Transwell detection of changes in the migration of 3B after treatment with shPXMP2. F 
Colony formation abilities of 3B with shPXMP2 treatments. G The effect of 3B cells with shPXMP2 treatments on the 
function of HUVES cells was detected by angiogenesis assay. H The gross examination demonstrated a drastic re-
duction in the tumor size in all dilutions of sh-NC cells as compared to that in the shPXMP2 group of the same cell 
concentration. I In vivo growth of shPXMP2-treated 3B cells was significantly accelerated. J The tumor volume of 3B 
cells processed with shPXMP2 was significantly larger. K In the tumor tissue of 3B cells treated with shPXMP2, the 
expression of PXMP2 was significantly decreased, while the expression of stemness markers CD13 and SOX2 were 
increased. L In the tumor tissues of 3B cells treated with shPXMP2, the expression of the M1 macrophage marker 
iNOS was decreased, while the expressions of the M2 macrophage marker CD206 and the neutrophil marker Ly6G 
were increased
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Fig. 7 Pathway Analysis Following PXMP2 Knockdown in HCC Cells. A GSEA analysis displaying the enrichment 
of WNT signaling pathway genes in the low PXMP2 group and significant downregulation of the same in the high 
PXMP2 group using TCGA. B GSEA analysis shows the enrichment of PI3K AKT MTOR signaling genes in the low 
PXMP2 group and the significant downregulation of the same in the high PXMP2 group using TCGA. C 3B cells 
treated with shPXMP2, the expression of p-AKT, β-catenin, and p-β-catenin was significantly increased by Western 
blotting. D The tumor volume of 3B cells treated with shPXMP2, the expression of β-catenin and p-β-catenin was 
significantly increased. E In the tumor volume of 3B cells treated with shPXMP2, the expression of p-AKT was 
significantly increased. F Effects of shPXMP2 on 3B frequency and rescue assay with pathway inhibitors. G 3B fre-
quency analysis by colony formation assay with shPXMP2 and pathway inhibitor rescue. H Effects of shPXMP2 on 
3B frequency in patient-derived liver cancer organoids and rescue with pathway inhibitors. I Effects of shPXMP2 on 
3B frequency in vascular formation assay and rescue with pathway inhibitors
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potential clinical utility of pathway-specific inhibitors in this molecularly defined HCC 
subtype.

4 Discussion
HCC, which is one of the most prevalent and aggressive malignancies, is character-
ized by a high incidence and poor patient prognosis [17]. A defining feature of HCC is 
the presence of CSCs, a distinct subpopulation of tumor cells that play a pivotal role 
in tumor initiation, progression, and resistance to therapy [18]. In liver CSCs, several 
highly conserved signaling pathways, including Wnt/β-catenin, Notch, and Hedgehog, 
are aberrantly activated, which contributes to their stemness and malignancy. Moreover, 
key transcription factors such as NANOG, OCT4, SOX2, and cMYC are essential for 
maintaining the self-renewal and proliferative capabilities of these CSCs [19]. Recent 
advances in research have increasingly focused on deciphering the regulatory mecha-
nisms governing liver CSCs, thereby providing deeper insights into their biology and 
highlighting potential therapeutic targets to improve the treatment outcomes. Despite 
improvements in the survival rates with surgical intervention and adjuvant postopera-
tive therapy, treatment outcomes in HCC remain suboptimal due to challenges such as 
drug resistance and variability in patient sensitivity and tolerance to treatment. As such, 
exploring more personalized therapeutic approaches, which are tailored to the specific 
characteristics of the tumor and predicted treatment outcomes, may offer opportunities 
to improve efficacy and extend survival.

With increasing recognition of the critical role that immune activity plays in tumor 
initiation, progression, and prognosis, immunotherapy has emerged as a promising 
approach to cancer treatment [20]. A growing array of immunotherapeutic agents, such 
as pembrolizumab, ipilimumab, and nivolumab, have been approved and shown to yield 
beneficial effects in various cancer types [21]. This surge in immunotherapy has high-
lighted the urgent need for identifying sensitive and reliable immune-related biomark-
ers, including immune response genes.

LCSCs are known to remodel TME into an immunosuppressive landscape through 
both extrinsic and intrinsic mechanisms, ultimately leading to immune evasion [22]. 
However, a comprehensive understanding of how LCSCs influence prognosis in HCC 
and their interaction with the TME and immunotherapy remains lacking. This gap in 
knowledge underscores the importance of further research to better utilize LCSCs in 
therapeutic strategies.

In this study, we performed a detailed bioinformatics analysis to explore the molecular 
features of 26 CSC gene sets across a large multicenter cohort of patients with HCC. 
We hypothesize that precise molecular subtyping based on stemness characteristics can 
enhance the stratification of patients with HCC, thereby enabling more accurate pre-
dictions of prognosis, TME infiltration patterns, and responses to treatment. Under-
standing the gene expression patterns associated with CSC subtypes could provide 
new avenues for developing personalized therapies that target specific aspects of tumor 
biology.

Through unsupervised clustering of ssGSEA scores derived from the 26 stemness gene 
sets, we identified three distinct stemness clusters. C1 exhibited a distinct immunosup-
pressive phenotype, as characterized by an abundance of M0 and M2 macrophages, as 
well as elevated immune and stromal scores. C2 showed moderate TME infiltration, with 
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a notable presence of activated memory CD4 + T-cells, follicular helper T-cells, activated 
NK cells, M2 macrophages, and activated dendritic cells, alongside prominent stromal 
scoring. In contrast, C3 was enriched in antitumor immune components, including 
CD8 + T-cells, activated memory CD4 + T-cells, M1 macrophages, and activated mast 
cells.

To further investigate the prognostic potential of these subtypes, we constructed a 
nomogram model based on the prognostic signatures derived from these stemness clus-
ters. After model training and validation, we demonstrated that this nomogram could 
offer significant clinical benefits for patients with HCC. In addition, to delve deeper into 
the genomic underpinnings of the stemness subtypes, we conducted WGCNA to iden-
tify co-expressed gene modules linked to the clusters. The palevioletred 3 module, which 
was strongly positively correlated with C1 and negatively correlated with C2 and C3, 
emerged as the most relevant module for further investigation. We then performed uni-
variate Cox and random forest survival analyses to identify prognostic hub genes within 
this module, which led to the development of a stemness prognostic signature composed 
of three key genes (SLC27A5, DHRS1, and PXMP2), which effectively quantified the 
stemness patterns. Consistently, stemness risk scores were highest in C1, and elevated 
scores correlated with poorer prognosis in patients with HCC.

TME has become increasingly recognized for its influence on cancer prognosis. Past 
studies have consistently demonstrated the impact of TME on patient outcomes [23], 
and research by Soysal has underscored its importance in breast cancer [24]. In addition, 
the role of tumor immunity in prognosis and clinical decision-making has gained signifi-
cant attention. Galon’s study highlighted the value of immune architecture and immune 
scoring in predicting cancer outcomes, particularly in cholangiocarcinoma patients [25], 
thereby further supporting the idea that comprehending the TME is crucial to under-
standing cancer prognosis and treatment.

In our analysis, we observed that patients with HCC with lower stemness risk exhibited 
robust antitumor immunity, as evidenced by the higher infiltration of CD4 + memory-
activated T-cells, CD8 + T-cells, and M1 macrophages. In contrast, the high-stemness 
risk group displayed a greater presence of immunosuppressive cells, particularly M0 
and M2 macrophages, along with stromal components. Notably, the abundance of M2 
macrophages and M0 macrophages in the high-stemness risk group suggested that M2 
polarization plays a significant role in driving immunosuppression and promoting tumor 
invasiveness. These findings align with those of previous studies indicating that M2 mac-
rophages contribute to immune evasion in cancer [26, 27]. Furthermore, we observed 
that the TIDE score, a predictive marker for immune evasion, was significantly higher 
in the high-stemness risk group than in the low-stemness risk group. This finding sug-
gests that patients with low stemness risk scores are more likely to benefit from immune 
checkpoint inhibitors, while those with high-risk scores may have reduced sensitiv-
ity to immunotherapy. This model was also validated by using the IMvigor210 cohort 
[28], thereby reinforcing the potential of our stemness risk score as a tool for predicting 
patient response to immunotherapy.

Malta et al. developed the transcriptomic stemness index (mRNAsi) using the OCLR 
method, which quantifies the activity of CSCs and the malignant dedifferentiation 
of tumor samples [29]. Notably, our stemness risk model shows a significant negative 
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correlation with the mRNA stemness index (correlation coefficient = − 0.50), suggesting 
that our model effectively reflects the stemness characteristics in HCC.

Among the three genes identified in our stemness model, PXMP2 has not yet been 
extensively studied in the context of tumor stemness. However, its homologous pro-
tein, PXMP4, promotes epithelial–mesenchymal transition in gastric cancer cells via the 
PI3K/AKT-signaling pathway. PXMP2, a member of the peroxisomal membrane protein 
family, is involved in key metabolic processes. Moreover, the disruption of peroxisomal 
function leads to significant metabolic changes in liver cancer cells, which ultimately 
inhibit their proliferation. However, the precise mechanisms through which PXMP2 
influences liver cancer cells remain unclear. Our findings suggest that PXMP2 impacts 
the stemness phenotype of liver cancer cells through modulation of the WNT signaling 
pathway. The biogenesis of peroxisomes involves membrane formation and the targeting 
of membrane proteins [30], which are processes that are critical for cellular metabolism. 
Peroxisomal redox metabolism plays a role in modulating immune responses, including 
the activation of nuclear factor kappa-light-chain-enhancer of activated B cells. Further-
more, peroxisomal β-oxidation and ether lipid synthesis are crucial in the development 
and activation of both innate and adaptive immune cells. As the number and metabolic 
activity of peroxisomes are associated with inflammatory diseases, PXMP2 may play a 
significant role in antitumor immunity.

Despite the valuable insights provided by this study, there are several limitations to 
consider. First, our analysis relies on publicly available datasets, which introduces the 
possibility of bias and limits the generalizability of our findings. Second, the prognostic 
and therapeutic efficacy of the stemness risk model has not been validated in a large, 
independent cohort from our center. Moreover, while bioinformatics analyses have iden-
tified model genes, further functional studies are warranted to explore their biological 
roles in stemness, TME interactions, and their potential as therapeutic targets. Nota-
bly, the cancer-type specificity of PXMP2’s function warrants systematic investigation 
in future studies. While our current findings demonstrate the crucial role of PXMP2 in 
modulating stemness properties through WNT/β-catenin signaling in HCC, its poten-
tial tissue-specific functions across different malignancies (e.g., gastric or colorectal 
cancers) remain to be elucidated. Comprehensive cross-cancer analyses incorporating 
single-cell RNA sequencing and spatial transcriptomics approaches will be essential 
to delineate the context-dependent regulatory networks of PXMP2 in diverse tumor 
microenvironments.

5 Conclusion
In conclusion, we identified three distinct stemness-related subtypes of HCC with dif-
ferential prognoses, TME profiles, and treatment responses using unsupervised cluster-
ing of the stem cell gene set. A nomogram model based on this gene set was developed 
and externally validated through Cox and random survival forest analyses. Further-
more, we established a three-gene risk model linked to stemness, which was validated 
in a large cohort of patients with HCC using WGCNA, Cox, and random survival forest 
approaches. Our findings highlight the clinical utility of this stemness model in prognos-
tic assessment and its potential to guide clinicians in identifying patients who are most 
likely to benefit from immune checkpoint inhibitor therapies.
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