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Abstract Introduction: Cephalometry is the study of skull measurements for clinical evaluation,

diagnosis, and surgical planning. Machine learning (ML) algorithms have been used to accurately

identify cephalometric landmarks and detect irregularities related to orthodontics and dentistry.

ML-based cephalometric imaging reduces errors, improves accuracy, and saves time.
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Method: In this study, we conducted a meta-analysis and systematic review to evaluate the ac-

curacy of ML software for detecting and predicting anatomical landmarks on two-dimensional

(2D) lateral cephalometric images. The meta-analysis followed the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines for selecting and screening research

articles. The eligibility criteria were established based on the diagnostic accuracy and prediction of

ML combined with 2D lateral cephalometric imagery. The search was conducted among English

articles in five databases, and data were managed using Review Manager software (v. 5.0). Quality

assessment was performed using the diagnostic accuracy studies (QUADAS-2) tool.

Result: Summary measurements included the mean departure from the 1–4-mm threshold or the

percentage of landmarks identified within this threshold with a 95% confidence interval (CI). This

meta-analysis included 21 of 577 articles initially collected on the accuracy of ML algorithms for

detecting and predicting anatomical landmarks. The studies were conducted in various regions of

the world, and 20 of the studies employed convolutional neural networks (CNNs) for detecting

cephalometric landmarks. The pooled successful detection rates for the 1-mm, 2-mm, 2.5-mm, 3-

mm, and 4-mm ranges were 65%, 81%, 86%, 91%, and 96%, respectively. Heterogeneity was de-

termined using the random effect model.

Conclusion: In conclusion, ML has shown promise for landmark detection in 2D cephalometric

imagery, although the accuracy has varied among studies and clinicians. Consequently, more re-

search is required to determine its effectiveness and reliability in clinical settings.

� 2023 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Utilizing oral radiology can be lucrative in various fields of
dentistry, such as endodontics, periodontology, and orthodon-

tics (Abdinian and Baninajarian 2017, Mehdizadeh et al.,
2022). Cephalometry is the study of skull dimensions using lin-
ear and angular measurements of anatomical and constructed

landmarks on standardized two-dimensional (2D) lateral head
films. The linear and angular measurements from cephalome-
try can be used in facial recognition and forensic identification

(Hlongwa 2019). However, cephalometry is used most fre-
quently in orthodontics and oral surgery for the diagnosis of
malocclusion and treatment planning. It is used in combina-
tion with facial form evaluation and model analysis to identify
the location of skeletal and dental anomalies that can be im-
proved with braces and/or surgery (Durão et al., 2013).

Currently, detecting irregularities related to orthodontics
and dentistry has become possible owing to advancements in
artificial intelligence (AI) (Pattanaik 2019). AI technology
has been incorporated into cephalometry to resolve accurate

diagnosis and surgical planning issues (Shin and Kim 2022).
Cephalometry combined with AI may be able to assist practi-
tioners with determination of bone age, extraction decisions,

orthognathic surgical prediction, and temporomandibular
bone segmentation (Mohammad-Rahimi et al., 2021,
Mehdizadeh et al., 2022, Ebadian et al., 2023). Cephalometry

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 PRISMA flowchart for screening and selection of standardized research articles.
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and AI are often combined with other diagnostic tools, such as

facial form analysis and model analysis; thus, the time-
consuming task of orthodontic diagnosis can be made more ef-
ficient, accurate, and objective (Ruizhongtai Qi 2020).

Decision-making models can hopefully be used in comput-
erized analysis to acquire accurate and consistent data in a
timely fashion and then utilize this data to formulate treatment

strategies. This type of computerized diagnosis and treatment
planning is still in its infancy despite several technical advance-
ments in AI (Juneja et al., 2021). This technology would be a

major advancement for diagnosis since the introduction of
cephalometry by Broadbent and Hofrath in the 1930s (Helal

et al., 2019, Park and Pruzansky 2019, Palomo et al., 2021,
Tanna et al., 2021).

In the last few decades, ML approaches have been implicat-

ed in anatomical landmarks detection, computerized diagnosis,
and data mining related to medical assessments. ML
algorithms have commonly been used extensively for

decision-making and in various fields to solve real-world
data-related issues (Bollen 2019, Jodeh et al., 2019). Research
has indicated that cephalometric analysis provides detailed

images of anatomical structural points. This improves



Table 1 Keywords for each database.

Database Keyword Result

Pubmed (‘‘Artificial Intelligence”[Mesh] OR

‘‘Machine Learning”[Mesh] OR ‘‘Neural

Networks, Computer”[Mesh] OR ‘‘Deep

Learning”[Mesh]) AND (‘‘lateral

cephalometry” OR ‘‘lateral cephalometric”)

129

Scopus (TITLE-ABS-KEY (‘‘Artificial

Intelligence”) OR TITLE-ABS-KEY

(‘‘Machine Learning”) OR TITLE-ABS-

KEY (‘‘Neural Networks”) OR TITLE-

ABS-KEY (‘‘Deep Learning”)) AND

(TITLE-ABS-KEY (‘‘Cephalometry”) OR

TITLE-ABS-KEY (‘‘lateral cephalometry”)

OR TITLE-ABS-KEY (‘‘lateral

cephalometric”))

193

Scopus

secondary

(TITLE-ABS-KEY (‘‘Artificial

Intelligence”) OR TITLE-ABS-KEY

(‘‘Machine Learning”) OR TITLE-ABS-

KEY (‘‘Neural Networks”) OR TITLE-

ABS-KEY (‘‘Deep Learning”)) AND

(TITLE-ABS-KEY (‘‘Cephalometry”) OR

TITLE-ABS-KEY (‘‘lateral cephalometry”)

OR TITLE-ABS-KEY (‘‘lateral

cephalometric”))

5

Embase (’artificial intelligence’/exp OR ’artificial

intelligence’ OR ’machine learning’/exp OR

’machine learning’ OR ’artificial neural

network’/exp OR ’artificial neural network’

OR ’neural networks’/exp OR ’neural

networks’ OR ’deep learning’/exp OR ’deep

learning’) AND (’cephalometry’/exp OR

cephalometry OR ’lateral cephalometry’ OR

’lateral cephalometric’)

191

WOS (ALL=(‘‘Artificial Intelligence” OR

‘‘Machine Learning” OR ‘‘Neural

Networks” OR ‘‘Deep Learning”)) AND

ALL=(‘‘Cephalometry” OR ‘‘lateral

cephalometry” OR ‘‘lateral cephalometric”)

59
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reliability by maximizing the identifying points’ accuracy (Kök
et al., 2019). However, there is still uncertainty regarding the
accuracy of cephalometric imaging results in detecting

anatomical landmarks; thus, the algorithm’s accuracy is un-
clear and should be addressed by analyzing previous studies.
In this study, we conducted a meta-analysis and systematic re-

view to assess the accuracy of machine learning (ML) software
for detecting and predicting anatomical landmarks on 2D lat-
eral cephalometric images.

2. Materials and methods

The meta-analysis conducted in this study followed the

Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Moher et al., 2009) for
extracting, selecting, and screening the included research

articles (Fig. 1). After the initial screening phase, the study
protocol was registered with the International Prospective
Register of Systematic Reviews (PROSPERO) with code
CRD42023399216 (Alshamrani et al., 2022). The population,

intervention, control, and outcomes (PICO) question was as
follows:

Is 2D lateral cephalometric imagery suitable for detecting

and predicting anatomical landmarks using ML software?
What is the accuracy?

2.1. Eligibility criteria

The meta-analysis included the following inclusion criteria: (1)
studies employing the diagnostic accuracy and prediction of
ML, (2) evaluation and assessment of 2D cephalometric im-

agery analysis, such as 2D lateral radiographs with relevant
landmarks that provide detection and prediction accuracy,
(3) reporting the outcome as the mean successful detection rate

(SDR), (4) those published after 2000 until February 2023, as
we expected ML-related data to be included, and (5) articles
published only in the English language. Only studies that

met the above criteria were included.
Studies were excluded if they (1) already conducted a sys-

tematic review and meta-analysis or scoping review, (2) report-

ed other methods for the function of the algorithms rather
than SDR, (3) were studies of cephalometry-irrelevant land-
marks or used other methods for non-radiographic data, or
(4) were articles published in other languages.

2.2. Research strategy and screening

The search and screening of research articles were systemati-

cally performed using five databases, including PubMed, Sco-
pus, Scopus Secondary, Embase, and Web of Science (WOS),
for studies published from January 2000 to February 2023 in

English. The meta-analysis utilized PRISMA systematic review
and meta-analysis guidelines for screening and selecting the in-
cluded studies. The overall search was designed to analyze the

different publications across different disciplines; the keywords
for each database are outlined in Table 1.

The titles and abstracts were screened independently by re-
viewers, and the third reviewer resolved disagreements. All in-

cluded studies met the eligibility criteria in full and were those
for which the full text was available.
2.3. Data collection and synthesis

The information extracted from research papers is displayed in
Table 1. The extracted information was based on study charac-

teristics, including author, year of publication, country of
study, imagery (2D lateral radiographs), objective, number
of landmarks detected, and findings, as shown in Table 2.
Studies were fully extracted if the article mentioned several test

datasets or models.

2.4. Quality assessment

The quality assessment of diagnostic accuracy studies
(QUADAS-2) tool (Whiting et al., 2011) was utilized to evalu-
ate risk bias, which accounted for risk bias (data selection, in-

dex test, and reference test) and applicability concerns (no flow
or timing, data selection, index test, and reference test). Two
reviewers assessed the bias risk in the included studies and

interpreted the results.



Table 2 Data extraction.

Author/year Country Architecture Objective Sample

size

SDR (successful

detection rate)

Alshamrani et al.

(2022)

(Alshamrani et al.,

2022)

Saudi

Arabia

CNN (autoencoder-

based Inception layers)

Generate a Bjork–Jarabak and Ricketts

cephalometrics automatically.

100 Basic

autoencoder

model trained

on Set 1

2.0 mm: 64%

2.5 mm: 69%

3.0 mm: 72%

4.0 mm: 77%

150 Model

autoencoder

wider Paddup

box set 2

2.0 mm: 71%

2.5 mm: 75%

3.0 mm: 78%

4.0 mm: 84%

El-Fegh et al.

(2008) (El-Fegh

et al., 2008)

Libya/

Canada

CNN A new approach to cephalometric X-ray landmark

localization

> 80 2.0 mm: 91%

El-Feghi et al.

(2003) (El-Feghi

et al., 2003)

Canada MLP A novel algorithm based on the use of the Multi-layer

Perceptron (MLP) to locate landmarks on a digitized

X-ray of the skull

134 2.0 mm: 91.6%

Hwang et al.

(2021) (Hwang

et al., 2021)

South

Korea

CNN (YOLO version 3) To compare an automated cephalometric analysis

based on the latest deep learning method

200 2.0 mm: 75.45%

2.5 mm: 83.66%

3.0 mm: 88.92%

4.0 mm: 94.24%

Jiang et al. (2023)

(Jiang et al., 2023)

China CNN (A cascade

framework ‘‘CephNet”)

Utilizing artificial intelligence (AI) to achieve

automated landmark localization in patients with

various malocclusions

259 1.0 mm: 66.15%

2.0 mm: 91.73%

3.0 mm: 97.99%

Kafieh et al.

(2009) (Kafieh

et al., 2009)

Iran ASM As a new method for automatic landmark detection in

cephalometry, they propose two different methods for

bony structure discrimination in cephalograms.

63 1.0 mm: 24.00%

2.0 mm: 61.00%

5.0 mm: 93.00%

Kim et al. (2020)

(Kim et al., 2020)

South

Korea

CNN Develop a fully automated cephalometric analysis

method using deep learning and a corresponding web-

based application that can be used without high-

specification hardware.

100 2.0 mm: 84.53%

2.5 mm: 90.11%

3.0 mm: 93.21%

4.0 mm: 96.79%

Kim et al. (2021)

(Kim et al., 2021)

South

Korea

CNN Propose a fully automatic landmark identification

model based on a deep learning algorithm using real

clinical data

50 2.0 mm: 64.30%

2.5 mm: 77.30%

3.0 mm: 85.50%

4.0 mm: 95.10%

Lee et al. (2020)

(Lee et al., 2020)

South

Korea

BCNN Develop a novel framework for locating

cephalometric landmarks with confidence regions

250 2.0 mm: 82.11%

2.5 mm: 88.63%

3.0 mm: 92.28%

4.0 mm: 95.96%

Oh et al. (2021)

(Oh et al., 2020)

South

Korea

CNN They proposed a novel framework DACFL that

enforces the FCN to understand a much deeper

semantic representation of cephalograms

150 2.0 mm: 86.20%

2.5 mm: 91.20%

3.0 mm: 94.40%

4.0 mm: 97.70%

100 2.0 mm: 75.90%

2.5 mm: 83.40%

3.0 mm: 89.30%

4.0 mm: 94.70%

Ramadan et al.

(2022) (Ramadan

et al., 2022)

Saudi

Arabia

CNN Detection of the cephalometric landmarks

automatically

150 2.0 mm: 90.39%

3.0 mm: 92.37%

100 2.0 mm: 82.66%

3.0 mm: 84.53%

Song et al. (2020)

(Song et al., 2020)

Japan CNN (with a backbone

of ResNet50)

A two-step method for the automatic detection of

cephalometric landmarks

150 2.0 mm: 86.40%

2.5 mm: 91.70%

3.0 mm: 94.80%

4.0 mm: 97.80%

100 2.0 mm: 74.00%

2.5 mm: 81.30%

3.0 mm: 87.50%

(continued on next page)
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Table 2 (continued)

Author/year Country Architecture Objective Sample

size

SDR (successful

detection rate)

4.0 mm: 94.30%

Song et al. (2021)

(Song et al., 2021)

Japan/

China

CNN (Deep

convolutional neural

networks)

A coarse-to-fine method to detect cephalometric

landmarks

150 2.0 mm: 85.20%

2.5 mm: 91.20%

3.0 mm: 94.40%

4.0 mm: 97.20%

100 2.0 mm: 72.20%

2.5 mm: 79.50%

3.0 mm: 85.00%

4.0 mm: 93.50%

Song et al. (2020)

(Song et al., 2019)

Japan/

China

CNN (Resnet50) A semi-automatic method for detection of

cephalometric landmarks using deep learning.

150 2.0 mm: 85.00%

2.5 mm: 90.70%

3.0 mm: 94.50%

4.0 mm: 98.40%

100 2.0 mm: 81.80%

2.5 mm: 88.06%

3.0 mm: 93.80%

4.0 mm: 97.95%

Tanikawa et al.

(2009) (Tanikawa

et al., 2009)

Japan N/A Evaluate the reliability of a system that performs

automatic recognition of anatomic landmarks and

adjacent structures on lateral cephalograms using

landmark-dependent criteria unique to each landmark

65 88.00%

Ugurlu, (2022)

(Uğurlu 2022)

Turkey CNN Develop an artificial intelligence model to detect

cephalometric landmark, automatically enabling the

automatic analysis of cephalometric radiographs

180 2.0 mm: 76.20%

2.5 mm: 83.50%

3.0 mm: 88.20%

4.0 mm: 93.40%

Wang et al. (2018)

(Wang et al., 2018)

China Multiscale decision tree

regression voting using

SIFTbased patch

Develop a fully automatic system of cephalometric

analysis, including cephalometric landmark detection

and cephalometric measurement in lateral

cephalograms.

150 2.0 mm: 73.37%

2.5 mm: 79.65%

3.0 mm: 84.46%

4.0 mm: 90.67%

165 2.0 mm: 72.08%

2.5 mm: 80.63%

3.0 mm: 86.46%

4.0 mm: 93.07%

Yao et al. (2022)

(Yao et al., 2022)

China CNN Develop an automatic landmark location system to

make cephalometry more convenient

100 1.0 mm: 54.05%

1.5 mm: 91.89%

2.0 mm: 97.30%

2.5 mm:

100.00%

3.0 mm:

100.00%

4.0 mm:

100.00%

Yoon et al. (2022)

(Yoon et al., 2022)

South

Korea

CNN (EfficientNetB0

(Eff-UNet B0) model)

Evaluate the accuracy of a cascaded two-stage (CNN)

model in detecting upper airway soft tissue landmarks

in comparison with the skeletal landmarks on lateral

cephalometric images

100 1.0 mm: 74.71%

2.0 mm: 93.43%

3.0 mm: 97.29%

4.0 mm: 98.71%

Yue et al. (2006)

(Yue et al., 2006)

China ASM Craniofacial landmark localization and structure

tracing are addressed in a uniform framework.

86 2.0 mm: 71.00%

4.0 mm: 88.00%

Zeng et al. (2021)

(Zeng et al., 2021)

China CNN A novel approach with a cascaded three-stage

convolutional neural networks to predict

cephalometric landmarks automatically.

150 2.0 mm: 81.37%

2.5 mm: 89.09%

3.0 mm: 93.79%

4.0 mm: 97.86%

100 2.0 mm: 70.58%

2.5 mm: 79.53%

3.0 mm: 86.05%

4.0 mm: 93.32%

CNN: convolutional neural network, ASM: Active shape model, BCNN: Bayesian Convolutional Neural Networks, MLP: Multi-layer

Perceptron.
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2.5. Summary measures and data synthesis

To be considered for meta-analysis, a study had to report ei-
ther the deviation from a 1-, 2-, 3-, and 4-mm estimated error
criterion (in mm) or the percentage of landmarks accurately

predicted within this 1-, 2-, 3-, and 4-mm prediction error
thresholds (Higgins and Thompson 2002). Our final measure-
ments were the mean deviation from the 1-, 2-, 3-, and 4-mm
thresholds (in mm) or the percentage of landmarks identified

within the 1-, 2-, 3-, and 4-mm thresholds, both with their
95% confidence intervals (CI). The meta-analysis was conduct-
ed using Review Manager version 5.0, and heterogeneity was

evaluated using Cochrane’s Q and I2 statistics using the ran-
dom effect model (Viechtbauer 2010).
3. Results

3.1. Identified studies

The meta-analysis yielded approximately 577 research articles
on the accuracy of ML algorithms for detecting and predicting

anatomical landmarks from the abovementioned databases.
According to the inclusion criteria, 48 papers were determined
to be relevant, reliable, and in line with the study’s objectives.
Through the exclusion criteria, 27 papers were eliminated of

the 48 studies. Approximately 21 of the remaining articles
met the aforementioned criteria and were included.

The reasons for exclusion were as follows:

� Studies on measurements and not landmarks = 10
� Those not related to our question = 10

� Those using methods other than the mean SDR to evaluate
the algorithm’s function = 7

3.2. Descriptive analysis of identified studies

Among the 577 studies selected, 21 articles were included in the
data extraction phase. These studies were model-based studies

conducted in Korea, Saudi Arabia, Iran, Israel, Canada, Bos-
nia, China, Turkey, the USA, and Italy, representing different
world regions. Furthermore, they included studies on ML

cephalometric landmark detection through CNN, and the out-
comes were successful detection rates.

3.3. Risk of bias

The risk of bias in the included studies was assessed using the
QUADAS-2 tool in two main domains: risk of bias and appli-

cability issues. The risk of bias assessment demonstrated that
some of the included articles exhibit a high risk of bias in data
selection (n = 11, 52.38%), reference tests (n = 6, 28.57%),
index tests (n = 1.4, 76%), and timing (n = 2.9, 52%). The

majority of the presented studies had applicability issues for
data selection (n = 5.23, 8%), reference tests (n = 0), and in-
dex tests (n = 2.95, 2%). A detailed assessment of the risk of

bias and applicability concerns is provided in Table 3.
3.4. Architecture of AI

The majority of the included studies use various modalities of
CNNs as the architecture for detecting landmarks on radio-
graphs (n = 15, 71.4%) followed by the active shape model

(ASM) at 9% (n = 2). Further information is provided in
Table 2.

3.5. Successful detection rates

Twenty-one of the included studies reported the SDR of
anatomical landmarks in different ranges. Most studies report-
ed the SDR for the range of 2 mm (n = 20, 95.2%). In addi-

tion, 13 of the included studies reported the SDR for the 2.5-
mm range (61.9%), 16 studies reported the SDR for the 3-mm
range (76.2%), 15 studies reported the SDR for the 4-mm

range (71.4%), and 3 studies reported the SDR for the 1-mm
range (14.2%). The pooled SDR for the 1-mm, 2-mm, 2.5-
mm, 3-mm, and 4-mm ranges were 65%, 81%, 86%, 91%,

and 96%, respectively, the supplementary files for Figures 2-
6. Table 4 presents further findings of each meta-analysis.

4. Discussion

This study’s systematic review revealed that ML algorithms for
anatomical landmarking of 2D cephalometric images have
been implicated as an active radiography resource, as 20 of

21 are studies that reported accuracy, which were typically
published between 2006 and 2023. Fifteen studies used varied
modalities of CNN, and six studies utilized other AI architec-

tures, such as ASM and Bayesian convolutional neural net-
works (BCNN). Most of the studies reported SDR for the 2-
mm (95.2%), 2.5-mm (61.9%), 3-mm (76.2%), and 4-mm

(71.4%) ranges. The overall reported SDR for the 1-mm range
was 65% followed by 81% for 2 mm, 86% for 2.5 mm, 91%
for 3 mm, and 96% for 4 mm.

Even though these assessments are based on landmarks, it
is impossible to systematically determine a total systematic er-
ror from landmark machine translation errors. The overall
standard deviation might be decreased or increased based on

landmark coordinate values, which alters the therapeutic rele-
vance of the findings. Consequently, there is a shortage of data
on the diagnosis accuracy of computerized three-dimensional

(3D) cephalometry.
Another study found that, compared to other radiographic

techniques, cephalograms provide quantitative and qualitative

results for anatomical landmark detection (Bichu et al., 2021,
Joda and Pandis 2021, Liu et al., 2021, Auconi et al., 2022).
Skeletal landmark detection improves the accuracy of quanti-
tative analyses as it identifies reference points. Thus, the land-

marks’ precise source must be determined to produce relevant
results. The current study assessed research that utilized 2D
cephalometric images and ML for landmark detection.

The efficacy of ML, as demonstrated by experimental trials,
has transformed the implications of ML for cephalometric
analysis. However, it requires considerable attention due to

the association of certain challenges in orthodontics and other
medical assessments. One such difficulty is the presence of



Table 3 Bias risk assessment.

Risk of bias Applicability concerns

Authors Year Patient

selection

Index

test

Reference

standard

Flow and

timing

Patient

selection

Index

test

Reference

standard

Kim et al. (Kim et al., 2021) 2021 Low Low Low Low Low Low Low

Kafieh et al. (Kafieh et al., 2009) 2009 High Low High Unclear Low Low High

Oh et al. (Oh et al., 2020) 2021 Low Low Low Low Low Low Low

Ramadan et al. (Ramadan et al.,

2022)

2022 High Low Low Low High Low Low

El-Fegh (El-Fegh et al., 2008) 2008 High Low Low High High Low Low

El-Feghi et al. (El-Feghi et al.,

2003)

2003 High Low Low High High Low Low

Lee et al. (Lee et al., 2020) 2020 Low Low Low Low Low Low Low

Kim et al. (Kim et al., 2020) 2020 Low Low Low Low Low Low Low

Alshamrani et al. (Alshamrani

et al., 2022)

2022 High Low High Low High Low Low

Hwang et al. (Hwang et al., 2021) 2021 Low Unclear Low Low Low Unclear Low

Jiang et al. (Jiang et al., 2023) 2022 Low Low Low Low Low Low Low

Song et al. (Song et al., 2020) 2020 High Low Low Low Low Low Low

Song et al. (Song et al., 2019) 2019 High Low High Unclear High Low High

Tanikawa et al. (Tanikawa et al.,

2009)

2009 Low Low High Low Low Low Low

Yao et al. (Yao et al., 2022) 2022 Low Low Low Low Low Low Low

Wang et al. (Wang et al., 2018) 2018 High Low Low Unclear Low Low Low

Yue et al. (Yue et al., 2006) 2006 High Low Low Low Low Low Low

Yoon et al. (Yoon et al., 2022) 2022 Low Low High Low Low Low Low

Song et al. (Song et al., 2021) 2021 High High Low Low Low Unclear Low

Zeng et al. (Zeng et al., 2021) 2021 High Low Low Low Low Low Low

Ugurlu (Uğurlu 2022) 2022 Low Low High Low Low Low Low

Table 4 Meta-analysis results.

Diameter range Detection percentage 95% confidence interval I2 P-value heterogeneity

1 mm 65% 54–76 83.27 0.01

2 mm 81% 78–85 87.83 0.00

2.5 mm 86% 83–89 91.38 0.00

3 mm 91% 88–93 93.44 0.00

4 mm 96% 94–97 90.47% 0.00
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‘‘black-box” characteristics in ML, which necessitates improv-
ing the visuals and gaining the confidence of physicians and

patients before the clinical implementation of ML (Su et al.,
2020, Du et al., 2022). Moreover, trial techniques are needed
to manage bias risk. For instance, performing consistency eval-

uations is crucial to assess consistency. Allocation plans also
need to be free of personal prejudices. Furthermore, a few
other issues, such as a reliability crisis, underfitting, and inad-

equacy of data, have limited the use of ML in cephalometry
(Asiri et al., Tandon et al., 2020, Palanivel et al., 2021,
Tanikawa et al., 2021).

Montufar et al. (Montúfar et al., 2018) conducted automat-

ic cephalometric analysis for landmark detection using cone
beam computed tomography (CBCT) images and an active
surface AI model. They determined the accuracy of this pro-

cess to be 3.64 mm on average at 18 anatomical points.
Several studies have reported the risk of more errors while

detecting irregular structures through cephalometric analysis.

Patcas et al. (Patcas et al., 2019) conducted a 2D hybrid
cephalometric analysis to acquire CBCT images. Approxi-
mately 18 anatomical landmark points were identified with a

mean error of 2.51 mm via holistic three-dimensional cephalo-
metric detection. Yu et al. (Yu et al., 2014) evaluated the accu-
racy of cephalometric analysis using the ML method and

reported the interaction between landmark detection and facial
attractiveness identification algorithms.

Similarly, Patcas et al. (Patcas et al., 2019) performed a

study using AI to assess the accuracy of landmark detection
through cephalometric analysis before treatment or decision-
making before surgery. For approximately 146 patients that
underwent orthognathic surgery, their starting and final im-

ages were evaluated using algorithms for facial beauty and ap-
pearance. Their study suggested that patients undergoing
orthognathic surgery might be assessed for facial symmetry

and chronological age using ML.
This meta-analysis had several limitations. First, we focused

on ML to detect anatomical landmarks, and a comparison

with automated landmarking procedures was not conducted.
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Second, we excluded several studies, following the inclusion
criteria, e.g., those utilizing DL to detect cephalometric analy-
sis, whose full texts were unavailable and did not comprehen-

sively address the study objectives. Third, a variety of risk
biases existed in the included studies. Data selection produced
limited and potentially unrepresentative groups; most studies

utilized the same dataset. Conclusive evidence for predictive
data value was relatively poor, particularly for 3D images; im-
ages in the test dataset typically were from only a few individ-

uals. Fourth, as previously stated, the limited generalizability
was because only a few researchers tested the established DL
models on fully independent datasets, such as those from dif-
ferent centers, people, or image processors. Finally, most stud-

ies relied on precision estimations rather than other, obviously
comparable outcome measures, such as variations in millime-
ters, pixels, or percentages (primarily as a result of our inclu-

sion criteria) (Gupta et al., 2016).
The use of an ML tool in primary care and its impact on

diagnostic and treatment practices, the efficacy, and safe-

ty were not documented as additional outcomes that would
have been relevant to physicians, patients, or other users. Fu-
ture research should consider expanding the outcome set and

thoroughly testing the applicability of DL in various contexts
and situations (e.g., observational studies in clinical care and
randomized controlled trials). Of note, the criteria for AI-
based cephalometric evaluations could change based on the re-

sulting treatment decisions.
One of the limitations of this study was not including book-

s, other types of literature, and articles that were not in Eng-

lish. To obtain a more accurate outcome, further studies
should include more databases, such as Google Scholar, and
gray literature.

5. Conclusion

This study demonstrated that ML is significant for detecting

landmarks through cephalometric 2D imagery. Most included
studies focused on 2D imagery generated by automated
cephalometric analysis of ML, which shows promise for the fu-

ture. The accuracy of landmark detection using ML was
heterogeneous across the included studies; however, the accu-
racy rates of clinicians varied significantly. While generally
consistent, the overall evidence shows low generalizability

and consistent accuracy, and the clinical utility of ML has
yet to be demonstrated. The use of AI for accurately detecting
cephalometric landmarks with the extremely low certainty of

the findings is intriguing. However, future research should fo-
cus on establishing its efficacy and reliability in various
samples.
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