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ABSTRACT: Chiral cis-MoO2(acac)2 racemizes via four pathways that agree with and extend upon Muetterties’ topological analysis
for dynamic MX2(chel)2 complexes. Textbook Ray−Dutt and Bailar twists are the least favored with barriers of 27.5 and 28.7 kcal/
mol, respectively. Rotating both acac ligands of the Bailar structure by 90° gives the lower Conte−Hippler twist (20.0 kcal/mol),
which represents a valley−ridge inflection that invokes the trans isomer. The most favorable is a new twist that was found by 90°
rotation of only one acac ligand of the Bailar structure. The gas-phase barrier of 17.4 kcal/mol for this Dhimba−Muller−
Lammertsma twist further decreases upon inclusion of the effects of solvents to 16.3 kcal/mol (benzene), 16.2 kcal/mol (toluene),
and 15.4 kcal/mol (chloroform), which are in excellent agreement with the reported experimental values.

Rationally designed catalysts capable of effecting enantio-
selective chemical transformations are crucial to satisfying

the growing industrial demand for chiral fine chemicals.1

Despite the tremendous advances in asymmetric organo-
catalysis, as highlighted by the 2021 Nobel Prize in
Chemistry,2 most catalysts used for the conversions of organic
compounds are still transition-metal complexes with ligands
coming from the ever-growing chiral pool.3 These chiral
ligands are considered to be responsible for the transfer of
chirality to the reaction product, but the elaborate syntheses
and unpredictable enantioselectivity are limiting factors. An
alternative is to solely use the stereogenicity of the metal center
by the enantiomeric chelation of achiral ligands around the
coordinating transition metal.4

Octahedral chiral complexes are, in fact, known as far back as
1911 when Werner reported on [Co(en)3]3+ (en = ethyl-
enediamine);5 [Cr(en)3]3+, [Rh(en)3]3+, [Ir(en)3]3+, and
[Pt(en)4]4+ were described shortly thereafter.6 Werner’s D3d-
symmetrical cobalt(III) complexes carrying three simple
achiral bidentate ligands were revived recently by Gladysz et
al., demonstrating their effectiveness as enantioselective
catalysts.7 In 2003, Fontecave et al. introduced the term
“chiral-at-metal” catalysis and showed modest enantioselectiv-
ity for the asymmetric transfer hydrogenation and asymmetric
oxidation of sulfides using [Ru(dmp)2(CH3CN)2]2+ (dmp =
2,9-dimethyl-1,10-phenanthroline).8 The field of chiral-at-
metal catalysis was expanded majorly in the past decade by
Meggers et al., who reported many different asymmetric
catalytic reactions with high enantioselectivity using chiral
rhodium(III) and iridium(III), [M(tbpb)2(CH3CN)2]+ (M =
Rh, Ir; tbpb = 5-tert-butyl-2-phenylbenzoxazole),9 and recently
with similar chiral iron(II) complexes.10

The asymmetric Lewis acid transition-metal complexes,
carrying two bidentate and two acetonitrile ligands, apparently
have high energy barriers of racemization, which enable the
catalysts to maintain their chiral integrity. However, retention
of chirality for other transition-metal complexes is a priori not

evident because of the configurational flexibility at the metal
center.11 Whereas such dynamics can be restricted by bi-, tri-,
and tetradentate ligands, racemization is of general concern in
chiral-at-metal systems. The crux is to recognize and control
the dynamic pathways.

Already half a century ago, in-depth topological studies by
Muetterties revealed the complexity by which penta- and
hexacoordinate systems racemize.12 He also showed that the
number of racemization pathways reduces with bidentate
ligands. Illustrative is the reduction of 20 feasible permutations
of a pentacoordinate system, which can be described in a
Levi−Desargues graph, by introducing two bulky bidentate
ligands.13 These cause the energy barriers for Berry
pseudorotation to increase and prohibit racemization, as is
the case for silicate [Si(pn)2F]− [pn = 2-(phenyl)naphthyl].14

Octahedral complexes are subject to a far larger number of
permutations, which also reduce upon chelation. Well-
established racemization pathways for trischelate complexes
are the Ray−Dutt15 and Bailar16 twists in which the chelating
ligands undergo a C3 rotation17 via rhombic (D3h symmetry)
and trigonal-prismatic (C2v symmetry) transition states,
respectively (Figure 1).18 Rarer pathways include the
dancing-Bailar twist,19 those with a bicapped tetrahedral
structure,20 and those invoking pentacoordination.21 Besides
Muetterties’ topological studies, little is known about the
racemization pathways of octahedral complexes with two
bidentate ligands, which is the subject of the present study that
focuses on cis-MoO2(acac)2 (acac = acetylacetonate).
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cis-MoO2(acac)2 is an effective catalyst for epoxidizing
olefins with peroxides, but we are not aware of asymmetric
homogeneous catalysis with one of its enantiomers.22 The
solid-state structure has been reported for the racemic
mixture23 and for an enantiomer of a derivative.22b Conte
and Hippler determined by variable 1H NMR spectroscopy a
modest activation energy Ea of 16.9 kcal/mol for the
racemization of cis-MoO2(acac)2 in benzene, 13.7 kcal/mol
in chloroform, and 15.1 kcal/mol in toluene, indicating a small
solvation effect.24 These barriers are similar to those reported
by the group of Wise in 1971.25 SOGGA11-X/LANL2DZ
+G** calculations by Conte and Hippler gave E0 barriers of
26.7 and 27.2 kcal/mol for the Ray−Dutt and Bailar twists and
a lower, but still sizable, barrier of 19.4 kcal/mol for a different
pathway; the heights of the barriers were not affected by
inclusion of the effect of solvents. The magnitudes of these
barriers seem to indicate that the racemization of cis-
MoO2(acac)2 cannot be attributed to the Bailar or Ray−Dutt
twists and likely not to the twist suggested by Conte and
Hippler. Therefore, in the context of the topological analysis of
MX2(chel)2 systems, we felt that a theoretical study on the
racemization pathways is in order.

The potential energy surface for the MoO2(acac)2 complex
was examined with Gaussian 16, version B01,26 using the
hybrid meta-generalized-gradient-approximation functional
ωB97X-D,27 which incorporates empirical dispersion terms
and long-range interactions,28 and the 6-31G(d) basis set for
C, H, and O and LANL2DZ for Mo.29 The reported absolute
electronic energies for all optimized structures were estimated
by single-point calculation with the 6-311+G(2d,p) basis set.
Frequency and intrinsic-reaction-coordinate (IRC) calcula-
tions confirmed the nature of each transition structure.30 The
effect of solvation was estimated by single-point calculations
with the polarizable continuum solvent model at 25 °C.31

The geometries of Λ- and Δ-cis-MoO2(acac)2, shown in
Figure 2, have a distorted octahedral arrangement in which the
planes formed by the acac ligands and metal center are each
tilted by 10.8° from orthogonality with the MoO2 plane. The
Mo�O bonds of the MoO2 fragment have a length of 1.692 Å
and an angle of 104.6°. The two Mo−O bonds of each acac
ligand are longer and unequal to each other, i.e., 2.019 Å
(Mo−Ocis) and 2.252 Å (Mo−Otrans), because of the different
chemical environments of the two acac oxygen atoms. The
methyl groups of the acac ligands are eclipsed with the methine

hydrogen atoms. The geometry of Λ/Δ-cis-MoO2(acac)2
compares well with those of the reported X-ray crystal
structures.23

trans-MoO2(acac)2 (C2v symmetry), shown in Figure 2b, is a
substantial 50.6 kcal/mol less stable than the cis isomer. It is
then not surprising that no solid-state structure is known for
this isomer. Moreover, geometry optimization with the
extended basis set suggests it to be a transition structure
(C2v symmetry) at a flat energy plateau with an imaginary
frequency of a mere −12 cm−1. The trans Mo�O bonds of its
MoO2 fragment are longer (1.731 Å) than those in the cis
isomer and deviate substantially from linearity (140.0°), and
both tilt toward one of the acac ligands, which has as a result
longer Mo−O bonds (2.137 Å) than the other ligand (2.034
Å).

To understand the racemization of cis-MoO2(acac)2 and the
potential role of the trans isomer, it is instructive to analyze
their topological relationship. Muetterties showed that a metal
complex with six different (monodentate) ligands has 30
octahedral isomers and 120 trigonal-prismatic iosomers but
that this reduces significantly for complexes with two
symmetrical bidentate ligands, MX2(chel)2. Figure 3, adapted
from the original study, gives the topological representation,
showing the enantiomeric cis isomers at the base and the trans
isomer at the apex of an isosceles triangle (open dots). The
closed dots at the edges of the triangle are the trigonal-
prismatic structures (Figure 3, right), embodying rearrange-
ment of the octahedral structures.

Topological analysis gives three direct racemization path-
ways for cis-MX2(chel)2, each with a trigonal-prismatic
transition structure (cisa, cisb, and trans in Figure 3),
complemented by a pathway via the trans isomer that involves
a set of enantiomeric structures (d,l trans). We are unaware
whether all of these racemization pathways have found solid
footing in the literature. Consequently, we felt MoO2(acac)2
was ideal to verify topological analysis in the context of

Figure 1. Ray−Dutt and Bailar twists by which chiral octahedral
complexes undergo racemization. The three bidentate ligands are
shown in blue, green, and red. The gray lines complement the edges
of the octahedral and trigonal-prismatic structures, with the orange
dashed lines representing the transition-metal coordination sites.

Figure 2. (a) Δ and Λ enantiomers of cis-MoO2(acac)2 and (b) trans-
MoO2(acac)2.
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comparing the racemization barriers of the cis isomer with the
reported experimental one.

The obvious places to start with are the established Ray−
Dutt and Bailar twists for trischelating octahedral systems
(Figure 1), which are represented respectively as cisb and cisa
in Figure 3. Their corresponding C2v-symmetric transition
structures for MoO2(acac)2 (Figure 4) have relative energies of

a significant 27.5 and 28.7 kcal/mol, respectively. The structure
for the Ray−Dutt twist has its MoO2 unit (dMo�O = 1.696 Å;
∠OMoO = 97.4°) bisecting both virtually planar acac ligands
(dMo�O = 2.128 Å), which have an intercept angle of 19.6°. In
the Bailar transition structure, the MoO2 unit (dMo�O = 1.687
Å; ∠OMoO = 95.8°) is rotated by 90° and has a larger bisecting
angle of 48.3° between the acac ligands (dMo�O = 2.148 Å).

Next, we focus on the role of trans-MoO2(acac)2 in
isomerization of the cis isomer and on how the d,l trans
forms (Figure 3) are involved. The latter can be considered to
result from the Bailar transition structure by 90° rotation of
both acac ligands. Such a transformation gives indeed a
transition structure (Figure 5) with a relative energy of 20.0
kcal/mol, akin to that reported by Conte and Hippler.31 The
two planar acac ligands of the C2v-symmetric structure lie in
the same plane, with each having Mo−O bonds of 2.040 and

2.264 Å to the MoO2 unit (dMo�O = 1.693 Å; ∠OMoO =
117.2°). The IRC confirms that this transition structure is yet
another structure for the racemization of cis-MoO2(acac)2 (see
the Supporting Information) by opposite rotation of the acac
ligands, but it still does not match the reported experimental
value.

Further inspection of the C2v-symmetric structure is
revealing. Rotating the MoO2 plane that bisects the two acac
ligands by 90° and enlarging the O�Mo�O angle (117.2° →
140.0°) results in C2v-symmetric trans-MoO2(acac)2 (Figure
2b). This rotation can be left- or right-handed so that the
MoO2 unit gets directed toward either one or the other acac
ligand, which is in accordance with topological analysis (Figure
3). The high-energy trans isomer lies on a very flat high-energy
plateau that allows for slight bending of its acac ligands.
Despite the technical difficulties that this caused, we obtained
an IRC that connects trans-MoO2(acac)2 by left- and right-
handed rotation of the MoO2 unit to the Conte−Hippler
transition structure (Figure 5) and thus ultimately to Δ- and
Λ-cis-MoO2(acac)2. Evidently, this transition structure is a
valley−ridge inflection point that gives one cis-MoO2(acac)2
enantiomer when the IRC is followed in one direction, likely
because of torque selectivity.32 The relationship is shown in a
simplified manner in Figure 6.

The only remaining racemization pathway to consider is that
of the trans form in Figure 3. This twist is readily conceived by
rotating one of the chelates of cisa by 90° instead of both. Such
a rotation of one acac ligand of the Bailar structure led, in fact,
to the hitherto unknown transition structure shown in Figure
7. Tracing the IRC trajectory confirms that it represents a new
racemization pathway for cis-MoO2(acac)2 (see Figure S1).
The two planar acac ligands of the structure lie in the
orthogonal planes, with one having two symmetrical dMo�O
bonds (2.176 Å) and the other two unsymmetrical bonds
(2.108 and 2.120 Å) to the MoO2 unit (dMo�O = 1.687 Å;

Figure 3. Topological representation of MX2(chel)2 with octahedral
structures (open dots) and connecting trigonal-prismatic structures
(closed dots) shown separately.

Figure 4. Ray−Dutt (top) and Bailar (bottom) transition structures
for the racemization of cis-MoO2(acac)2.

Figure 5. Conte−Hippler transition structure for the racemization of
cis-MoO2(acac)2.

Figure 6. IRC for trans-MoO2(acac)2.
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∠OMoO = 101.1°). Most importantly, this new transition
structure reflects the lowest-energy barrier for the racemization
of cis-MoO2(acac)2 with a barrier of only 17.4 kcal/mol and on
including the effects of solvation of 16.3 kcal/mol (benzene),
16.2 kcal/mol (toluene), and 15.4 kcal/mol (chloroform). The
calculated barriers for these different solvent systems compare
exceptionally well with the experimental Ea values of 16.9 kcal/
mol (benzene), 15.1 kcal/mol (toluene), and 13.7 kcal/mol
(chloroform), which were determined by Conte and Hippler.24

Evidently, this new twist represents the most favorable pathway
by which the enantiomers of cis-MoO2(acac)2 racemize.

In conclusion, the four pathways by which Δ- and Λ-cis-
MoO2(acac)2 can racemize are the Ray−Dutt and Bailar twists
and those in which one or both chelates of the Bailar twist are
rotated by 90° (Figure 8). The barrier of 17.4 kcal/mol for the

pathway with one rotated acac ligand, the Dhimba−Muller−
Lammertsma (D−M−L) twist, agrees excellently with that
determined experimentally. The less favored C−H twist in
which both acac ligands are rotated represents a valley−ridge
inflection that invokes the trans isomer. The well-established
Ray−Dutt and Bailar twists are by far the least favored
pathways. The obtained results agree fully with Muetterties’
topological analysis and give confidence that they apply to all
dynamic MX2(chel)2 complexes. Inhibiting racemization of
such complexes with properly substituted bidentate ligands can
propel asymmetric catalysis with chiral-at-metal catalysts

derived from readily available, inexpensive transition metals,
which we are currently exploring.
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Spiegelbildisomerie bei Rhodium-Verbindungen. I. Ber. Dtsch. Chem.
Ges. 1912, 45, 1228−1236. (c) Werner, A.; Smirnoff, A. P. Über
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