nature synthesis

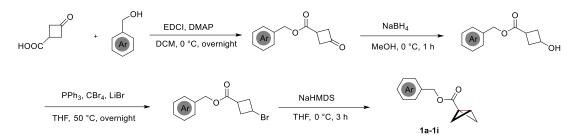
Supplementary information

https://doi.org/10.1038/s44160-025-00745-3

Difunctionalization of bicyclo[1.1.0] butanes enabled by merging C-C cleavage and ruthenium-catalysed remote C-H activation

In the format provided by the authors and unedited

Table of Contents


1. General Remark	S2
2. Synthesis of Starting Materials	S3
3. Optimization of the Reaction Conditions	S8
4. General Procedure and Products Characterization	S9
5. Gram-Scale Synthesis and Late-Stage Derivatization	S86
6. X-Ray Crystallographic Analysis	S97
7. Mechanism studies and Computational studies	S106
8. References	S124
9. NMR Spectra	S126

1. General Remark

Catalytic reactions were performed under an N_2 atmosphere using pre-dried glassware. 1,4-Dioxane was dried over sodium and freshly distilled under N_2 . Ethyl acetate and n-hexane were distilled prior to use. The reaction temperature was measured by digital thermometer PCE-T 390, which was in the range of 65 to 70 °C. The substrates were either purchased directly from commercial suppliers or prepared according to previously reported procedures. All other reagents and solvents used in this study were purchased from commercial sources and used as received. Chromatography was carried out on Merck silica gel 60 (40–63 μ m). NMR spectra were recorded on an AVANCE NEO 300 MHz or Bruker Avance III 400/500/600 in the solvent indicated; chemical shifts (δ) are given in ppm relative to the residual solvent peak. All IR spectra were recorded on a Bruker FT-IR Alpha-P device. EI-MS spectra were recorded on Jeol AccuTOF at 70eV, ESI-MS spectra on Bruker MicrOTOF and maXis.

2. Synthesis of Starting Materials

General Procedure for Synthesis of BCB esters 11

Step-1: To a stirred solution of 3-oxocyclobutane-1-carboxylic acid (1.1 equiv.) and EDCI (1.2 equiv.) in DCM (0.4 M) was added substituted benzyl alcohol (1 equiv.) and DMAP (20 mol%). The resulting mixture was stirred overnight at room temperature then diluted with DCM and saturated NH₄Cl solution. The separated aqueous layer was extracted with DCM. The combined organic layers were washed with brine and dried over MgSO₄ and concentrated in vacuo. The residue as a colourless oil was used for the next step without further purification.

Step-2: To a stirred solution of the above ester in MeOH (3 M) was added NaBH₄ (0.5 equiv.) portionwise at 0 °C. The resulting solution was stirred for 30 min at 0 °C then diluted with saturated NH₄Cl solution. The aqueous layer was extracted three times with DCM, and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 2.5/1$) to give the substituted benzyl 3-hydroxycyclobutane-1-carboxylate as a colourless liquid.

Step-3: To a stirred solution of the above hydroxy-ester and PPh₃ (1.8 equiv.) in dry THF (0.3 M) was added CBr₄ (1.8 equiv.) and LiBr (1.9 equiv.) and the resulting mixture was stirred overnight at 50 °C. The reaction mixture was then diluted with Et₂O and solid materials were removed by filtration through a pad of celite. The filtrate was washed with water and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = $100/0 \rightarrow 20/1$) to give the desired product, substituted benzyl 3-bromocyclobutane-1-carboxylate as a colourless liquid.

Step-4: To a stirred solution of the above bromo-ester in dry THF (0.2 M) was added

NaHMDS (2 M in THF, 1.03 equiv.) dropwise at 0 °C and the resulting mixture was stirred for 3 h at 0 °C. The reaction was then quenched with saturated NH₄Cl solution and the aqueous phase was extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo (at room temperature). The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = $100/0 \rightarrow 25/1$) to give the desired product. Note: The data for 1a and 1b are consistent with those previously reported in the literature¹.

BCBs 1j-1o were prepared according to previous literature¹⁻⁴.

4-(Trifluoromethyl)benzyl bicyclo[1.1.0]butane-1-carboxylate (1c). The product **1c** (1.18 g. 31%) as a colorless oil was obtained following the general procedure using (4-(trifluoromethyl)phenyl)methanol (2.64 g, 15 mmol). $\mathbf{R}_{\rm f} = 0.48$ (TLC: n-hexane/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.61$ (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 5.20 (s, 2H), 2.44 – 2.37 (m, 2H), 2.14 (p, J = 3.1 Hz, 1H), 1.23 – 1.17 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 172.9$ (C_q), 140.4 (q, J = 1.5 Hz, C_q), 130.4 (q, J = 32.4 Hz, C_q), 128.1 (CH), 125.6 (q, J = 3.8 Hz, CH), 124.0 (q, J = 272.7 Hz, C_q), 65.5 (CH₂), 35.9 (CH₂), 17.3 (CH), 9.2 (C_q). ¹⁹**F NMR** (377 MHz,

CDCl₃) $\delta = -62.62$. **IR** (ATR): 2949, 1707, 1405, 1322, 1123, 1063, 1017, 818, 745 cm⁻¹. **MS** (ESI) m/z (relative intensity): 257 [M+H]⁺ (50), 279 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for $C_{13}H_{11}O_2F_3$ [M+Na]⁺ : 279.0603, found: 279.0610.

4-(Methylthio)benzyl bicyclo[1.1.0]butane-1-carboxylate (1d). The product **1d** (1.80 g, 51%) as a colorless oil was obtained following the general procedure using (4-(methylthio)phenyl)methanol (2.31 g, 15 mmol). $\mathbf{R}_{\mathrm{f}} = 0.43$ (TLC: *n*-hexane/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.30 - 7.23$ (m, 4H), 5.12 (s, 2H), 2.49 (s, 3H), 2.39 (dt, J = 3.5, 1.1 Hz, 2H), 2.11 (p, J = 3.2 Hz, 1H), 1.18 (dt, J = 2.8, 1.0 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 173.0$ (C_q), 138.7 (C_q), 133.1 (C_q), 128.8 (CH), 126.6 (CH), 66.1 (CH₂), 35.8 (CH₂), 16.9 (CH), 15.8 (CH₃), 9.2 (C_q). **IR** (ATR): 2946, 1702, 1411, 1357, 1191, 1146, 1017, 800, 751 cm⁻¹. **MS** (ESI) m/z (relative intensity): 257 [M+Na]⁺ (100), 289 [M+CH₃OH]⁺ (20). **HR-MS** (ESI) m/z calcd for C₁₃H₁₄O₂S [M+Na]⁺ : 257.0607, found: 257.0609.

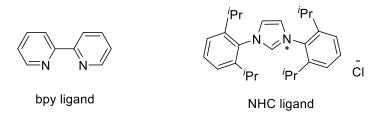
4-Chlorobenzyl bicyclo[1.1.0]butane-1-carboxylate (1e). The product 1e (1.10 g, 33%) as a colorless oil was obtained following the general procedure using (4-chlorophenyl)methanol (2.14 g, 15 mmol). $\mathbf{R}_f = 0.46$ (TLC: *n*-hexane/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.33 - 7.23$ (m, 4H), 5.08 (s, 2H), 2.39 – 2.33 (m, 2H), 2.09 (p, J = 3.3 Hz, 1H), 1.18 – 1.14 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 172.9$ (C_q), 134.8 (C_q), 134.1 (C_q), 129.5 (CH), 128.8 (CH), 65.6 (CH₂), 35.8 (CH₂), 17.1 (CH), 9.2 (C_q). **IR** (ATR): 2948, 1786, 1493, 1414, 1192, 1095, 1016, 836, 752 cm⁻¹. **MS** (ESI) m/z (relative intensity): 245 [M+Na]⁺ (100) (³⁵Cl), 247 [M+Na]⁺ (50) (³⁷Cl). **HR-MS** (ESI) m/z calcd for C₁₂H₁₁O₂Cl [M+Na]⁺ : 245.0340, found:

245.0334.

3-Chlorobenzyl bicyclo[1.1.0]butane-1-carboxylate (**1f**). The product **1f** (983 mg, 30%) as a colorless oil was obtained following the general procedure using (3-chlorophenyl)methanol (2.14 g, 15 mmol). $\mathbf{R}_{\rm f} = 0.47$ (TLC: *n*-hexane/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.32 - 7.30$ (m, 1H), 7.29 – 7.24 (m, 2H), 7.20 (ddd, J = 5.4, 4.1, 1.6 Hz, 1H), 5.10 (s, 2H), 2.38 (dt, J = 3.5, 1.1 Hz, 2H), 2.12 (p, J = 3.2 Hz, 1H), 1.17 (dt, J = 2.8, 1.0 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 172.8$ (C_q), 138.3 (C_q), 134.4 (C_q), 129.9 (CH), 128.3 (CH), 128.0 (CH), 126.0 (CH), 65.4 (CH₂), 35.8 (CH₂), 17.1 (CH), 9.1 (C_q). **IR** (ATR): 2944, 1704, 1405, 1355, 1190, 145, 1077, 868, 750 cm⁻¹. **MS** (ESI) m/z (relative intensity): 245 [M+Na]⁺ (100) (³⁵Cl), 247 [M+Na]⁺ (30) (³⁷Cl). **HR-MS** (ESI) m/z calcd for C₁₂H₁₁O₂Cl [M+Na]⁺: 245.0340, found: 245.0340.

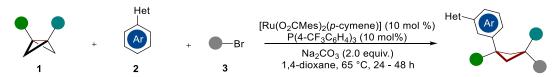
3,5-Dichlorobenzyl bicyclo[1.1.0]butane-1-carboxylate (1g). The product 1g (760 mg, 20%) as a colorless oil was obtained following the general procedure using (3,5-dichlorophenyl)methanol (2.66 g, 15 mmol). $\mathbf{R}_{\mathrm{f}} = 0.49$ (TLC: *n*-hexane/EtOAc = 10/1). ¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.34$ (t, J = 1.9 Hz, 1H), 7.26 (d, J = 2.0 Hz, 2H), 5.12 (s, 2H), 2.45 (dt, 2H), 2.21 (p, J = 3.2 Hz, 1H), 1.26 (dt, 2H). ¹³**C NMR** (101 MHz, CDCl₃) $\delta = 172.7$ (C_q), 139.7 (C_q), 135.2 (C_q), 128.3 (CH), 126.2 (CH), 64.7 (CH₂), 35.9 (CH₂), 17.5 (CH), 9.1 (C_q). **IR** (ATR): 3077, 2969, 1706, 1570, 1352, 1190, 1145, 1130, 841, 752 cm⁻¹. **MS** (ESI) m/z (relative intensity): 279 [M+Na]⁺ (100) (³⁵Cl), 281 [M+Na]⁺ (70) (³⁷Cl). **HR-MS** (ESI) m/z calcd for C₁₂H₁₁O₂Cl₂

[M+Na]⁺: 278.9950, found: 278.9955.


3,4-Dichlorobenzyl bicyclo[1.1.0]butane-1-carboxylate (**1h**). The product **1h** (1.25 g, 33%) as a colorless oil was obtained following the general procedure using (3,4-dichloro)phenyl)methanol (2.66 g, 15 mmol). $\mathbf{R}_f = 0.43$ (TLC: n-hexane/EtOAc = 10/1). $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) $\delta = 7.43 - 7.39$ (m, 2H), 7.16 (dd, J = 8.2, 2.1 Hz, 1H), 5.07 (s, 2H), 2.38 (dt, J = 3.5, 1.1 Hz, 2H), 2.13 (p, J = 3.2 Hz, 1H), 1.18 (dt, J = 2.9, 1.1 Hz, 2H). $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) $\delta = 172.8$ (C_q), 136.6 (C_q), 132.7 (C_q), 132.28 (C_q), 130.6 (CH), 130.0 (CH), 127.3 (CH), 64.8 (CH₂), 35.9 (CH₂), 17.4 (CH), 9.1 (C_q). **IR** (ATR): 2946, 1708, 1390, 1191, 1148, 1104, 1032, 877, 754 cm⁻¹. **MS** (ESI) m/z (relative intensity): 279 [M+Na]⁺ (70), 311 [M+Na+CH₃OH]⁺ (100). **HR-MS** (ESI) m/z calcd for C₁₂H₁₁O₂Cl₂ [M+Na]⁺: 278.9950, found: 278.9943.

Thiophen-2-ylmethyl bicyclo[1.1.0]butane-1-carboxylate (1i). The product 1i (900 mg, 32%) as a colorless oil was obtained following the general procedure using thiophen-2-ylmethanol (1.71 g, 15 mmol). $\mathbf{R}_f = 0.46$ (TLC: *n*-hexane/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.31$ (dd, J = 5.1, 1.3 Hz, 1H), 7.07 (ddt, J = 3.5, 1.4, 0.7 Hz, 1H), 6.98 (dd, J = 5.1, 3.5 Hz, 1H), 5.30 (d, J = 0.6 Hz, 2H), 2.38 (dd, J = 3.5, 1.1 Hz, 2H), 2.11 – 2.08 (m, 1H), 1.17 (dt, J = 2.9, 1.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 173.0$ (C_q), 138.5 (C_q), 128.0 (CH), 126.9 (CH), 126.8 (CH), 60.9 (CH₂), 35.9 (CH₂), 17.2 (CH), 9.2 (C_q). IR (ATR): 2984, 1728, 1682, 1479, 1399, 1225, 1127, 824, 735, cm⁻¹. MS (ESI) m/z (relative intensity): 217 [M+Na]⁺ (100), 249 [M+Na+CH₃OH]⁺ (30). HR-MS (ESI) m/z calcd for C₁₀H₁₀O₂S [M+Na]⁺: 217.0294, found: 217.0299.

3. Optimization of the Reaction Conditions^a


$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ &$$

Entry	Variation from standard conditions	Yield (%) ^b
1	None	75
2	PPh_3	54
3	$P[3,5-(CF_3)_2C_6H_3]_3$	34
4	$P(4\text{-}OMeC_6H_4)_3$	43
5	bpy / NHC	0 / trace
6	5 mol% [Ru] and 5 mol% P(4-CF $_3$ C $_6$ H $_4$) $_3$	58 ^c
7	[Ru(OAc) ₂ (p-cymene)]	52
8	[RuCl ₂ (p-cymene)] ₂	5
9	$[Ru(^tBuCN)_5(H_2O)](BF_4)_2$	21 ^d
10	$[Ru(^tBuCN)_5(H_2O)](BF_4)_2$	30
11	3.0 equiv Na ₂ CO ₃	74
12	K ₂ CO ₃	45
13	No P(4-CF ₃ C ₆ H ₄) ₃	0
14	No Ru catalyst	0

Table S1. Optimization of the reaction parameters: a, Reaction conditions: **1a** (0.3 mmol), **2a** (3.0 equiv.), **3a** (3.0 equiv.), [Ru] (10 mol%), ligand (10 mol%), Na₂CO₃ (2.0 equiv.), 1,4-dioxane (2.0 mL), T = 65 °C, t = 24 h. **b**, Yield of isolated products. **c**, Using [Ru] (5 mol%), ligand (5 mol%), T = 75 °C and t = 24 h. **d**, T = 50 °C.

4. General Procedure and Products Characterization

In an N₂ filled glovebox, [Ru(O₂CMes)₂(*p*-cymene)] (16.8 mg, 10.0 mol%), P(4-CF₃C₆H₄)₃ (14.0 mg, 10.0 mol%), Na₂CO₃ (64 mg, 0.6 mmol, 2.0 equiv.), 1,4-dioxane (2.0 mL), **1** (0.3 mmol, 1.0 equiv.), **2** (0.9 mmol, 3.0 equiv.) and **3** (0.9 mmol, 3.0 equiv.) were added into an oven-dried 20 mL pressure tube. The reaction mixture was stirred at 65 °C for 24 - 48 h. After cooling to ambient temperature, the mixture was purified by column chromatography on silica gel to afford the corresponding polysubstituted cyclobutanes **4-57** with two diastereomers and the ratio was determined by isolated yield, ¹**H-NMR** or ¹⁹**F-NMR**. Note: In the preparation of 1,1,3-substituted cyclobutanes, the *cis*-structure is major isomer, while for the synthesis of 1,1,3,3-substituted cyclobutanes, the (*1r*,3*r*)-structure is major isomer, which is confirmed by X-ray crystallographic analysis (see X-ray structure of compound **62** in part 6), NMR spectra and is consistent with DFT studies.

Characterization Data of Products

Compound 4 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded 4 (105 mg, 75%) with two separable diastereomers (cis: trans = 3.1:1). $\mathbf{R}_f = 0.40$ for cis-4 and 0.47 for trans-4 (TLC: n-hexane/EtOAc = 3/1).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (cis-4, 79 mg, 57%) was obtained as a white solid. Recrystallization on DCM/n-hexanes. M.p.: 99 – 101 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 8.06 – 8.04 (m, 1H), 7.93 – 7.89 (m, 1H), 7.77 – 7.72 (m, 1H), 7.69 – 7.66 (m, 1H), 7.49 – 7.46 (m, 2H), 7.27 – 7.23 (m, 4H), 7.20 – 7.16 (m, 2H), 5.08 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.13 – 3.07 (m, 2H), 2.95 – 2.76 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.3 (Cq), 163.8 (t, J = 33.4 Hz, Cq), 157.2 (Cq), 149.9 (CH), 141.6 (Cq), 140.0 (Cq), 136.9 (CH), 135.9 (Cq), 129.2 (CH), 128.6 (CH), 128.2 (CH), 127.8 (CH), 127.3 (CH), 126.1 (CH), 125.4 (CH), 122.5 (CH), 120.9 (CH), 115.5 (t, J = 250.2 Hz, Cq), 67.0 (CH₂), 63.0 (CH₂), 47.9 (Cq), 32.1 (t, J = 25.8 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹9F NMR (471 MHz, CDCl₃) δ = -114.27 (d, J = 15.2 Hz). IR (ATR): 2965, 1766, 1731, 1462, 1308, 1224, 1042, 773 cm⁻¹. MS (ESI) m/z (relative intensity): 466 [M+H]⁺ (30), 488 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₇H₂₅F₂NO₄ [M+H]⁺: 466.1824, found: 466.1825.

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (trans-4, 26 mg, 19%) was obtained as a white solid. M.p.: 88 – 90 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.71 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 7.92 – 7.85 (m, 2H), 7.75 (td, J = 7.7, 1.9 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.29 – 7.22 (m, 4H), 7.20 – 7.15 (m, 2H), 5.13 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.20 – 3.01 (m, 3H), 2.80 – 2.73 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 174.7 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.2 (C_q), 149.8 (CH), 143.3 (C_q), 139.8 (C_q), 136.8 (CH), 135.9 (C_q), 129.0 (CH), 128.6 (CH), 128.2 (CH), 127.7 (CH), 126.7 (CH), 125.8 (CH), 124.7 (CH), 122.4 (CH), 120.8 (CH), 114.9 (t, J = 250.0 Hz, C_q), 67.2 (CH₂), 63.0 (CH₂), 48.6 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.7 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.31 (d, J = 15.0 Hz). IR (ATR): 2959, 1762, 1727, 1464, 1308, 1268, 1122, 1052, 737 cm⁻¹. MS (ESI) m/z (relative intensity): 466 [M+H]⁺ (30), 488 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₇H₂₅F₂NO₄ [M+H]⁺: 466.1824, found: 466.1828.

Compound **5** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 1-(6-phenylpyridin-3-yl)ethan-1-one (177 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = 8/1/1) yielded **5** (90 mg, 59%) as a colorless oil with two separable diastereomers (cis: trans = 2.8:1). $\mathbf{R}_f = 0.36$ for cis-**5** and 0.40 for trans-**5** (TLC: n-hexane/EtOAc/DCM = 3/1/1).

Benzyl

(1s,3s)-1-(3-(5-acetylpyridin-2-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyc lobutane-1-carboxylate (cis-5, 66 mg, 43%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 9.24 (dd, J = 2.3, 0.9 Hz, 1H), 8.29 (dd, J = 8.3, 2.3 Hz, 1H), 8.13 (td, J = 1.8, 0.6 Hz, 1H), 7.99 (dt, J = 7.1, 1.7 Hz, 1H), 7.79 (dd, J = 8.3, 0.9 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.29 – 7.25 (m, 3H), 7.21 – 7.18 (m, 2H), 5.10 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.16 – 3.08 (m, 2H), 2.97 – 2.77 (m, 3H), 2.68 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 196.6 (C_q), 174.2 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 160.6 (C_q), 150.3 (CH), 141.9 (C_q), 138.7 (C_q), 136.5 (CH), 135.8 (C_q), 130.9 (C_q), 129.3 (CH), 128.6 (CH), 128.4 (CH), 128.2 (CH), 127.9 (CH), 126.5 (CH), 125.9 (CH), 120.4 (CH), 115.4 (t, J = 250.3 Hz, C_q), 67.0 (CH₂), 63.0 (CH₂), 47.9 (C_q), 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 26.9 (CH₃), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.26 (d, J = 15.3 Hz). IR (ATR): 2962, 1763, 1729, 1686, 1588, 1271, 1128, 957, 744, 697 cm⁻¹. MS (ESI) m/z crelative intensity): 508 [M+H]⁺ (30), 530 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₉H₂₇F₂NO₅ [M+H]⁺: 530.1750, found: 530.1761.

Me
$$CF_2CO_2Et$$

Benzyl

(1r,3r)-1-(3-(5-acetylpyridin-2-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyc lobutane-1-carboxylate (*trans*-5, 24 mg, 16%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 9.23 (dd, J = 2.3, 0.9 Hz, 1H), 8.28 (dd, J = 8.3, 2.3 Hz, 1H), 7.96 – 7.91 (m, 2H), 7.78 (dd, J = 8.3, 0.9 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.36 s₁₂

-7.33 (m, 1H), 7.28 - 7.24 (m, 3H), 7.20 - 7.14 (m, 2H), 5.12 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.19 - 2.99 (m, 3H), 2.79 - 2.70 (m, 2H), 2.67 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) $\delta = 196.6$ (C_q), 174.6 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 160.7 (C_q), 150.6 (CH), 143.6 (C_q), 138.5 (C_q), 136.5 (CH), 135.8 (C_q) 130.8 (C_q), 129.2 (CH), 128.6 (CH), 128.3 (CH), 127.8 (CH), 127.7 (CH), 126.3 (CH), 125.2 (CH), 120.4 (CH), 114.9 (t, J = 249.9 Hz, C_q), 67.3 (CH₂), 63.0 (CH₂), 48.5 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.7 (t, J = 5.0 Hz, CH₂), 26.9 (CH₃), 14.1 (CH₃). 19 F NMR (471 MHz, CDCl₃) $\delta = -114.40$ (d, J = 14.8 Hz). IR (ATR): 2960, 1763, 1728, 1686, 1588, 1269, 1125, 957, 746, 694 cm⁻¹. MS (ESI) m/z (relative intensity): 508 [M+H]⁺ (30), 530 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₉H₂₇F₂NO₅ [M+Na]⁺: 530.1750, found: 530.1759.

Compound 6 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 4-methoxy-2-phenylpyridine (167 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = 5/1/1) yielded 6 (109 mg, 73%) as a colorless oil with two separable diastereomers (cis: trans = 3:1). $\mathbf{R}_f = 0.35$ for cis-6 and 0.38 for trans-6 (TLC: n-hexane/EtOAc/DCM = 3/1/1).

MeO
$$\frac{N}{BnO_2C}$$
 $\frac{H}{CF_2CO_2Et}$

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(4-methoxypyridin-2-yl)phenyl)c yclobutane-1-carboxylate (*cis*-6, 82 mg, 55%) was obtained as a colorless oil. ${}^{1}H$ NMR (500 MHz, CDCl₃) δ = 8.53 (dd, J = 5.7, 0.5 Hz, 1H), 8.04 – 8.00 (m, 1H), 7.90 – 7.84 (m, 1H), 7.49 – 7.44 (m, 2H), 7.29 – 7.22 (m, 3H), 7.18 (dd, J = 6.5, 2.3 Hz, 3H), 6.79 (dd, J = 5.7, 2.4 Hz, 1H), 5.08 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.90 (s, 3H), 3.09 (dd, J = 13.1, 8.1 Hz, 2H), 2.93 – 2.75 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ${}^{13}C$

NMR (126 MHz, CDCl₃) δ = 174.3 (C_q), 166.5 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 159.0 (C_q), 151.1 (CH), 141.5 (C_q), 140.1 (C_q), 135.9 (C_q), 129.1 (CH), 128.6 (CH), 128.2 (CH), 127.8 (CH), 127.4 (CH), 126.2 (CH), 125.5 (CH), 115.5 (t, J = 250.2 Hz, C_q), 108.3 (CH), 107.3 (CH), 67.0 (CH₂), 63.0 (CH₂), 55.4 (CH₃), 47.9 (C_q), 32.1 (t, J = 25.8 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.27 (d, J = 15.3 Hz). IR (ATR): 2962, 1763, 1729, 1591, 1372, 1207, 1036, 743, 697 cm⁻¹. MS (ESI) m/z (relative intensity): 496 [M+H]⁺ (100), 518 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₇F₂NO₅ [M+Na]⁺: 518.1750, found:518.1756.

$$\begin{array}{c} \mathsf{MeO} \\ \mathsf{BnO}_2\mathsf{C} \\ \mathsf{H} \end{array}$$

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(4-methoxypyridin-2-yl)phenyl)c yclobutane-1-carboxylate (trans-6, 27 mg, 18%) was obtained as a colorless oil. 1 H NMR (500 MHz, CDCl₃) δ = 8.53 (d, J = 5.7 Hz, 1H), 7.88 – 7.80 (m, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.30 – 7.25 (m, 4H), 7.21 – 7.14 (m, 3H), 6.79 (dd, J = 5.7, 2.4 Hz, 1H), 5.12 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 3.19 – 2.98 (m, 3H), 2.79 – 2.71 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ = 174.7 (C_q), 166.5 (C_q), 163.8 (t, J = 33.4 Hz, C_q), 159.0 (C_q), 151.1 (CH), 143.3 (C_q), 139.8 (C_q), 135.9 (C_q), 128.9 (CH), 128.6 (CH), 128.2 (CH), 127.7 (CH), 126.8 (CH), 125.9 (CH), 124.8 (CH), 114.9 (t, J = 250.2 Hz, C_q), 108.3 (CH), 107.3 (CH), 67.2 (CH₂), 63.0 (CH₂), 55.4 (CH₃), 48.6 (C_q), 33.6 (t, J = 26.1 Hz, CH), 31.7 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). 19 F NMR (471 MHz, CDCl₃) δ = -114.33 (d, J = 14.7 Hz). IR (ATR): 2959, 1763, 1728, 1591, 1373, 1206, 1036, 737, 702 cm⁻¹. MS (ESI) m/z (relative intensity): 496 [M+H]⁺ (100), 518 [M+Na]⁺ (75). HR-MS (ESI) m/z calcd for C₂₈H₂₇F₂NO₅ [M+Na]⁺: 518.1750, found:518.1759.

Benzyl

3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-methoxy-3-(pyridin-2-yl)phenyl)cyclob utane-1-carboxylate (7). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-(2-methoxyphenyl)pyridine (167 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = 10/1→3/1) yielded 7 (64 mg, 43%) as a colorless oil with two diastereomers (cis: trans = 14.3:1, determined by 19 F-NMR). $R_f = 0.38$ (TLC: *n*-hexane/EtOAc = 3/1). 1 H NMR (500 MHz, CDCl₃) (cis-isomer) $\delta = 8.71$ (d, J = 5.0 Hz, 1H), 7.68 (td, J = 7.7, 1.8 Hz, 1H), 7.62 (dd, J =7.7, 1.7 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.49 (dd, J = 7.8, 1.7 Hz, 1H), 7.29 – 7.20 (m, 7H), 5.13 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.16 – 3.06 (m, 5H), 3.00 – 2.90 (m, 1H), 2.65 - 2.58 (m, 2H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) (cis-isomer) $\delta = 174.2$ (C_a), 163.9 (t, J = 33.4 Hz, C_a), 156.7 (C_a), 156.6 (C_a), 149.9 (CH), 136.4 (CH), 136.1 (C_q), 134.9 (C_q), 133.4 (C_q), 131.3 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.0 (CH), 124.5 (CH), 123.8 (CH), 122.2 (CH), 115.4 (t, J =250.2 Hz, C_g), 66.7 (CH₂), 62.9 (CH₂), 60.9 (CH₃), 45.6 (C_g), 32.6 (t, J = 25.8 Hz, CH), 30.5 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -113.82$ (d, J = 15.2 Hz, cis), -114.18 (d, J = 15.6 Hz, trans). IR (ATR): 2986, 1729, 1455, 1231, 1127, 1041, 1002, 759 cm⁻¹. **MS** (ESI) m/z (relative intensity): 496 [M+H]⁺ (10), 518 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{28}H_{27}F_2NO_5$ $[M+H]^+$: 496.1935, found: 496.1930.

Compound **8** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), methyl 4-(pyridin-2-yl)benzoate (192 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc/DCM = 5/1/1) yielded **8** (79 mg, 51%)

as a colorless oil with two separable diastereomers (*cis*: trans = 3.3:1). $\mathbf{R}_{\rm f} = 0.35$ for *cis*-8 and 0.38 for trans-8 (TLC: n-hexane/EtOAc/DCM = 3/1/1).

$$CO_2Me$$
 H
 CF_2CO_2Et

Methyl

2-((1s,3s)-1-((benzyloxy)carbonyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutyl)-4-(pyridin-2-yl)benzoate (*cis*-8, 61 mg, 39%) was obtained as a colorless oil. 1 H NMR (500 MHz, CDCl₃) δ = 8.74 (dt, J = 4.8, 1.4 Hz, 1H), 8.33 (d, J = 1.7 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.98 (dd, J = 8.1, 1.7 Hz, 1H), 7.83 – 7.78 (m, 2H), 7.34 – 7.20 (m, 6H), 5.11 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 3.67 (s, 3H), 3.21 (dd, J = 13.1, 10.1 Hz, 2H), 2.92 – 2.80 (m, 1H), 2.65 – 2.56 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ = 173.9 (C_q), 167.5 (C_q), 163.9 (t, J = 33.2 Hz, C_q), 156.1 (C_q), 150.1 (CH), 142.8 (C_q), 142.3 (C_q), 137.1 (CH), 136.2 (C_q), 132.5 (CH), 129.7 (C_q), 128.5 (CH), 128.0 (CH), 128.0 (CH), 126.4 (CH), 125.7 (CH), 123.1 (CH), 121.2 (CH), 115.2 (t, J = 250.4 Hz, C_q), 66.8 (CH₂), 63.0 (CH₂), 52.2 (CH₃), 48.4 (C_q), 32.7 (t, J = 25.9 Hz, CH), 31.7 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). 19 F NMR (471 MHz, CDCl₃) δ = -113.64 (d, J = 14.7 Hz). IR (ATR): 2955, 1763, 1716, 1583, 1434, 1216, 1117, 1043, 730, 699 cm⁻¹. MS (ESI) m/z calcd for C₂₉H₂₇F₂NO₆ [M+H]⁺: 524.1879, found: 524.1881.

$$CO_2Me$$
 CF_2CO_2Et
 CF_2CO_2Et

Methyl

2-((1r,3r)-1-((benzyloxy)carbonyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutyl)-4-(pyridin-2-yl)benzoate (trans-8, 18 mg, 12%) was obtained as a colorless oil. 1 H NMR (500 MHz, CDCl₃) δ = 8.73 (dt, J = 4.8, 1.5 Hz, 1H), 8.02 (d, J = 1.6 Hz, 1H),

8.00 – 7.93 (m, 2H), 7.80 – 7.78 (m, 2H), 7.31 – 7.28 (m, 1H), 7.27 – 7.26 (m, 1H), 7.26 – 7.24 (m, 2H), 7.20 – 7.16 (m, 2H), 5.15 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 3.71 (s, 3H), 3.46 – 3.35 (m, 1H), 2.95 – 2.89 (m, 2H), 2.67 (t, J = 10.9 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ = 174.9 (C_q), 167.5 (C_q), 163.9 (t, J = 33.3 Hz, C_q), 156.1 (C_q), 150.0 (CH), 144.6 (C_q), 142.7 (C_q), 137.0 (CH), 136.2 (C_q), 131.5 (CH), 128.6 (C_q), 128.5 (CH), 128.0 (CH), 127.8 (CH), 127.2 (CH), 125.4 (CH), 123.1 (CH), 121.2 (CH), 115.1 (t, J = 249.7 Hz, C_q), 66.9 (CH₂), 63.0 (CH₂), 52.2 (CH₃), 48.5 (C_q), 33.2 (t, J = 25.5 Hz, CH), 31.9 (t, J = 5.2 Hz, CH₂), 14.1 (CH₃). ¹⁹**F** NMR (471 MHz, CDCl₃) δ = -114.57 (d, J = 15.5 Hz). IR (ATR): 2959, 1762, 1727, 1581, 1461, 1315, 1130, 1040, 734, 702 cm⁻¹. MS (ESI) m/z (relative intensity): 524 [M+H]⁺ (10), 546 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₉H₂₇F₂NO₆ [M+H]⁺: 524.1879, found: 524.1877.

Compound **9** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 2-(4-(methylthio)phenyl)pyridine (181 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $8/1/1 \rightarrow 5/1/1$) yielded **9** (83 mg, 54%) with two separable diastereomers (cis: trans = 4.2:1). **R**_f = 0.21 for cis-**9** and 0.26 for trans-**9** (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-(methylthio)-5-(pyridin-2-yl)phe nyl)cyclobutane-1-carboxylate (*cis*-9, 67 mg, 44%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.1 Hz, 1H), 8.16 (d, J = 1.9 Hz, 1H), 7.90 (dd, J = 8.2, 1.9 Hz, 1H), 7.82 – 7.71 (m, 3H), 7.38 (d, J = 8.2 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.26 – 7.20 (m, 4H), 5.13 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.18 -3.09 (m, 2H), 3.01 - 2.84 (m, 1H), 2.80 - 2.71 (m, 2H), 2.33 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 173.9$ (C_q), 163.9 (t, J = 33.2 Hz, C_q), 156.9 (C_q), 149.9 (CH), 139.8 (C_q), 139.1 (C_q), 136.9 (CH), 136.5 (C_q), 136.1 (C_q), 128.4 (CH), 128.2 (CH), 128.0 (CH), 128.0 (CH), 126.4 (CH), 124.9 (CH), 122.3 (CH), 120.5 (CH), 115.3 (t, J = 250.4 Hz, C_q), 66.9 (CH₂), 63.0 (CH₂), 48.1 (C_q), 32.8 (t, J = 25.9 Hz, CH), 30.3 (t, J = 4.9 Hz, CH₂), 16.8 (CH₃), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -113.69$ (d, J = 15.1 Hz). **IR** (ATR): 2953, 1764, 1725, 1434, 1283, 1126, 1056, 745 cm⁻¹. **MS** (ESI) m/z (relative intensity): 512 [M+H]⁺ (80), 534 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₈H₂₇F₂NO₄S [M+H]⁺: 512.1702, found: 512.1710.

$$\begin{array}{c} \text{2-Py} \\ \text{SMe} \\ \text{CF}_2\text{CO}_2\text{Et} \\ \text{BnO}_2\text{C} \\ \text{H} \end{array}$$

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-(methylthio)-5-(pyridin-2-yl)phe nyl)cyclobutane-1-carboxylate (trans-9, 16 mg, 10%) was obtained as a colorless oil.
¹H NMR (500 MHz, CDCl₃) δ = 8.69 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.92 – 7.85 (m, 2H), 7.79 – 7.69 (m, 2H), 7.31 (d, J = 8.0 Hz, 1H), 7.28 – 7.21 (m, 4H), 7.18 – 7.13 (m, 2H), 5.14 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.41 – 3.25 (m, 1H), 3.04 – 2.95 (m, 2H), 2.82 – 2.73 (m, 2H), 2.36 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H).
¹³C NMR (126 MHz, CDCl₃) δ = 174.8 (C_q), 163.9 (t, J = 33.4 Hz, C_q), 156.8 (C_q), 149.8 (CH), 140.9 (C_q), 138.7 (C_q), 136.9 (CH), 136.3 (C_q), 136.1 (C_q), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.1 (CH), 126.2 (CH), 125.7 (CH), 122.2 (CH), 120.5 (CH), 115.0 (t, J = 249.8 Hz, C_q), 66.9 (CH₂), 63.0 (CH₂), 48.9 (C_q), 33.5 (t, J = 25.7 Hz, CH), 31.6 (t, J = 5.1 Hz, CH₂), 16.5 (CH₃), 14.1 (CH₃).
¹⁹F NMR (471 MHz, CDCl₃) δ = -114.44 (d, J = 15.2 Hz). IR (ATR): 2957, 1762, 1725, 1431, 1310, 1121, 1053, 738 cm⁻¹. MS (ESI) m/z (relative intensity): 512 [M+H]⁺ (70), 534 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₇F₂NO₄S [M+H]⁺: 512.1702, found: 512.1707.

Compound **10** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 2-phenylpyrimidine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded **10** (84 mg, 61%) with two separable diastereomers (cis: trans = 3.1:1). $\mathbf{R}_f = 0.10$ for cis-**10** and 0.13 for trans-**10** (TLC: n-hexane/EtOAc = 5/1).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyrimidin-2-yl)phenyl)cyclobut ane-1-carboxylate (cis-10, 64 mg, 46%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.83 (d, J = 4.8 Hz, 2H), 8.58 (t, J = 1.9 Hz, 1H), 8.40 (dt, J = 7.6, 1.5 Hz, 1H), 7.55 (dt, J = 7.8, 1.6 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.23 – 7.19 (m, 3H), 5.10 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.16 – 3.10 (m, 2H), 2.96 – 2.79 (m, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.3 (Cq), 164.4 (Cq), 163.8 (t, J = 33.3 Hz, Cq), 157.4 (CH), 141.5 (Cq), 138.1 (Cq), 135.9 (Cq), 129.3 (CH), 129.1 (CH), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.3 (CH), 126.5 (CH), 119.4 (CH), 115.5 (t, J = 250.2 Hz, Cq), 66.9 (CH₂), 63.0 (CH₂), 47.9 (Cq), 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.25 (d, J = 15.2 Hz). IR (ATR): 2961, 1763, 1729, 1562, 1414, 1225, 1038, 700 cm⁻¹. MS (ESI) m/z calcd for C₂₆H₂₄N₂O₄F₂ [M+H]⁺: 467.1777, found: 467.1774.

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyrimidin-2-yl)phenyl)cyclobut ane-1-carboxylate (trans-10, 20 mg, 14%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.81 (d, J = 4.8 Hz, 2H), 8.39 – 8.33 (m, 2H), 7.46 (td, J = 7.6, 1.1 Hz, 1H), 7.36 (dd, J = 7.9, 1.4 Hz, 1H), 7.27 – 7.24 (m, 3H), 7.20 (t, J = 4.8 Hz, 1H), 7.18 – 7.15 (m, 2H), 5.12 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.19 – 3.00 (m, 3H), 2.80 – 2.72 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.7 (C_q), 164.5 (C_q), 163.8 (t, J = 33.4 Hz, C_q), 157.4 (CH), 143.3 (C_q), 137.9 (C_q), 135.9 (C_q), 128.9 (CH), 128.6 (CH), 128.2 (CH), 127.6 (CH), 127.1 (CH), 125.9 (CH), 119.4 (CH), 115.0 (t, J = 250.0 Hz, C_q), 67.2 (CH₂), 63.0 (CH₂), 48.5 (C_q), 33.6 (t, J = 25.9 Hz, CH), 31.7 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.34 (d, J = 14.9 Hz). IR (ATR): 2960, 1763, 1727, 1562, 1415, 1225, 1057, 701 cm⁻¹. MS (ESI) m/z (relative intensity): 467 [M+H]⁺ (20), 489 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂6H₂₄N₂O₄F₂ [M+H]⁺: 467.1777, found: 467.1771.

Compound 11 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 5-methyl-2-phenylpyrimidine (153 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 36 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded 11 (90 mg, 63%) with two separable diastereomers (cis: trans = 3.2:1). $\mathbf{R}_f = 0.18$ for cis-11 and 0.20 for trans-11 (TLC: n-hexane/EtOAc = 5/1 for 2 times).

$$\begin{array}{c} \text{Me} & \text{N} \\ \text{N} & \text{H} \\ \text{BnO}_2\text{C} & \text{CF}_2\text{CO}_2\text{Et} \end{array}$$

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(5-methylpyrimidin-2-yl)phenyl) cyclobutane-1-carboxylate (*cis*-11, 69 mg, 48%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.64 (d, J = 0.8 Hz, 2H), 8.53 (t, J = 1.6 Hz, 1H), 8.34 (dt, J = 7.4, 1.6 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.26 – 7.24 (m, 3H), 7.20 – 7.17 (m,

2H), 5.08 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.13 – 3.08 (m, 2H), 2.93 – 2.79 (m, 3H), 2.35 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 174.3$ (C_q), 163.8 (t, J = 33.3 Hz, C_q), 162.1 (C_q), 157.5 (CH), 141.4 (C_q), 138.1 (C_q), 135.9 (C_q), 129.0 (CH), 128.8 (CH), 128.7 (C_q), 128.5 (CH), 128.1 (CH), 127.7 (CH), 127.1 (CH), 126.2 (CH), 115.5 (t, J = 250.1 Hz, C_q), 66.9 (CH₂), 63.0 (CH₂), 47.9 (C_q), 32.1 (t, J = 250.1 Hz, CH₂), 15.7 (CH₃), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -114.25$ (d, J = 15.3 Hz). **IR** (ATR): 2957, 1730, 1551, 1429, 1219, 1166, 1039, 782, 701 cm⁻¹. **MS** (ESI) m/z (relative intensity): 481 [M+H]⁺ (40), 503 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₇H₂₆N₂O₄F₂ [M+H]⁺: 481.1933, found: 481.1941.

$$\begin{array}{c} \text{Me} & \text{N} \\ \text{N} & \text{CF}_2\text{CO}_2\text{Et} \\ \text{BnO}_2\text{C} & \text{H} \end{array}$$

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(5-methylpyrimidin-2-yl)phenyl) cyclobutane-1-carboxylate (trans-11, 21 mg, 15%) was obtained as a white solid. Recrystallization on DCM/ n-hexane. ¹H NMR (400 MHz, CDCl₃) δ = 8.64 (d, J = 0.9 Hz, 2H), 8.32 – 8.28 (m, 2H), 7.46 – 7.42 (m, 1H), 7.34 – 7.31 (m, 1H), 7.26 – 7.22 (m, 3H), 7.18 – 7.14 (m, 2H), 5.11 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.18 – 3.00 (m, 3H), 2.80 – 2.73 (m, 2H), 2.35 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 174.7 (C_q), 163.8 (t, J = 33.4 Hz, C_q), 162.2 (C_q), 157.5 (CH), 143.2 (C_q), 137.9 (C_q), 135.9 (C_q), 128.8 (CH), 128.6 (C_q), 128.6 (CH), 128.2 (CH), 128.2 (CH), 127.6 (CH), 126.8 (CH), 125.6 (CH), 115.0 (t, J = 250.5 Hz, C_q), 67.1 (CH₂), 63.0 (CH₂), 48.6 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.7 (t, J = 5.0 Hz, CH₂), 15.7 (CH₃), 14.1 (CH₃). ¹⁹F NMR (377 MHz, CDCl₃) δ = -114.30 (d, J = 14.6 Hz). IR (ATR): 2956, 1730, 1551, 1430, 1215, 1125, 1024, 782, 699 cm⁻¹. MS (ESI) m/z (relative intensity): 481 [M+H]⁺ (30), 503 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₇H₂₆N₂O₄F₂ [M+Na]⁺: 503.1753, found: 503.1754.

Compound 12 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 5-fluoro-2-phenylpyrimidine (157 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $25/1/1 \rightarrow 20/1/1$) yielded 12 (84 mg, 58%) with two separable diastereomers (cis: trans = 2.7:1). $\mathbf{R}_f = 0.47$ for cis-12 and 0.50 for trans-12 (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(5-fluoropyrimidin-2-yl)phenyl) cyclobutane-1-carboxylate (cis-12, 61 mg, 42%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.66 (s, 2H), 8.50 (t, J = 1.9 Hz, 1H), 8.32 (dt, J = 7.6, 1.5 Hz, 1H), 7.56 – 7.45 (m, 2H), 7.28 – 7.23 (m, 3H), 7.21 – 7.15 (m, 2H), 5.08 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.14 – 3.08 (m, 2H), 2.94 – 2.75 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.2 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 160.7 (d, J = 5.4 Hz, C_q), 156.9 (d, J = 264.9 Hz, C_q), 145.1 (d, J = 20.2 Hz, CH), 141.6 (C_q), 137.1 (C_q), 135.9 (C_q), 129.1 (CH), 129.1 (CH), 128.5 (CH), 128.2 (CH), 127.8 (CH), 127.3 (CH), 126.5 (CH), 115.5 (t, J = 250.2 Hz, C_q), 67.0 (CH₂), 63.0 (CH₂), 47.9 (C_q), 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.25 (d, J = 15.2 Hz), -140.24. IR (ATR): 2960, 1763, 1729, 1418, 1220, 1127, 1038, 779, 699 cm⁻¹. MS (ESI) m/z (relative intensity): 485 [M+H]⁺ (5), 507 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₆H₂₃N₂O₄F₃ [M+Na]⁺: 507.1502, found: 507.1509.

$$CF_2CO_2Et$$

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(5-fluoropyrimidin-2-yl)phenyl) cyclobutane-1-carboxylate (trans-12, 23 mg, 16%) was obtained as a colorless oil.
¹H NMR (400 MHz, CDCl₃) δ = 8.65 (s, 2H), 8.29 (dd, J = 7.3, 1.4 Hz, 2H), 7.50 – 7.41 (m, 1H), 7.36 – 7.33 (m, 1H), 7.29 – 7.22 (m, 3H), 7.20 – 7.13 (m, 2H), 5.12 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.21 – 2.98 (m, 3H), 2.79 – 2.70 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ = 174.7 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 160.8 (d, J = 5.5 Hz, C_q), 156.9 (d, J = 264.9 Hz, C_q), 145.1 (d, J = 20.2 Hz, CH), 145.0, 143.3 (C_q), 137.0 (C_q), 135.9 (C_q), 128.9 (CH), 128.6 (CH), 128.4 (CH), 128.2 (CH), 127.6 (CH), 127.0 (CH), 125.9 (CH), 115.0 (t, J = 250.1 Hz, C_q), 67.2 (CH₂), 63.0 (CH₂), 48.5 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.6 (t, J = 5.1 Hz, CH₂), 14.1 (CH₃).
¹⁹F NMR (377 MHz, CDCl₃) δ = -114.36 (d, J = 14.6 Hz), -140.37. IR (ATR): 2960, 1763, 1727, 1418, 1213, 1122, 1054, 730, 698 cm⁻¹. MS (ESI) m/z (relative intensity): 485 [M+H]⁺ (10), 507 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₆H₂₃N₂O₄F₃ [M+Na]⁺: 507.1502, found: 507.1507.

Compound 13 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 5-methoxy-2-phenylpyrimidine (167 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 8/1/1$) yielded 13 (88 mg, 59%) with two separable diastereomers (cis: trans = 3.4:1). $\mathbf{R}_{f} = 0.27$ for cis-13 and 0.30 for trans-13 (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(5-methoxypyrimidin-2-yl)phen yl)cyclobutane-1-carboxylate (cis-13, 68 mg, 46%) was obtained as a white solid. **M.p.**: 99 – 101 °C.
¹**H NMR** (400 MHz, CDCl₃) δ = 8.51 – 8.48 (m, 3H), 8.34 – 8.27 (m, 1H), 7.50 – 7.44 (m, 2H), 7.30 – 7.24 (m, 3H), 7.22 – 7.18 (m, 2H), 5.10 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.98 (s, 3H), 3.15 – 3.08 (m, 2H), 2.97 – 2.79 (m, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 174.3 (C_q), 163.8 (t, J = 33.5 Hz, C_q), 157.5 (C_q), 152.2 (C_q), 143.5 (CH), 141.4 (C_q), 137.9 (C_q), 135.9 (C_q), 129.0 (CH), 128.5 (CH), 128.2 (CH), 128.1 (CH), 127.7 (CH), 126.7 (CH), 125.9 (CH), 115.5 (t, J = 251.5 Hz, C_q), 66.9 (CH₂), 63.0 (CH₂), 56.2 (CH₃), 47.9 (C_q), 32.2 (t, J = 25.8 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹**F NMR** (376 MHz, CDCl₃) δ = -114.24 (d, J = 15.0 Hz). **IR** (ATR): 2959, 1730, 1548, 1421, 1276, 1127, 1013, 738, 700 cm⁻¹. **MS** (ESI) m/z (relative intensity): 497 [M+H]⁺ (15), 519 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₇H₂₆N₂O₅F₂ [M+H]⁺: 497.1883, found: 497.1885.

$$\begin{array}{c} \mathsf{MeO} \\ \mathsf{N} \\ \mathsf{BnO}_2\mathsf{C} \\ \mathsf{H} \end{array}$$

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(5-methoxypyrimidin-2-yl)phen yl)cyclobutane-1-carboxylate (*trans*-13, 20 mg, 13%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.48 – 8.47 (m, 2H), 8.27 – 8.25 (m, 2H), 7.45 – 7.41 (m, 1H), 7.31 – 7.28 (m, 1H), 7.27 – 7.23 (m, 3H), 7.18 – 7.15 (m, 2H), 5.11 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 3.96 (s, 3H), 3.18 – 2.99 (m, 3H), 2.80 – 2.73 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.8 (C_q), 163.8 (t, J = 33.5 Hz, C_q), 157.6 (C_q), 152.2 (C_q), 143.5 (CH), 143.2 (C_q), 137.7 (C_q), 135.9 (C_q), 128.8 (CH), 128.6 (CH), 128.2 (CH), 127.6 (CH), 127.6 (CH), 126.4 (CH), 125.3 (CH), 115.0 (t, J = 250.0 Hz, C_q), 67.1 (CH₂), 63.0 (CH₂), 56.2 (CH₃), 48.6 (C_q), 33.6 (t, J = 25.9 Hz, CH), 31.7 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -114.31$ (d, J = 14.8 Hz). IR (ATR): 2961, 1728, 1548, 1423, 1276, 1123, 1017, 743, 699 cm⁻¹. MS (ESI) m/z (relative intensity): 497 [M+H]⁺ (15), 519 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for $C_{27}H_{26}N_2O_5F_2$ [M+H]⁺: 497.1883, found: 497.1885.

Compound 14 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), methyl 2-phenylpyrimidine-5-carboxylate (193 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $10/1/1 \rightarrow 8/1/1$) yielded 14 (108 mg, 69%) with two separable diastereomers (cis: trans = 3.1:1). $\mathbf{R}_f = 0.33$ for cis-14 and 0.35 for trans-14 (TLC: n-hexane/EtOAc/DCM = 5/1/1).

$$\mathsf{BnO}_2\mathsf{C} \qquad \mathsf{H} \\ \mathsf{BrO}_2\mathsf{C} \qquad \mathsf{CF}_2\mathsf{CO}_2\mathsf{Et}$$

Methyl

2-(3-((1s,3s)-1-((benzyloxy)carbonyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobu tyl)phenyl)pyrimidine-5-carboxylate (*cis*-**14**, 82 mg, 52%) was obtained as a white solid. **M.p.**: 103 – 105 °C. ¹H NMR (500 MHz, CDCl₃) δ = 9.32 (s, 2H), 8.63 (t, J = 1.7 Hz, 1H), 8.49 – 8.43 (m, 1H), 7.61 – 7.55 (m, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.28 – 7.23 (m, 3H), 7.21 – 7.16 (m, 2H), 5.09 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 4.01 (s, 3H), 3.15 – 3.09 (m, 2H), 2.96 – 2.78 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.2 (Cq), 166.9 (Cq), 164.6 (Cq), 163.8 (t, J = 33.3 Hz, Cq), 158.6 (CH), 141.8 (Cq), 137.1 (Cq), 135.8 (Cq), 130.3 (CH), 129.2 (CH), 128.5 (CH), 128.2 (CH), 127.8 (CH), 127.3 (CH), 121.8 (Cq), 115.4 (t, J = 250.3 Hz, Cq), 67.0 (CH₂), 63.0 (CH₂), 52.8 (CH₃), 47.9 (Cq), 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.25 (d, J = 15.2 Hz). IR (ATR): 2956, 1727, 1584, 1424, 1295, 1128, 1037, 732, 698 cm⁻¹. MS (ESI) m/z (relative

intensity): 525 $[M+H]^+$ (10), 547 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{28}H_{26}N_2O_6F_2$ $[M+H]^+$: 525.1832, found: 525.1831.

$$MeO_2C \nearrow N \\ N \\ BnO_2C \nearrow H$$

Methyl

2-(3-((1r,3r)-1-((benzyloxy)carbonyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobu tyl)phenyl)pyrimidine-5-carboxylate (trans-14, 26 mg, 17%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 9.32 – 9.31 (m, 2H), 8.45 – 8.41 (m, 2H), 7.48 (t, J = 7.7 Hz, 1H), 7.42 – 7.39 (m, 1H), 7.27 – 7.23 (m, 3H), 7.19 – 7.15 (m, 2H), 5.12 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 3.20 – 3.02 (m, 3H), 2.80 – 2.73 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.6 (C_q), 167.0 (C_q), 164.6 (C_q), 163.8 (t, J = 33.4 Hz, C_q), 158.5 (CH), 143.5 (C_q), 136.9 (C_q), 135.8 (C_q), 129.7 (CH), 129.0 (CH), 128.6 (CH), 128.2 (CH), 127.9 (CH), 127.7 (CH), 126.7 (CH), 121.8 (C_q), 114.9 (t, J = 249.9 Hz, C_q), 67.2 (CH₂), 63.0 (CH₂), 52.8 (CH₃), 48.5 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.7 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.39 (d, J = 14.8 Hz). IR (ATR): 2957, 1727, 1585, 1415, 1298, 1127, 1060, 731, 697 cm⁻¹. MS (ESI) m/z (relative intensity): 525 [M+H]⁺ (20), 547 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₆N₂O₆F₂ [M+H]⁺: 525.1832, found: 525.1832.

Compound 15 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-(p-tolyl)pyrimidine (153 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded 15 (74 mg, 51%) with two separable diastereomers (cis: trans = 5.2:1). $\mathbf{R}_f = 0.24$ for cis-15 and 0.26 for trans-15 (TLC: n-hexane/EtOAc = 3/1).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-methyl-5-(pyrimidin-2-yl)phenyl) cyclobutane-1-carboxylate (cis-15, 62 mg, 43%) was obtained as a colorless oil. ^{1}H NMR (400 MHz, CDCl₃) δ = 8.82 (d, J = 4.8 Hz, 2H), 8.59 (d, J = 1.7 Hz, 1H), 8.31 (dd, J = 7.9, 1.8 Hz, 1H), 7.31 – 7.24 (m, 4H), 7.22 – 7.15 (m, 3H), 5.12 (s, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.21 – 2.80 (m, 5H), 2.18 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ^{13}C NMR (101 MHz, CDCl₃) δ = 174.1 (C_q), 164.6 (C_q), 163.9 (t, J = 33.3 Hz, C_q), 157.3 (CH), 140.1 (C_q), 139.2 (C_q), 136.0 (C_q), 135.5 (C_q), 132.2 (CH), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.3 (CH), 126.2 (CH), 119.1 (CH), 115.6 (t, J = 250.4 Hz, C_q), 66.9 (CH₂), 63.0 (CH₂), 48.0 (C_q), 32.3 (t, J = 25.7 Hz, CH), 30.5 (t, J = 4.9 Hz, CH₂), 19.9 (CH₃), 14.1 (CH₃). ^{19}F NMR (377 MHz, CDCl₃) δ = -113.95 (d, J = 15.3 Hz). IR (ATR): 2962, 1728, 1560, 1420, 1314, 1129, 1039, 802, 737 cm⁻¹. MS (ESI) m/z (relative intensity): 481 [M+H]⁺ (10), 503 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₇H₂₆N₂O₄F₂ [M+Na]⁺: 503.1753, found: 503.1757.

$$N$$
 N
 Me
 CF_2CO_2Et
 H

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-methyl-5-(pyrimidin-2-yl)phenyl)cyclobutane-1-carboxylate (*trans*-15, 12 mg, 8%) was obtained as a white solid. M.p.: 118 – 120 °C. Recrystallization on DCM/ *n*-hexane. ¹H NMR (400 MHz, CDCl₃) δ = 8.80 (d, J = 4.8 Hz, 2H), 8.32 (d, J = 1.8 Hz, 1H), 8.26 (dd, J = 7.9, 1.8 Hz, 1H), 7.26 – 7.21 (m, 4H), 7.17 (t, J = 4.8 Hz, 1H), 7.15 – 7.07 (m, 2H), 5.12 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.29 – 3.13 (m, 1H), 3.04 – 2.96 (m, 2H), 2.85 – 2.74 (m, 2H), 2.16 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 174.8 (C_q), 163.6 (t, J = 33.3 Hz, C_q), 157.3 (CH), 140.9 (C_q), 139.1 (C_q), 136.0 (C_q), 135.6 (C_q), 131.6 (CH), 128.6 (CH), 128.2 (CH), 127.6 (CH), 127.2 (CH), 126.9 (CH), 119.1 (CH), 114.9 (t, J = 249.9 Hz, C_q), 67.0 (CH₂), 63.0 (CH₂), 48.9 (C_q), 33.7 (t, J = 25.9 Hz, CH), 31.9 (t, J = 5.0 Hz, CH₂) 19.9 (CH₃), 14.1 (CH₃). ¹⁹**F NMR** (377 MHz, CDCl₃) $\delta = -114.31$ (d, J = 14.9 Hz). **IR** (ATR): 2961, 1726, 1561, 1421, 1313, 1125, 1059, 804, 740 cm⁻¹. **MS** (ESI) m/z (relative intensity): 481 [M+H]⁺ (20), 503 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₇H₂₆N₂O₄F₂ [M+H]⁺: 481.1933, found: 481.1936.

Compound 16 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-(4-bromophenyl)pyrimidine (212 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded 16 (77 mg, 47%) with two separable diastereomers (cis: trans = 3.3:1). $\mathbf{R}_f = 0.24$ for cis-16 and 0.27 for trans-16 (TLC: n-hexane/EtOAc = 3/1).

Benzyl

(1s,3s)-1-(2-bromo-5-(pyrimidin-2-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutane-1-carboxylate (cis-16, 59 mg, 36%) was obtained as a colorless oil. ${}^{1}H$ NMR (500 MHz, CDCl₃) δ = 8.81 (d, J = 4.8 Hz, 2H), 8.69 (d, J = 2.1 Hz, 1H), 8.28 (dd, J = 8.3, 2.1 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.24 – 7.19 (m, 3H), 5.13 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.20 – 3.14 (m, 2H), 2.98 – 2.87 (m, 1H), 2.82 – 2.75 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ${}^{13}C$ NMR (126 MHz, CDCl₃) δ = 173.2 (Cq), 163.8 (t, J = 32.8 Hz, Cq), 163.8 (Cq), 157.4 (CH), 139.9 (Cq), 137.0 (Cq), 135.8 (Cq), 134.5 (CH), 128.7 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.7 (Cq), 127.4 (CH), 119.6 (CH), 115.2 (t, J = 250.6 Hz, Cq), 67.3 (CH₂), 63.0 (CH₂), 49.3 (Cq),

32.6 (t, J = 25.9 Hz, CH), 30.3 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -113.70$ (d, J = 14.8 Hz). IR (ATR): 2965, 1729, 1560, 1419, 1315, 1219, 1017, 802, 703 cm⁻¹. MS (ESI) m/z (relative intensity): 567 [M+Na]⁺ (100) (⁷⁹Br), 569 [M+Na]⁺ (97) (⁸¹Br). HR-MS (ESI) m/z calcd for C₂₆H₂₃N₂O₄BrF₂ [M+Na]⁺: 567.0701, found: 567.0710.

$$\operatorname{BrO_2C}$$
 Br $\operatorname{CF_2CO_2Et}$

Benzyl

(1r,3r)-1-(2-bromo-5-(pyrimidin-2-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl) (cyclobutane-1-carboxylate (trans-16, 18 mg, 11%) was obtained as a white solid. M.p.: 105 – 107 °C. Recrystallized on DCM/n-hexane. ¹H NMR (400 MHz, CDCl₃) δ = 8.81 (d, J = 4.8 Hz, 2H), 8.41 (d, J = 2.1 Hz, 1H), 8.24 (dd, J = 8.3, 2.1 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.26 – 7.24 (m, 2H), 7.22 (t, J = 4.8 Hz, 1H), 7.19 – 7.15 (m, 2H), 5.15 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.43 – 3.30 (m, 1H), 3.08 – 3.00 (m, 2H), 2.84 – 2.76 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 174.3 (Cq), 163.8 (Cq), 157.4 (CH), 142.1 (Cq), 136.9 (Cq), 135.8 (Cq), 133.9 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.2 (CH), 127.8 (CH), 125.8 (Cq), 119.6 (CH), 115.0 (t, J = 251.5 Hz, Cq), 67.3 (CH₂), 63.0 (CH₂), 49.9 (Cq), 33.1 (t, J = 25.8 Hz, CH), 31.7 (t, J = 5.1 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (377 MHz, CDCl₃) δ = -114.51 (d, J = 15.2 Hz). IR (ATR): 2961, 1728, 1562, 1419, 1317, 1212, 1123, 804, 705 cm⁻¹. MS (ESI) m/z (relative intensity): 567 [M+Na]⁺ (100) (⁷⁹Br), 569 [M+Na]⁺ (97) (⁸¹Br). HR-MS (ESI) m/z calcd for C₂₆H₂₃N₂O₄BrF₂ [M+Na]⁺: 567.0701, found: 567.0714.

Compound 17 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 1-phenyl-1H-pyrazole (130 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column

chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded 17 (90 mg, 66%) with two separable diastereomers (cis: trans = 2.6:1). $\mathbf{R}_f = 0.40$ for cis-17 and 0.43 for trans-17 (TLC: n-hexane/EtOAc = 3/1).

Benzyl

(1s,3s)-1-(3-(1H-pyrazol-1-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobu tane-1-carboxylate (cis-17, 65 mg, 48%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 7.87 (d, J = 2.2 Hz, 1H), 7.76 (t, J = 2.0 Hz, 1H), 7.73 (d, J = 1.5 Hz, 1H), 7.61 (ddd, J = 8.1, 2.2, 1.0 Hz, 1H), 7.44 (t, J = 7.9 Hz, 1H), 7.33 (ddd, J = 7.8, 1.9, 1.0 Hz, 1H), 7.28 – 7.25 (m, 3H), 7.22 – 7.16 (m, 2H), 6.47 (dd, J = 2.5, 1.8 Hz, 1H), 5.09 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.13 – 3.05 (m, 2H), 2.93 – 2.83 (m, 1H), 2.79 – 2.72 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.0 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 142.8 (C_q), 141.4 (CH), 140.6 (C_q), 135.8 (C_q), 129.8 (CH), 128.6 (CH), 128.3 (CH), 127.9 (CH), 127.0 (CH), 124.8 (CH), 118.3 (CH), 117.9 (CH), 115.4 (t, J = 250.2 Hz, C_q), 107.9 (CH), 67.1 (CH₂), 63.1 (CH₂), 47.9 (C_q), 32.1 (t, J = 25.8 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.30 (d, J = 15.5 Hz). IR (ATR): 2982, 1729, 1599, 1308, 1223, 1125, 1039, 748, 696 cm⁻¹. MS (ESI) m/z calcd for C₂₅H₂₄N₂O₄F₂ [M+H]⁺: 455.1777, found: 455.1782.

$$CF_2CO_2Et$$

Benzyl

(1r,3r)-1-(3-(1H-pyrazol-1-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobu

tane-1-carboxylate (*trans*-17, 25 mg, 18%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 7.88 (dd, J = 2.5, 0.6 Hz, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.41 (dd, J = 8.8, 7.7 Hz, 1H), 7.30 – 7.26 (m, 3H), 7.20 – 7.12 (m, 3H), 6.46 (dd, J = 2.5, 1.8 Hz, 1H), 5.12 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.16 – 2.98 (m, 3H), 2.76 – 2.69 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.3 (C_q), 163.8 (t, J = 34.0 Hz, C_q), 144.4 (C_q), 141.3 (CH), 140.4 (C_q), 135.8 (C_q), 129.7 (CH), 128.7 (CH), 128.3 (CH), 127.8 (CH), 127.0 (CH), 124.2 (CH), 118.0 (CH), 117.2 (CH), 114.9 (t, J = 249.9 Hz, C_q), 107.8 (CH), 67.3 (CH₂), 63.0 (CH₂), 48.5 (C_q), 33.5 (t, J = 25.9 Hz, CH), 31.6 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.46 (d, J = 14.8 Hz). IR (ATR): 2983, 1728, 1600, 1312, 1218, 1124, 1054, 750, 697 cm⁻¹. MS (ESI) m/z (relative intensity): 455 [M+H]⁺ (20), 477 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₅H₂₄N₂O₄F₂ [M+H]⁺: 455.1777, found: 455.1783.

Compound 18 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 1-(p-tolyl)-1H-pyrazole (142 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $15/1/1 \rightarrow 10/1/1$) yielded 18 (72 mg, 51%) with two separable diastereomers (cis: trans = 2.8:1). $\mathbf{R}_f = 0.39$ for cis-18 and 0.45 for trans-18 (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-methyl-5-(1H-pyrazol-1-yl)phen yl)cyclobutane-1-carboxylate (*cis*-18, 53 mg, 38%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (dd, J = 2.5, 0.6 Hz, 1H), 7.79 (d, J = 2.3 Hz, 1H), 7.73 (dd, J = 1.8, 0.6 Hz, 1H), 7.47 (dd, J = 8.1, 2.3 Hz, 1H), 7.29 – 7.25 (m, 3H), 7.21 (d, J = 8.2 Hz, 1H), 7.18 – 7.14 (m, 2H), 6.47 (dd, J = 2.5, 1.8 Hz, 1H), 5.10 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.17 – 3.09 (m, 2H), 2.97 – 2.70 (m, 3H), 2.12 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 173.7$ (C_q), 163.8 (t, J = 33.2 Hz, C_q), 141.1 (CH), 140.3 (C_q), 138.6 (C_q), 135.8 (C_q), 135.3 (C_q), 132.7 (CH), 128.5 (CH), 128.2 (CH), 127.9 (CH), 127.0 (CH), 118.2 (CH), 118.0 (CH), 115.4 (t, J = 250.5 Hz, C_q), 107.7 (CH), 67.1 (CH₂), 63.0 (CH₂), 48.1 (C_q), 32.3 (t, J = 25.7 Hz, CH), 30.6 (t, J = 4.8 Hz, CH₂), 19.4 (CH₃), 14.1 (CH₃). ¹⁹F **NMR** (471 MHz, CDCl₃) $\delta = -114.03$ (d, J = 15.8 Hz). **IR** (ATR): 2959, 1763, 1728, 1309, 1223, 1124, 1085, 1039, 740 cm⁻¹. **MS** (ESI) m/z (relative intensity): 469 [M+H]⁺ (10), 491 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₆H₂₆N₂O₄F₂ [M+Na]⁺: 491.1753, found: 491.1770.

$$N$$
 N
 Me
 CF_2CO_2Et
 H

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-methyl-5-(1H-pyrazol-1-yl)phen yl)cyclobutane-1-carboxylate (trans-18, 19 mg, 13%) was obtained as a colorless oil.
¹H NMR (500 MHz, CDCl₃) δ = 7.90 (dd, J = 2.5, 0.6 Hz, 1H), 7.72 (dd, J = 1.8, 0.6 Hz, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.45 (dd, J = 8.2, 2.3 Hz, 1H), 7.29 – 7.25 (m, 3H), 7.16 (dd, J = 8.1, 0.8 Hz, 1H), 7.14 – 7.11 (m, 2H), 6.46 (dd, J = 2.4, 1.8 Hz, 1H), 5.12 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.26 – 3.11 (m, 1H), 3.00 – 2.92 (m, 2H), 2.78 – 2.71 (m, 2H), 2.12 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H).
¹³C NMR (126 MHz, CDCl₃) δ = 174.4 (Cq), 163.8 (t, J = 33.4 Hz, Cq), 141.9 (Cq), 141.1 (CH), 138.6 (Cq), 1358 (Cq), 134.3 (Cq), 132.1 (CH), 128.6 (CH), 128.3 (CH), 127.7 (CH), 126.9 (CH), 118.4 (CH), 118.1 (CH), 114.8 (t, J = 249.9 Hz, Cq), 107.6 (CH), 67.1 (CH₂), 63.0 (CH₂), 48.8 (Cq), 33.6 (t, J = 25.9 Hz, CH), 31.8 (t, J = 5.1 Hz, CH₂), 19.4 (CH₃), 14.1 (CH₃).
¹⁹F NMR (471 MHz, CDCl₃) δ = -114.45 (d, J = 14.8 Hz). IR (ATR): 2955, 1762, 1725, 1310, 1203, 1118, 1039, 751 cm⁻¹. MS (ESI) m/z (relative intensity): 469 [M+H]⁺ (20), 491

 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{26}H_{26}N_2O_4F_2$ $[M+Na]^+$: 491.1753, found: 491.1762.

Compound 19 was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 1-(4-methoxyphenyl)-1H-pyrazole (157 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $15/1/1 \rightarrow 8/1/1$) yielded 19 (96 mg, 66%) with two separable diastereomers (cis: trans = 2.2:1). $\mathbf{R}_f = 0.48$ for cis-19 and 0.55 for trans-19 (TLC: n-hexane/EtOAc/DCM = 3/1/1).

Benzvl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-methoxy-5-(1H-pyrazol-1-yl)phe nyl)cyclobutane-1-carboxylate (*cis*-19, 66 mg, 45%) was obtained as a colorless oil.
¹H NMR (400 MHz, CDCl₃) δ = 7.85 (d, J = 2.4 Hz, 1H), 7.76 (d, J = 2.6 Hz, 1H), 7.71 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 8.7, 2.6 Hz, 1H), 7.31 – 7.22 (m, 3H), 7.21 – 7.15 (m, 2H), 6.85 (d, J = 8.7 Hz, 1H), 6.45 (t, J = 2.1 Hz, 1H), 5.09 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.55 (s, 3H), 3.10 – 2.82 (m, 3H), 2.57 – 2.47 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ = 173.8 (C_q), 163.9 (t, J = 34.8 Hz, C_q), 156.2 (C_q), 140.9 (CH), 136.3 (C_q), 133.9 (C_q), 130.6 (C_q), 128.5 (CH), 128.1 (CH), 127.2 (CH), 119.8 (CH), 118.8 (CH), 115.3 (t, J = 250.6 Hz, C_q), 111.2 (CH), 107.5 (CH), 66.6 (CH₂), 63.0 (CH₂), 55.5 (CH₃), 45.3 (C_q), 32.8 (t, J = 25.9 Hz, CH), 29.7 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃).
¹⁹F NMR (376 MHz, CDCl₃) δ = -113.79 (d, J = 14.7 Hz). IR (ATR): 2963, 1763, 1729, 1495, 1218, 1123, 1037, 727 cm⁻¹. MS (ESI) m/z (relative intensity): 485 [M+H]⁺ (10), 507 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₆H₂₆N₂O₅F₂ [M+Na]⁺: 507.1702, found: 507.1702.

$$OMe$$
 CF_2CO_2Et
 BnO_2C
 H

Benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(2-methoxy-5-(1H-pyrazol-1-yl)phe nyl)cyclobutane-1-carboxylate (trans-19, 30 mg, 21%) was obtained as a colorless oil. HNMR (500 MHz, CDCl₃) δ = 7.85 (dd, J = 2.4, 0.6 Hz, 1H), 7.71 (dd, J = 1.8, 0.6 Hz, 1H), 7.51 (d, J = 6.8 Hz, 2H), 7.31 – 7.23 (m, 3H), 7.18 – 7.14 (m, 2H), 6.84 (d, J = 8.6 Hz, 1H), 6.45 (dd, J = 2.4, 1.8 Hz, 1H), 5.12 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.62 (s, 3H), 3.37 – 3.23 (m, 1H), 2.89 – 2.81 (m, 2H), 2.68 – 2.61 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). HZ NMR (126 MHz, CDCl₃) δ = 174.9 (Cq), 163.9 (t, J = 33.3 Hz, Cq), 155.7 (Cq), 140.8 (CH), 136.2 (Cq), 133.9 (Cq), 132.2 (Cq), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.1 (CH), 119.5 (CH), 119.2 (CH), 115.1 (t, J = 249.8 Hz, Cq), 110.9 (CH), 107.4 (CH), 66.7 (CH₂), 63.0 (CH₂), 55.5 (CH₃), 46.3 (Cq), 33.7 (t, J = 25.7 Hz, CH), 30.9 (t, J = 5.1 Hz, CH₂), 14.1 (CH₃). HR (471 MHz, CDCl₃) δ = -114.53 (d, J = 15.4 Hz). IR (ATR): 2959, 1763, 1728, 1496, 1251, 1208, 1117, 1023, 750 cm⁻¹. MS (ESI) m/z (relative intensity): 485 [M+H]⁺ (15), 507 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₆H₂₆N₂O₅F₂ [M+Na]⁺: 507.1702, found: 507.1713.

$$N$$
 N
 $COMe$
 H
 CF_2CO_2Et

Benzyl

1-(2-acetyl-5-(1H-pyrazol-1-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclo butane-1-carboxylate (**20**). The product was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 1-(4-(1H-pyrazol-1-yl)phenyl)ethan-1-one (167 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc = 5/1 → 3/1) yielded **20** (54 mg, 36%) as a colorless oil with two diastereomers (*cis: trans* =

13:1) determined by 19 F-NMR. $R_f = 0.22$ (TLC: *n*-hexane/EtOAc = 3/1). 1 H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 8.06 \text{ (d, } J = 2.2 \text{ Hz}, 0.86 \text{H, } cis), 8.01 \text{ (d, } J = 2.6 \text{ Hz}, 0.87 \text{H, }$ cis), 7.99 – 7.93 (m, 1.41H, cis+trans), 7.77 – 7.76 (m, 1H, cis+trans), 7.70 – 7.67 (m, 1H, cis+trans), 7.31 – 7.22 (m, 5H, cis+trans), 6.52 (t, J = 2.2 Hz, 1H, cis+trans), 5.12 – 5.09 (m, 2H, cis+trans), 4.28 – 4.22 (m, 2H, cis+trans), 3.23 – 3.13 (m, 2H, cis+trans), 2.85 - 2.75 (m, 1H, cis+trans), 2.52 - 2.48 (m, 3H, cis+trans), 2.46 -2.39 (m, 2H, cis+trans), 1.31 – 1.27 (m, 3H, cis+trans). ¹³C NMR (126 MHz, CDCl₃) (cis-isomer) $\delta = 199.2$ (C_q), 173.3 (C_q), 163.9 (t, J = 33.2 Hz, C_q), 143.6 (C_q), 142.6 (C_q), 142.3 (CH), 136.2 (C_q), 133.5 (C_q), 133.2 (CH), 128.5 (CH), 128.0 (CH), 128.0 (CH), 127.1 (CH), 118.5 (CH), 116.7 (CH), 115.2 (t, J = 250.7 Hz, C_q), 108.9 (CH), $66.8 \text{ (CH}_2), 63.0 \text{ (CH}_2), 48.7 \text{ (C}_q), 32.8 \text{ (t, } J = 26.0 \text{ Hz, CH}), 31.5 \text{ (t, } J = 4.9 \text{ Hz, CH}_2),$ 28.7 (CH₃), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -113.45 (d, J = 14.6 Hz, cis), -114.12 (d, J = 15.6 Hz, trans). IR (ATR): 2966, 1726, 1606, 1394, 1223, 1125, 1041, 751, 698 cm⁻¹. **MS** (ESI) m/z (relative intensity): 497 [M+H]⁺ (10), 519 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for $C_{27}H_{26}N_2O_5F_2$ [M+H]⁺: 497.1883, found: 497.1883.

Compound **21** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 1-(4-bromophenyl)-1H-pyrazole (201 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $15/1/1 \rightarrow 10/1/1$) yielded **21** (77 mg, 48%) with two separable diastereomers (cis: trans = 2:1). $\mathbf{R}_f = 0.53$ for cis-**21** and 0.62 for trans-**21** (TLC: n-hexane/EtOAc/DCM = 3/1/1).

Benzyl

(1s,3s)-1-(2-bromo-5-(1H-pyrazol-1-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoeth

yl)cyclobutane-1-carboxylate (*cis*-21, 51 mg, 32%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (dd, J = 8.8, 2.6 Hz, 2H), 7.75 (d, J = 1.7 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.45 (dd, J = 8.5, 2.6 Hz, 1H), 7.33 – 7.25 (m, 3H), 7.25 – 7.20 (m, 2H), 6.50 (t, J = 2.2 Hz, 1H), 5.13 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.21 – 3.12 (m, 2H), 2.99 – 2.82 (m, 1H), 2.74 – 2.66 (m, 2H), 1.33 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 172.8 (Cq), 163.7 (Cq), 141.7 (CH), 141.2 (Cq), 139.7 (Cq), 135.7 (Cq), 135.0 (CH), 128.6 (CH), 128.3 (CH), 128.1 (CH), 127.0 (CH), 121.7 (Cq), 119.2 (CH), 119.1 (CH), 115.1 (Cq), 108.4 (CH), 67.4 (CH₂), 63.1 (CH₂), 49.3 (Cq), 32.5 (t, J = 26.1 Hz, CH), 30.3 (d, J = 5.1 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ = -113.79 (d, J = 14.7 Hz). IR (ATR): 2963, 1763, 1729, 1473, 1309, 1221, 1127, 1045, 750, 695 cm⁻¹. MS (ESI) m/z (relative intensity): 533 [M+H]⁺ (100) (⁷⁹Br), 535 [M+H]⁺ (97) (⁸¹Br). HR-MS (ESI) m/z calcd for C₂₅H₂₃N₂O₄F₂Br [M+H]⁺: 533.0882, found: 533.0894.

$$\operatorname{Br}_{\operatorname{CF_2CO_2Et}}$$

Benzyl

(1r,3r)-1-(2-bromo-5-(1H-pyrazol-1-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoeth yl)cyclobutane-1-carboxylate (*trans*-21, 26 mg, 16%) was obtained as a colorless oil.
¹H NMR (400 MHz, CDCl₃) δ = 7.92 (dd, J = 2.5, 0.6 Hz, 1H), 7.74 (dd, J = 1.8, 0.6 Hz, 1H), 7.67 (d, J = 2.6 Hz, 1H), 7.58 (d, J = 8.6 Hz, 1H), 7.43 (dd, J = 8.5, 2.6 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.22 – 7.17 (m, 2H), 6.49 (dd, J = 2.5, 1.8 Hz, 1H), 5.15 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.41 – 3.26 (m, 1H), 3.06 – 2.96 (m, 2H), 2.78 – 2.69 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ = 173.8 (C_q), 163.7 (t, J = 33.3 Hz, C_q), 143.2 (C_q), 141.6 (CH), 139.6 (C_q), 135.7 (C_q), 134.4 (CH), 128.6 (CH), 128.3 (CH), 127.9 (CH), 127.0 (CH), 119.9 (C_q), 119.6 (CH), 119.1 (CH), 114.9 (t, J = 250.1 Hz, C_q), 108.3 (CH), 67.4 (CH₂), 63.1 (CH₂), 49.9 (C_q), 33.0 (t, J = 25.8 Hz, CH), 31.6 (t, J = 5.1 Hz, CH₂), 14.1 (CH₃).
¹⁹F NMR (377 MHz, CDCl₃) δ =

-114.61 (d, J = 15.2 Hz). **IR** (ATR): 2986, 1763, 1727, 1475, 1305, 1208, 1120, 1040, 751, 698 cm⁻¹. **MS** (ESI) m/z (relative intensity): 533 [M+H]⁺ (100) (⁷⁹Br), 535 [M+H]⁺ (97) (⁸¹Br). **HR-MS** (ESI) m/z calcd for C₂₅H₂₃N₂O₄F₂Br [M+H]⁺: 533.0882, found: 533.0877.

Benzyl

1-(2-chloro-5-(4,5-dihydrooxazol-2-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethy l)cyclobutane-1-carboxylate (22). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-(4-chlorophenyl)-4,5-dihydrooxazole (163 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 3/1$) yielded 22 (69 mg, 47%) as a colorless oil with two diastereomers (cis: trans = 6.3:1). $\mathbf{R}_{\rm f}$ = 0.20 (TLC: *n*-hexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃) δ = 8.12 (d, J = 2.0 Hz, 0.85H, cis), 7.87 (d, J = 2.0 Hz, 0.12H, trans), 7.85 – 7.78 (m, 1H, cis+trans), 7.45 - 7.35 (m, 1H, cis+trans), 7.32 - 7.24 (m, 3H, cis+trans), 7.21 - 7.12 (m, 2H, cis+trans), 5.12 (s, 0.26H, trans), 5.10 (s, 1.63H, cis), 4.49 – 4.41 (m, 2H, cis+trans), 4.29 (q, J = 7.1 Hz, 2H, cis+trans), 4.11 - 4.03 (m, 2H, cis+trans), 3.42 - 2.60 (m, 5H, cis+trans), 1.35 – 1.30 (m, 3H, cis+trans). ¹³C NMR (101 MHz, CDCl₃) $\delta =$ 173.9 (C_q , trans), 172.9 (C_q , cis), 163.8 (C_q , cis), 163.8 (C_q , trans), 163.8 (t, t = 33.3 Hz, C_q, cis+trans), 140.3 (C_q, trans), 138.5 (C_q, cis), 137.9 (C_q, cis+trans), 135.7 (C_q, cis), 136.5 (Cq, trans), 130.8 (CH, cis), 130.2 (CH, trans), 128.6 (CH, cis), 128.6 (CH, trans), 128.5 (CH, cis), 128.3 (CH, trans), 128.2 (CH, trans), 128.2 (CH, cis), 128.1 (CH, trans), 127.9 (CH, cis), 127.7 (CH, trans), 127.2 (CH, cis), 126.7 (C_q, cis), 126.6 $(C_q, trans)$, 115.1 (t, J = 250.5 Hz, C_q , cis), 114.9 (t, J = 250.5 Hz, C_q , trans), 68.0 (CH₂, cis), 67.9 (CH₂, trans), 67.3 (CH₂, cis+trans), 63.1 (CH₂, cis), 63.0 (CH₂, trans), 55.1 (CH₂, cis), 55.1 (CH₂, trans), 48.3 (C_q, trans), 47.6 (C_q, cis), 33.3 (t, J = 25.8 Hz,

CH, trans), 32.5 (t, J = 26.0 Hz, CH, cis), 31.3 (t, J = 5.2 Hz, CH₂, trans), 29.9 (t, J = 5.1 Hz, CH₂, cis), 14.1 (CH₃, cis+trans). ¹⁹F NMR (377 MHz, CDCl₃) $\delta = -113.82$ (d, J = 14.7 Hz, cis), -114.67 (d, J = 15.3 Hz, trans). IR (ATR): 2961, 1731, 1651, 1307, 1267, 1081, 949, 734 cm⁻¹. MS (ESI) m/z (relative intensity): 492 [M+H]⁺ (20), 514 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₅H₂₄NO₅F₂Cl [M+H]⁺: 492.1384, found: 492.1392.

Benzyl

1-(5-(4,5-dihydrooxazol-2-yl)-2-methoxyphenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoet hyl)cyclobutane-1-carboxylate (23). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-(4-methoxyphenyl)-4,5-dihydrooxazole (159 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 3/1$) yielded 23 (63 mg, 43%) as a colorless oil with two diastereomers (cis: trans = 2.5:1). $R_f = 0.15$ (TLC: *n*-hexane/EtOAc = 1/1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.03$ (d, J =2.1 Hz, 0.72H, cis), 7.91 - 7.83 (m, 1H, cis+trans), 7.80 (d, J = 2.1 Hz, 0.27H, trans), 7.34 - 7.22 (m, 3H, cis+trans), 7.18 - 7.10 (m, 2H, cis+trans), 6.83 - 6.77 (m, 1H, cis+trans), 5.08 (s, 0.55H, trans), 5.06 (s, 1.40H, cis), 4.46 – 4.38 (m, 2H, cis+trans), $4.28 \text{ (q, } J = 7.2 \text{ Hz, } 2H, \text{ } cis+trans), 4.10 - 4.01 \text{ (m, } 2H, \text{ } cis+trans), 3.61 \text{ (s, } 0.80H, }$ trans), 3.54 (s, 2.07H, cis), 3.36 – 2.78 (m, 3H, cis+trans), 2.67 – 2.47 (m, 2H, cis+trans), 1.34 – 1.29 (m, 3H, cis+trans). ¹³C NMR (101 MHz, CDCl₃) $\delta = 175.0$ $(C_q, trans)$, 173.9 (C_q, cis) , 164.5 (C_q, cis) , 164.5 $(C_q, trans)$, 163.9 $(t, J = 33.3 \text{ Hz}, C_q, trans)$ cis+trans), 159.9 (C_q, cis), 159.5 (C_q, trans), 136.3 (C_q, cis), 136.3 (C_q, trans), 131.2 (C_q, trans), 129.4 (C_q, cis), 129.3 (CH, cis), 129.0 (CH, trans), 128.5 (CH, trans), 128.4 (CH, cis), 128.0 (CH, cis+trans), 127.7 (CH, cis), 127.2 (CH, trans), 126.3 (CH, cis+trans), 120.1 (C_q, trans), 120.0 (C_q, cis), 115.3 (t, J=251.5 Hz, C_q, cis), 115.1 (t,

J = 33.3 Hz, C_q, trans), 110.3 (CH, cis), 110.0 (CH, trans), 67.7 (CH₂, cis), 67.7 (CH₂, trans), 66.6 (CH₂, trans), 66.5 (CH₂, cis), 62.9 (CH₂, cis), 62.9 (CH₂, trans), 55.3 (CH₃, cis), 55.3 (CH₃, trans), 55.0 (CH₂, cis), 55.0 (CH₂, trans), 46.2 (C_q, trans), 45.1 (C_q, cis), 33.7 (t, J = 25.7 Hz, CH, trans), 32.8 (t, J = 25.9 Hz, CH, cis), 30.8 (t, J = 5.2 Hz, CH₂, trans), 29.5 (t, J = 5.0 Hz, CH₂, cis), 14.1 (CH₃, cis+trans). ¹⁹F NMR (377 MHz, CDCl₃) δ = -113.79 (d, J = 14.8 Hz, cis), -114.54 (d, J = 15.5 Hz, trans). IR (ATR): 2962, 1729, 1649, 1258, 1123, 1026, 948, 740 cm⁻¹. MS (ESI) m/z (relative intensity): 488 [M+H]⁺ (20), 510 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₆H₂₇NO₆F₂ [M+H]⁺: 488.1879, found: 488.1892.

Benzyl

1-(3-(5,6-dihydro-4H-1,3-oxazin-2-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl) (cyclobutane-1-carboxylate (24)). The product was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 2-phenyl-5,6-dihydro-4H-1,3-oxazine (145 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc = $5/1 \rightarrow 2/1$) yielded **24** (60 mg, 43%) as a colorless oil with two diastereomers (*cis: trans* = 3.3:1). **R**_f= 0.30 (TLC: *n*-hexane/EtOAc = 2/1). **¹H NMR** (400 MHz, CDCl₃) δ = 7.97 (t, J = 1.9 Hz, 0.77H, *cis*), 7.85 − 7.75 (m, 1.31H, *cis+trans*), 7.45 (ddd, J = 7.8, 2.1, 1.2 Hz, 0.80H, *cis*), 7.38 − 7.26 (m, 4.24H, *cis+trans*), 7.19 − 7.13 (m, 2H, *cis+trans*), 5.09 (s, 0.46H, *trans*), 5.06 (s, 1.50H, *cis*), 4.36 (t, J = 5.4 Hz, 2H, *cis+trans*), 4.31 − 4.24 (m, 2H, *cis+trans*), 3.61 (t, J = 5.8 Hz, 2H, *cis+trans*), 3.17 − 2.65 (m, 5H, *cis+trans*), 2.02 − 1.94 (m, 2H, *cis+trans*), 1.34 − 1.29 (m, 3H, *cis+trans*). ¹³C **NMR** (101 MHz, CDCl₃) δ = 174.6 (C_q, *trans*), 174.2 (C_q, *cis*), 163.8 (t, J = 33.3 Hz, C_q, *trans*), 155.4 (C_q, *cis+trans*), 142.6 (C_q, *trans*), 140.8 (C_q, *cis*), 135.9 (C_q, *cis*), 135.9 (C_q, *trans*), 134.6 (C_q, *cis*), 134.4 (C_q, *trans*), 128.8 (CH, *cis*), 128.6

(CH, trans), 128.5 (CH, cis), 128.4 (CH, cis), 128.2 (CH, trans), 128.2 (CH, trans), 128.1 (CH, cis), 128.1 (CH, trans), 127.7 (CH, cis), 127.6 (CH, trans), 126.1 (CH, cis), 125.8 (CH, trans), 125.2 (CH, cis), 124.6 (CH, trans), 115.4 (t, J = 251.5 Hz, C_q, cis), 114.9 (t, J = 251.5 Hz, C_q, trans), 67.1 (CH₂, trans), 66.9 (CH₂, cis), 65.4 (CH₂, cis), 65.3 (CH₂, trans), 63.0 (CH₂, cis+trans), 48.4 (C_q, trans), 47.7 (C_q, cis), 42.8 (CH₂, cis+trans), 33.5 (t, J = 26.0 Hz, CH, trans), 32.1 (t, J = 25.8 Hz, CH, cis), 31.6 (t, J = 5.0 Hz, CH₂, trans), 31.1 (t, J = 4.9 Hz, CH₂, cis), 22.0 (CH₂, cis+trans), 14.1 (CH₃, cis+trans). ¹⁹F NMR (377 MHz, CDCl₃) $\delta = -114.27$ (d, J = 15.2 Hz, cis), -114.37 (d, J = 14.9 Hz, trans). **IR** (ATR): 2960, 1764, 1730, 1656, 1224, 1131, 1038, 693 cm⁻¹. **MS** (ESI) m/z (relative intensity): 472 [M+H]⁺: 472.1930, found: 472.1943.

Compound **25** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), benzo[h]quinoline (161 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 10/1/1$) yielded **25** (94 mg, 64%) with two separable diastereomers (cis: trans = 2.9:1). $\mathbf{R}_{\rm f} = 0.45$ for cis-**25** and 0.50 for trans-**25** (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Benzyl

(1s,3s)-1-(benzo[h]quinolin-7-yl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutane -1-carboxylate (*cis*-25, 70 mg, 48%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 9.38 (dt, J = 8.2, 1.0 Hz, 1H), 9.02 (dd, J = 4.3, 1.8 Hz, 1H), 8.16 (dd, J = 8.1, 1.8 Hz, 1H), 7.85 (dd, J = 7.4, 1.3 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.61 (d, J = 9.2 Hz, 1H), 7.54 (dd, J = 8.0, 4.4 Hz, 1H), 7.20 – 7.12 (m, 3H), 7.04 – 6.98 (m, 2H), 5.04 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.33 (d, J = 5.8 Hz, 2H), 3.00 – 2.87 (m,

3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 174.5$ (C_q), 163.8 (t, J = 33.2 Hz, C_q), 149.1 (CH), 146.9 (C_q), 136.7 (C_q), 135.8 (CH), 135.7 (C_q), 132.9 (C_q), 131.4 (C_q), 128.4 (CH), 128.1 (CH), 127.7 (CH), 126.7 (CH), 126.5 (CH), 125.9 (C_q), 125.7 (CH), 124.7 (CH), 124.1 (CH), 122.2 (CH), 115.4 (t, J = 250.5 Hz, C_q), 67.1 (CH₂), 63.1 (CH₂), 48.1 (C_q), 32.8 (t, J = 25.7 Hz, CH), 31.4 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F **NMR** (471 MHz, CDCl₃) $\delta = -114.01$ (d, J = 13.3 Hz). **IR** (ATR): 2959, 1762, 1726, 1423, 1226, 1127, 1047, 835, 765, 695 cm⁻¹. **MS** (ESI) m/z (relative intensity): 490 [M+H]⁺ (70), 512 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₉H₂₅NO₄F₂ [M+H]⁺: 490.1824, found: 490.1827.

$$CF_2CO_2Et$$
 BnO_2C

Benzyl

(1r,3r)-1-(benzo[h]quinolin-7-yl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutane -1-carboxylate (trans-25, 24 mg, 16%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 9.33 (dt, J = 8.2, 1.0 Hz, 1H), 9.01 (dd, J = 4.4, 1.8 Hz, 1H), 8.16 (dd, J = 8.1, 1.8 Hz, 1H), 7.75 (dd, J = 8.3, 7.3 Hz, 1H), 7.70 (dd, J = 9.2, 0.8 Hz, 1H), 7.65 (dd, J = 7.4, 1.3 Hz, 1H), 7.61 (d, J = 9.2 Hz, 1H), 7.54 (dd, J = 8.0, 4.3 Hz, 1H), 7.19 – 7.09 (m, 3H), 7.02 – 6.94 (m, 2H), 5.06 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.36 – 3.16 (m, 3H), 2.92 (t, J = 10.0 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 175.2 (Cq), 163.8 (t, J = 33.3 Hz, Cq), 149.1 (CH), 146.9 (Cq), 138.7 (Cq), 135.8 (CH), 135.7 (Cq), 132.4 (Cq), 131.0 (Cq), 128.5 (CH), 128.1 (CH), 127.6 (CH), 127.2 (CH), 126.7 (CH), 125.9 (Cq), 125.7 (CH), 124.3 (CH), 123.9 (CH), 122.1 (CH), 114.9 (t, J = 250.2 Hz, Cq), 67.2 (CH₂), 63.0 (CH₂), 48.9 (Cq), 33.7 (t, J = 25.9 Hz, CH), 32.6 (CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.41 (d, J = 14.7 Hz). IR (ATR): 2956, 1762, 1724, 1422, 1193, 1123, 1052, 833, 776, 696 cm⁻¹. MS (ESI) m/z (relative intensity): 490 [M+H]⁺ (100), 512 [M+Na]⁺ (60). HR-MS (ESI) m/z calcd for C₂₉H₂₅NO₄F₂ [M+H]⁺: 490.1824, found: 490.1825.

Benzyl

3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(9-isopropyl-9H-purin-6-yl)phenyl)cycl obutane-1-carboxylate (26). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 9-isopropyl-6-phenyl-9H-purine (214 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 3/1$) yielded **26** (80 mg, 49%) as a colorless oil with two diastereomers (*cis*: *trans* = 6.1:1). $R_f = 0.29$ (TLC: *n*-hexane/EtOAc = 2/1). ¹H NMR (400 MHz, CDCl₃) $\delta = 9.03 - 9.01$ (m, 1H, cis+trans), 8.91 - 8.89 (m, 0.84H, cis), 8.80 - 8.75 (m, 1H, cis+trans), 8.67(t, J = 1.8 Hz, 0.13 H, trans), 8.18 (s, 1 H, cis+trans), 7.58 - 7.51 (m, 2 H, cis+trans),7.25 - 7.16 (m, 5H, cis+trans), 5.12 (s, 0.28H, trans), 5.09 (s, 1.71H, cis), 5.03 - 4.95(m, 1H, cis+trans), 4.33 - 4.25 (m, 2H, cis+trans), 3.17 - 2.76 (m, 5H, cis+trans),1.68 (dd, J = 6.7, 1.1 Hz, 6H, cis+trans), 1.35 – 1.29 (m, 3H, cis+trans). ¹³C NMR (101 MHz, CDCl₃) (cis-isomer) $\delta = 174.3$ (C_q), 163.8 (t, J = 33.3 Hz, C_q), 154.4 (C_q), 152.3 (C_q), 152.1 (CH), 142.2 (CH), 141.5 (C_q), 136.3 (C_q), 135.9 (C_q), 131.7 (C_q), 129.3 (CH), 129.2 (CH), 129.0 (CH), 128.5 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 115.5 (t, J = 250.1 Hz, C_q), 66.9 (CH₂), 63.0 (CH₂), 47.9 (C_q), 47.4 (CH), 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 22.7 (CH₃), 14.1 (CH₃). ¹⁹F NMR (377)MHz, CDCl₃) $\delta = -114.16 - -114.27$ (m, cis+trans). IR (ATR): 2982, 1763, 1729, 1450, 1319, 1222, 1125, 700 cm⁻¹. **MS** (ESI) m/z (relative intensity): 549 [M+H]⁺ (20), 571 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{30}H_{30}N_4O_4F_2$ $[M+H]^+$: 549.2308, found: 549.2310.

Benzyl

1-(3-(9-benzyl-9H-purin-6-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclob utane-1-carboxylate (27). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 9-benzyl-6-phenyl-9H-purine (257 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 3/1$) yielded 27 (110 mg, 62%) as a colorless oil with two diastereomers (cis: trans = 9.3:1). $\mathbf{R}_{\rm f}$ = 0.31 (TLC: *n*-hexane/EtOAc = 2/1). ¹**H NMR** (500 MHz, CDCl₃) δ = 9.06 – 9.05 (m, 1H, cis+trans), 8.93 – 8.92 (m, 0.87H, cis), 8.80 – 8.76 (m, 1H, cis+trans), 8.69 (t, J=1.8Hz, 0.11H, trans), 8.09 (s, 1H, cis+trans), 7.58 – 7.51 (m, 2H, cis+trans), 7.40 – 7.35 (m, 3H, cis+trans), 7.34 – 7.32 (m, 2H, cis+trans), 7.24 – 7.17 (m, 5H, cis+trans), 5.49 (s, 2H, cis+trans), 5.12 (s, 0.19H, trans), 5.08 (s, 1.77H, cis), 4.32 – 4.27 (m, 2H, cis+trans), 3.17 – 2.79 (m, 5H, cis+trans), 1.35 – 1.30 (m, 3H, cis+trans). ¹³C NMR (126 MHz, CDCl₃) (cis-isomer) $\delta = 174.3$ (C_q), 163.8 (t, J = 33.3 Hz, C_q), 154.5 (C_q), 152.7 (C_q), 152.7 (CH), 144.4 (CH), 141.6 (C_q), 136.2 (C_q), 135.9 (C_q), 135.3 (C_q), 131.2 (C₉), 129.4 (CH), 129.3 (CH), 129.2 (CH), 129.0 (CH), 128.7 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 128.0 (CH), 127.8 (CH), 115.5 (t, J = 250.1 Hz, C_q), 66.9 (CH_2) , 63.0 (CH_2) , 47.9 (C_q) , 47.4 (CH_2) , 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.9 Hz)Hz, CH₂), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -114.17 - -114.28$ (m, cis+trans). IR (ATR): 2959, 1762, 1727, 1450, 1317, 1220, 1168, 727 cm⁻¹. MS (ESI) m/z (relative intensity): 597 [M+H]⁺ (20), 619 [M+Na]⁺ (100). HR-MS (ESI) m/zcalcd for C₃₄H₃₀N₄O₄F₂ [M+H]⁺: 597.2308, found: 597.2318.

(2S,3S,4S,5R)-2-(acetoxymethyl)-5-(6-(3-(1-((benzyloxy)carbonyl)-3-(2-ethoxy-1,1 -difluoro-2-oxoethyl)cyclobutyl)phenyl)-9H-purin-9-yl)tetrahydrofuran-3,4-diyl diacetate (28). The product was obtained following the general procedure with $[Ru(O_2CMes)_2(p\text{-cymene})]$ (11.2 mg, 10.0 mol%), P(4-CF₃C₆H₄)₃ (9.3 mg, 10.0 0.4 mg, mol%), Na_2CO_3 (42 mg, mmol), 1a (38 0.2 mmol), (2S,3S,4S,5R)-2-(acetoxymethyl)-5-(6-phenyl-9H-purin-9-yl)tetrahydrofuran-3,4-diyl diacetate (272 mg, 0.6 mmol), ethyl 2-bromo-2,2-difluoroacetate (122 mg, 0.6 mmol,) and 1,4-dioxane (1.3 mL) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $1/1 \rightarrow 1/2$) yielded 28 (69 mg, 45%) as a colorless oil with two diastereomers (cis: trans = 4.8:1). $\mathbf{R}_{\rm f}$ = 0.25 (TLC: n-hexane/EtOAc = 1/1). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 9.04 - 9.03 \text{ (m, 1H, } cis + trans), 8.89 \text{ (t, } J = 2.1 \text{ Hz, } 0.77\text{H, } cis),$ 8.77 - 8.74 (m, 1H, cis+trans), 8.65 (t, J = 1.8 Hz, 0.18H, trans), 8.27 - 8.26 (m, 1H, cis+trans), 7.59 - 7.51 (m, 2H, cis+trans), 7.25 - 7.21 (m, 3H, cis+trans), 7.20 -7.15 (m, 2H, cis+trans), 6.32 – 6.29 (m, 1H, cis+trans), 6.02 (t, J = 5.4 Hz, 1H, cis+trans), 5.73 – 5.69 (m, 1H, cis+trans), 5.12 (s, 0.33H, trans), 5.08 (s, 1.57H, cis), 4.51 - 4.45 (m, 2H, cis+trans), 4.44 - 4.38 (m, 1H, cis+trans), 4.31 - 4.26 (m, 2H, cis+trans), 3.16 - 2.76 (m, 5H, cis+trans), 2.17 (s, 3H, cis+trans), 2.14 (s, 3H, cis+trans), 2.10 – 2.08 (m, 3H, cis+trans), 1.35 – 1.31 (m, 3H, cis+trans). ¹³C NMR (126 MHz, CDCl₃) (cis-isomer) $\delta = 174.2$ (C_q), 170.5 (C_q), 169.7 (C_q), 169.5 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 155.0 (C_q), 152.8 (CH), 152.2 (C_q), 143.3 (C_q), 142.8 (CH), 141.7 (C_g), 135.9 (C_g), 131.9 (C_g), 129.6 (CH), 129.2 (CH), 129.1 (CH), 128.5 (CH), 128.1 (CH), 128.1 (CH), 127.8 (CH), 115.5 (t, J = 250.2 Hz, C_0), 86.5 (CH), 80.5 (CH), 73.2 (CH), 70.8 (CH), 67.0 (CH₂), 63.2 (CH₂), 63.0 (CH₂), 47.9 (C₉), 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.9 Hz, CH₂), 20.9 (CH₃), 20.7 (CH₃), 20.5 (CH₃), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -114.18 - -114.29$ (m, cis+trans). **IR** (ATR): 2958, 1751, 1574, 1372, 1212, 1040, 909, 732 cm⁻¹. **HR-MS** (ESI) m/z calcd for C₃₈H₃₈N₄O₁₁F₂ [M+Na]⁺: 787.2397, found: 787.2396.

$$Me^{N}$$
 BnO_2C
 CF_2CO_2Et

Benzyl

1-(3-(7-chloro-1-methyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)phenyl) -3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutane-1-carboxylate (29). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 7-chloro-1-methyl-5-phenyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (256 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $2/1 \rightarrow 1/1$) yielded **29** (110 mg, 56%) as a colorless oil with two diastereomers (*cis: trans* = 1.7:1). $R_f = 0.30$ (TLC: *n*-hexane/EtOAc = 1/1). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.75$ (s, 0.60H, cis), 7.57 (s, 0.35H, trans), 7.55 – 7.49 (m, 2H, cis+trans), 7.44 – 7.34 (m, 2H, cis+trans), 7.33 - 7.27 (m, 4H, cis+trans), 7.24 - 7.22 (m, 1H, cis+trans), 7.19 -7.14 (m, 2H, cis+trans), 5.13 - 5.04 (m, 2H, cis+trans), 4.87 - 4.82 (m, 1H, cis+trans), 4.32 – 4.25 (m, 2H, cis+trans), 3.76 (d, J=10.7 Hz, 1H, cis+trans), 3.41 -3.38 (m, 3H, cis+trans), 3.11 - 2.64 (m, 5H, cis+trans), 1.35 - 1.29 (m, 3H, cis+trans). ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.4$ (C_q, trans), 174.0 (C_q, cis), 170.0 $(C_q, trans)$, 169.9 (C_q, cis) , 168.6 (C_q, cis) , 168.6 $(C_q, trans)$, 163.7 $(t, J = 33.3 \text{ Hz}, C_q, trans)$ cis+trans), 143.2 (C_q, trans), 142.8 (C_q, cis), 142.7 (C_q, trans), 141.5 (C_q, cis), 138.6 (C_q, cis), 138.4 (C_q, trans), 135.8 (C_q, cis), 135.7 (C_q, trans), 131.7 (CH, cis), 131.7 (CH, trans), 130.0 (C_q, trans), 130.0 (CH, trans), 129.9 (C_q, cis), 129.9 (CH, cis), 129.4 (C_q, cis+trans), 129.1 (CH, cis), 128.9 (CH, cis), 128.7 (CH, cis), 128.7 (CH, trans), 128.6 (CH, trans), 128.6 (CH, cis), 128.5 (CH, trans), 128.5 (CH, trans), 128.3 (CH, trans), 128.3 (CH, cis), 127.8 (CH, cis), 127.7 (CH, cis), 127.7 (CH, trans), 127.0 (CH, trans), 122.8 (CH, cis), 122.7 (CH, trans), 115.4 (t, J = 250.5 Hz, C_q , cis), 114.8 (t, J = 250.5 Hz, C_q , trans), 67.2 (CH₂, trans), 67.0 (CH₂, cis), 63.0 (CH₂, cis), 63.0 (CH₂, trans), 57.1 (CH₂, cis), 57.1 (CH₂, trans), 48.4 (C_q, trans), 47.8 (C_q, cis) , 35.0 (CH₃, cis+trans), 33.5 (t, J = 26.0 Hz, CH, trans), 32.1 (t, J = 25.7 Hz,

CH, *cis*), 31.6 (t, J = 5.0 Hz, CH₂, *trans*), 31.1 (dt, J = 10.7, 4.6 Hz, CH₂, *cis*), 14.1 (CH₃, *cis+trans*). ¹⁹**F NMR** (377 MHz, CDCl₃) $\delta = -114.21 - -114.47$ (m, *cis+trans*). **IR** (ATR): 2984, 1763, 1682, 1399, 1315, 1127, 824, 735 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 595 [M+H]⁺ (5), 617 [M+Na]⁺ (100). **HR-MS** (ESI) *m/z* calcd for C₃₄H₃₀N₄O₄F₂ [M+H]⁺: 595.1806, found: 595.1820.

Compound **30** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), N-(4-methoxyphenyl)-1-phenylethan-1-imine (203 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h and work-up with 3 N HCl for another 3 h. Afterwards, the organic phase was extracted by EtOAc and dried over Na₂SO₄. The combined organic solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 10/1/1$) yielded **30** (52 mg, 40%) with two separable diastereomers (cis: trans = 2.5:1). $\mathbf{R}_{\rm f} = 0.27$ for cis-**30** and 0.33 for trans-**30** (TLC: n-hexane/EtOAc/DCM = 8/1/1).

$$O$$
 Me
 H
 BnO_2C
 CF_2CO_2Et

Benzyl

(1s,3s)-1-(3-acetylphenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutane-1-carb oxylate (*cis*-30, 37 mg, 29%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 7.99 (t, J = 1.9 Hz, 1H), 7.87 (dt, J = 7.8, 1.4 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.30 – 7.27 (m, 3H), 7.19 – 7.13 (m, 2H), 5.07 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.13 – 3.05 (m, 2H), 2.90 – 2.69 (m, 3H), 2.58 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 197.9 (C_q), 173.9 (C_q), 163.7 (t, J = 33.2 Hz, C_q), 141.8 (C_q), 137.6 (C_q), 135.7 (C_q), 131.5 (CH), 129.1 (CH), 128.6 (CH), 128.3 (CH), 127.9 (CH), 127.6 (CH), 126.4 (CH), 115.3 (t, J = 250.7 Hz, C_q), 67.1 (CH₂), 63.1 (CH₂), 47.8 (C_q), 32.1 (t, J = 25.8 Hz, CH), 31.1 (t, J = 5.0 Hz, CH₂),

26.8 (CH₃), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -114.30 (d, J = 15.3 Hz). **IR** (ATR): 2961, 1763, 1729, 1685, 1217, 1127, 1038, 742, 698 cm⁻¹. **MS** (ESI) m/z (relative intensity): 431 [M+H]⁺ (5), 453 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for $C_{24}H_{24}O_5F_2$ [M+H]⁺: 431.1665, found: 431.1664.

Me
$$CF_2CO_2Et$$

Benzyl

(1r,3r)-1-(3-acetylphenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutane-1-carb oxylate (trans-30, 15 mg, 11%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.87 - 7.81$ (m, 1H), 7.80 (s, 1H), 7.44 – 7.41 (m, 2H), 7.31 – 7.27 (m, 3H), 7.18 – 7.13 (m, 2H), 5.10 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.19 – 2.98 (m, 3H), 2.71 – 2.65 (m, 2H), 2.57 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 197.9$ (Cq), 174.3 (Cq), 163.7 (t, J = 33.3 Hz, Cq), 143.4 (Cq), 137.4 (Cq), 135.7 (Cq), 130.8 (CH), 128.9 (CH), 128.7 (CH), 128.4 (CH), 127.8 (CH), 127.3 (CH), 125.9 (CH), 114.8 (t, J = 250.7 Hz, Cq), 67.4 (CH₂), 63.1 (CH₂), 48.3 (Cq), 33.5 (t, J = 26.0 Hz, CH), 31.6 (t, J = 5.0 Hz, CH₂), 26.8 (CH₃), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -114.55$ (d, J = 15.0 Hz). IR (ATR): 2922, 1763, 1728, 1685, 1260, 1211, 1057, 745, 68 cm⁻¹. MS (ESI) m/z (relative intensity): 431 [M+H]⁺ (5), 453 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₄H₂₄O₅F₂ [M+H]⁺: 431.1665, found: 431.1671.

Compound 31 was obtained following the general procedure with 1b (65 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 36 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded 31 (86 mg, 58%) with two separable diastereomers (cis: trans = 4.4:1). $\mathbf{R}_f = 0.30$ for cis-31 and 0.33 for trans-31 (TLC: n-hexane/EtOAc/DCM = 5/1/1 for 2 times).

4-Methoxybenzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (cis-31, 70 mg, 47%) was obtained as a colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ = 8.70 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.01 (s, 1H), 7.90 (ddd, J = 6.1, 2.9, 1.7 Hz, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.46 (dd, J = 5.8, 1.0 Hz, 2H), 7.29 – 7.21 (m, 1H), 7.17 – 7.09 (m, 2H), 6.83 – 6.74 (m, 2H), 5.02 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.76 (s, 3H), 3.13 – 3.02 (m, 2H), 2.95 – 2.71 (m, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 174.4 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 159.6 (C_q), 157.1 (C_q), 149.7 (CH), 141.6 (C_q), 139.8 (C_q), 137.0 (CH), 129.7 (CH), 129.6 (CH), 129.1 (CH), 128.0 (CH), 127.3 (CH), 126.1 (CH), 125.4 (CH), 122.4 (CH), 120.9 (CH), 115.5 (t, J = 251.5 Hz, C_q), 113.9 (CH), 66.9 (CH₂), 63.0 (CH₂), 55.3 (CH₃), 47.9 (C_q), 32.1 (t, J = 25.7 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (377 MHz, CDCl₃) δ = -114.25 (d, J = 15.3 Hz). IR (ATR): 2959, 1762, 1727, 1466, 1219, 1036, 823, 775 cm⁻¹. MS (ESI) m/z (relative intensity): 496 [M+H]⁺ (20), 518 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₇NO₃F₂ [M+H]⁺: 496.1930, found: 496.1936.

4-Methoxybenzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (trans-31, 16 mg, 11%) was obtained as a colorless oil. ¹H NMR

(400 MHz, CDCl₃) δ = 8.71 – 8.68 (m, 1H), 7.88 (dt, J = 7.9, 1.3 Hz, 1H), 7.84 – 7.76 (m, 2H), 7.77 – 7.70 (m, 1H), 7.66 (dt, J = 8.0, 1.1 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.16 – 7.09 (m, 2H), 6.82 – 6.74 (m, 2H), 5.05 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 3.76 (s, 3H), 3.16 – 2.94 (m, 3H), 2.78 – 2.67 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ = 174.7 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 159.6 (C_q), 157.2 (C_q), 149.7 (CH), 143.4 (C_q), 139.6 (C_q), 137.0 (CH), 129.6 (CH), 129.0 (CH), 128.0 (C_q), 126.8 (CH), 125.8 (CH), 124.7 (CH), 122.4 (CH), 120.9 (CH), 115.0 (t, J = 250.5 Hz, C_q), 114.0 (CH), 67.1 (CH₂), 63.0 (CH₂), 55.4 (CH₃), 48.6 (C_q), 33.6 (t, J = 25.9 Hz, CH), 31.6 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F **NMR** (377 MHz, CDCl₃) δ = -114.32 (d, J = 14.7 Hz). **IR** (ATR): 2958, 1763, 1726, 1466, 1173, 1060, 831, 776 cm⁻¹. **MS** (ESI) m/z (relative intensity): 496 [M+H]⁺ (40), 518 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₈H₂₇NO₅F₂ [M+H]⁺: 496.1930, found: 496.1936.

Compound 32 was obtained following the general procedure with 1c (77 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 10/1/1$) yielded 32 (106 mg, 66%) with two separable diastereomers (cis: trans = 2.3:1). $\mathbf{R}_{\rm f} = 0.35$ for cis-32 and 0.38 for trans-32 (TLC: n-hexane/EtOAc/DCM = 5/1/1).

4-(Trifluoromethyl)benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (*cis*-32, 74 mg, 46%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) $\delta = 8.70$ (ddd, J = 5.0, 1.8, 0.9 Hz, 1H), 8.06 (t, J = 1.9 Hz, 1H), 7.91

(dt, J = 7.3, 1.7 Hz, 1H), 7.76 (td, J = 7.7, 1.9 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.51 – 7.44 (m, 4H), 7.28 – 7.23 (m, 3H), 5.13 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.13 – 3.07 (m, 2H), 2.98 – 2.78 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 174.1$ (C_q), 163.8 (t, J = 33.2 Hz, C_q), 157.0 (C_q), 149.9 (CH), 141.4 (C_q), 140.1 (C_q), 139.9 (C_q), 137.0 (CH), 130.3 (q, J = 32.5 Hz, C_q), 129.2 (CH), 127.8 (CH), 127.2 (CH), 126.2 (CH), 125.5 (q, J = 3.8 Hz, CH), 125.5 (CH), 123.0 (C_q), 122.6 (CH), 120.8 (CH), 115.5 (t, J = 250.2 Hz, C_q), 65.9 (CH₂), 63.1 (CH₂), 47.9 (C_q), 32.2 (t, J = 25.7 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -62.64$, -114.33 (d, J = 15.3 Hz). IR (ATR): 2962, 1764, 1731, 1589, 1322, 1119, 1061, 823, 772 cm⁻¹. MS (ESI) m/z (relative intensity): 534 [M+H]⁺ (70), 556 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₄NO₄F₅ [M+Na]⁺: 556.1518, found: 556.1529.

2-Py
$$CF_2CO_2Et$$
 H F_3C

4-(Trifluoromethyl)benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (*trans*-32, 32 mg, 20%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.79 – 7.71 (m, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.49 – 7.43 (m, 3H), 7.31 – 7.20 (m, 4H), 5.16 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.20 – 2.98 (m, 3H), 2.82 – 2.73 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.5 (C_q), 163.8 (t, J = 33.2 Hz, C_q), 157.1 (C_q), 149.9 (CH), 143.1 (C_q), 139.9 (C_q), 139.8 (C_q), 136.9 (CH), 130.4 (q, J = 32.4 Hz, C_q), 129.1 (CH), 127.6 (CH), 126.6 (CH), 125.9 (CH), 125.6 (q, J = 3.7 Hz, CH), 124.8 (CH), 122.5 (CH), 120.8 (CH), 114.9 (t, J = 250.2 Hz, C_q), 66.2 (CH₂), 63.0 (CH₂), 48.6 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.6 (t, J = 5.0 Hz, CH₂),

14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -62.67$, -114.34 (d, J = 14.8 Hz). **IR** (ATR): 2959, 1764, 1730, 1579, 1322, 1117, 1060, 822, 774 cm⁻¹. **MS** (ESI) m/z (relative intensity): 534 [M+H]⁺ (70), 556 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₈H₂₄NO₄F₅ [M+Na]⁺: 556.1518, found: 556.1517.

Compound **33** was obtained following the general procedure with **1d** (70 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $15/1/1 \rightarrow 12/1/1$) yielded **33** (87 mg, 57%) with two separable diastereomers (cis: trans = 3.1:1). $\mathbf{R}_{f} = 0.43$ for cis-**33** and 0.48 for trans-**33** (TLC: n-hexane/EtOAc/DCM = 3/1/1).

4-(Methylthio)benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (cis-33, 66 mg, 43%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.73 – 8.67 (m, 1H), 8.03 (t, J = 1.8 Hz, 1H), 7.90 (dt, J = 6.8, 2.0 Hz, 1H), 7.75 (td, J = 7.7, 1.9 Hz, 1H), 7.65 (dt, J = 7.9, 1.1 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.27 – 7.23 (m, 1H), 7.14 – 7.08 (m, 4H), 5.03 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.11 – 3.05 (m, 2H), 2.93 – 2.74 (m, 3H), 2.43 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.3 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.1 (C_q), 149.8 (CH), 141.5 (C_q), 140.0 (C_q), 138.6 (C_q), 136.9 (CH), 132.6 (C_q), 129.1 (CH), 128.5 (CH), 127.2 (CH), 126.5 (CH), 126.1 (CH), 125.4 (CH), 122.5 (CH), 120.8 (CH), 115.4 (t, J = 250.2 Hz, C_q), 66.6 (CH₂), 63.0 (CH₂), 47.8 (C_q), 32.1 (t, J = 25.6 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 15.8 (CH₃), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.26 (d, J = 15.4 Hz). IR (ATR): 2990, 1762, 1728, 1437, 1220, 1128, 1039,

772 cm⁻¹. **MS** (ESI) m/z (relative intensity): 512 [M+H]⁺ (70), 534 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for $C_{28}H_{27}NO_4SF_2$ [M+H]⁺: 512.1702, found: 512.1713.

4-(Methylthio)benzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (*trans*-33, 21 mg, 14%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.91 – 7.85 (m, 1H), 7.82 (t, J = 1.6 Hz, 1H), 7.79 – 7.71 (m, 1H), 7.66 (dt, J = 8.0, 1.1 Hz, 1H), 7.44 (td, J = 7.7, 0.5 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.14 – 7.06 (m, 4H), 5.06 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.18 – 2.96 (m, 3H), 2.77 – 2.70 (m, 2H), 2.43 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.7 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.2 (C_q), 149.8 (CH), 143.3 (C_q), 139.7 (C_q), 138.8 (C_q), 136.9 (CH), 132.6 (C_q), 129.0 (CH), 128.5 (CH), 126.7 (CH), 126.5 (CH), 125.8 (CH), 124.7 (CH), 122.4 (CH), 120.9 (CH), 114.9 (t, J = 250.1 Hz, C_q), 66.9 (CH2), 63.0 (CH₂), 48.6 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.6 (t, J = 4.9 Hz, CH₂), 15.8 (CH₃), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.33 (d, J = 14.8 Hz). IR (ATR): 2989, 1762, 1726, 1437, 1211, 1122, 1053, 774 cm⁻¹. MS (ESI) m/z (relative intensity): 512 [M+H]⁺ (95), 534 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₇NO₄SF₂ [M+H]⁺: 512.1702, found: 512.1709.

Compound **34** was obtained following the general procedure with **1e** (67 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded **34** (80 mg, 53%) with two separable diastereomers (cis: trans = 3.2:1). $\mathbf{R}_f = 0.35$ for cis-**34** and 0.40 for trans-**34** (TLC:

n-hexane/EtOAc = 3/1).

4-Chlorobenzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (*cis*-34, 61 mg, 41%) was obtained as a cololess oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 8.03 (t, J = 1.5 Hz, 1H), 7.90 (dt, J = 7.3, 1.7 Hz, 1H), 7.76 (ddd, J = 8.0, 7.4, 1.8 Hz, 1H), 7.66 (dt, J = 8.0, 1.1 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.29 – 7.23 (m, 1H), 7.22 – 7.18 (m, 2H), 7.11 – 7.08 (m, 2H), 5.04 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.11 – 3.05 (m, 2H), 2.94 – 2.75 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.2 (Cq), 163.8 (t, J = 33.3 Hz, Cq), 157.1 (Cq), 149.8 (CH), 141.5 (Cq), 139.9 (Cq), 137.0 (CH), 134.4 (Cq), 134.0 (Cq), 129.2 (CH), 129.2 (CH), 128.7 (CH), 127.2 (CH), 126.1 (CH), 125.4 (CH), 122.5 (CH), 120.9 (CH), 115.5 (t, J = 250.2 Hz, Cq), 66.1 (CH₂), 63.0 (CH₂), 47.9 (Cq), 32.1 (t, J = 25.7 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.30 (d, J = 15.4 Hz). IR (ATR): 2961, 1730, 1590, 1220, 1127, 1040, 774, 695 cm⁻¹. MS (ESI) m/z calcd for C₂₇H₂₄NO₄F₂Cl [M+H]⁺: 500.1435, found: 500.1431.

4-Chlorobenzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (trans-34, 19 mg, 12%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.88 (dt, J = 7.8, 1.5 Hz, 1H), 7.83 (t, J = 1.8 Hz, 1H), 7.76 (td, J = 7.7, 1.9 Hz, 1H), 7.67 (dt, J = 8.0, 1.1 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.22 – 7.18 (m, 2H), 7.11 – 7.04 (m, 2H), 5.07 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.18 – 2.98 (m, 3H), 2.79 – 2.72 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.6 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.1 (C_q), 149.8 (CH), 143.2 (C_q), 139.8 (C_q), 137.0 (CH), 134.3 (CH), 134.1 (CH), 129.1 (CH), 129.0 (CH), 128.8 (CH), 126.7 (CH), 125.9 (CH), 124.7 (CH), 122.5 (CH), 120.8 (CH), 114.9 (t, J = 250.1 Hz, C_q), 66.4 (CH₂), 63.0 (CH₂), 48.5 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.6 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.33 (d, J = 14.9 Hz). IR (ATR): 2957, 1728, 1591, 1271, 1126, 1017, 775, 700 cm⁻¹. MS (ESI) m/z calcd for C₂₇H₂₄NO₄F₂Cl [M+H]⁺: 500.1435, found: 500.1438.

Compound **35** was obtained following the general procedure with **1f** (67 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $10/1/1 \rightarrow 8/1/1$) yielded **35** (98 mg, 65%) with two separable diastereomers (cis: trans = 3.3:1). $\mathbf{R}_{\rm f} = 0.29$ for cis-**35** and 0.34 for trans-**35** (TLC: n-hexane/EtOAc/DCM = 3/1/1).

3-Chlorobenzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (cis-35, 75 mg, 50%) was obtained as a colorless oil. ¹H NMR (500 s54

MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.06 (t, J = 1.6 Hz, 1H), 7.91 (dt, J = 7.3, 1.7 Hz, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.27 – 7.23 (m, 1H), 7.23 – 7.09 (m, 3H), 7.03 (d, J = 7.4 Hz, 1H), 5.05 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.14 – 3.06 (m, 2H), 2.95 – 2.77 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.1 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.1 (C_q), 149.9 (CH), 141.4 (C_q), 140.1 (C_q), 137.9 (C_q), 136.9 (CH), 134.4 (C_q), 129.8 (CH), 129.2 (CH), 128.3 (CH), 127.7 (CH), 127.3 (CH), 126.2 (CH), 125.7 (CH), 125.4 (CH), 122.5 (CH), 120.9 (CH), 115.5 (t, J = 250.2 Hz, C_q), 66.0 (CH₂), 63.0 (CH₂), 47.9 (C_q), 32.1 (t, J = 25.7 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.30 (d, J = 15.1 Hz). IR (ATR): 2923, 1763, 1730, 1577, 1437, 1217, 1039, 774, 739 cm⁻¹. MS (ESI) m/z (relative intensity): 500 [M+H]⁺ (65), 522 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₇H₂₄NO₄F₂Cl [M+H]⁺: 500.1435, found: 500.1437.

3-Chlorobenzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (trans-35, 23 mg, 15%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.79 – 7.71 (m, 1H), 7.69 (dt, J = 8.0, 1.1 Hz, 1H), 7.45 (td, J = 7.7, 0.6 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.26 – 7.23 (m, 1H), 7.22 – 7.14 (m, 2H), 7.11 – 7.08 (m, 1H), 7.02 – 6.99 (m, 1H), 5.08 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.20 – 2.98 (m, 3H), 2.81 – 2.72 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.6 (Cq), 163.8 (t, J = 33.3 Hz, Cq), 157.2 (Cq), 149.8 (CH), 143.1 (Cq), 139.8 (Cq), 137.8 (Cq), 136.9 (CH), 134.5 (Cq), 129.9 (CH), 129.1 (CH), 128.3 (CH), 127.6 (CH), 126.7 (CH), 126.0 (CH), 125.6 (CH), 124.7 (CH), 122.4 (CH), 120.9 (CH), 114.9 (t, J = 250.1 Hz, Cq), 66.2 (CH₂), 63.0 (CH₂), 48.6 (Cq), 33.6 (t, J = 26.0 Hz, CH), 31.6 (t, J = 5.0 Hz,

CH₂), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -114.33$ (d, J = 14.8 Hz). **IR** (ATR): 2956, 1763, 1729, 1578, 1269, 1210, 1123, 777, 692 cm⁻¹. **MS** (ESI) m/z (relative intensity): 500 [M+H]⁺ (90), 522 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₇H₂₄NO₄F₂Cl [M+H]⁺: 500.1435, found: 500.1447.

Compound **36** was obtained following the general procedure with **1g** (77 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $12/1/1 \rightarrow 10/1/1$) yielded **36** (101 mg, 63%) with two separable diastereomers (cis: trans = 2.7:1). $\mathbf{R}_{f} = 0.37$ for cis-**36** and 0.40 for trans-**36** (TLC: n-hexane/EtOAc/DCM = 3/1/1).

3,5-Dichlorobenzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (cis-36, 74 mg, 46%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 8.07 (t, J = 1.6 Hz, 1H), 7.94 – 7.88 (m, 1H), 7.79 – 7.72 (m, 1H), 7.70 (dt, J = 8.0, 1.1 Hz, 1H), 7.53 – 7.42 (m, 2H), 7.27 – 7.23 (m, 1H), 7.20 (t, J = 1.9 Hz, 1H), 6.97 (dt, J = 1.9, 0.6 Hz, 2H), 5.01 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 3.15 – 3.06 (m, 2H), 2.96 – 2.79 (m, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 173.9 (C_q), 163.8 (t, J = 33.2 Hz, C_q), 157.0 (C_q), 149.9 (CH), 141.3 (C_q), 140.1 (C_q), 139.2 (C_q), 136.9 (CH), 135.1 (C_q), 129.3 (CH), 128.2 (CH), 127.2 (CH), 126.3 (CH), 125.8 (CH), 125.3 (CH), 122.5 (CH), 120.8 (CH), 115.4 (t, J = 250.2 Hz, C_q), 65.1 (CH₂), 63.1 (CH₂), 47.9 (C_q), 32.2 (t, J = 25.7 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.33 (d, J = 15.2 Hz). IR (ATR): 2958, 1764, 1731, 1564, 1215, 1160,

1039, 854, 771 cm⁻¹. **MS** (ESI) m/z (relative intensity): 534 [M+H]⁺ (70), 556 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for $C_{27}H_{23}NO_4F_2Cl_2$ [M+H]⁺: 534.1045, found: 534.1055.

3,5-Dichlorobenzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobuta ne-1-carboxylate (*trans*-36, 27 mg, 17%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.92 – 7.85 (m, 2H), 7.78 – 7.68 (m, 2H), 7.47 (t, J = 8.0 Hz, 1H), 7.30 – 7.19 (m, 3H), 6.94 (d, J = 1.9 Hz, 2H), 5.04 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.23 – 2.98 (m, 3H), 2.83 – 2.73 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 174.4 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.1 (C_q), 149.8 (CH), 143.0 (C_q), 139.9 (C_q), 139.2 (C_q), 136.9 (CH), 135.2 (C_q), 129.1 (CH), 128.3 (CH), 126.6 (CH), 126.1 (CH), 125.6 (CH), 124.6 (CH), 122.5 (CH), 120.8 (CH), 114.9 (t, J = 250.2 Hz, C_q), 65.3 (CH₂), 63.0 (CH₂), 48.5 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.6 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (377 MHz, CDCl₃) δ = -114.31 (d, J = 14.6 Hz). IR (ATR): 2958, 1763, 1729, 1564, 1208, 1112, 1052, 854, 772 cm⁻¹. MS (ESI) m/z (relative intensity): 534 [M+H]⁺ (100), 556 [M+Na]⁺ (90). HR-MS (ESI) m/z calcd for C₂₇H₂₃NO₄F₂Cl₂ [M+H]⁺: 534.1045, found: 534.1061.

Compound **37** was obtained following the general procedure with **1h** (77 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 10/1/1$) yielded **37** (103 mg, 64%) with two separable diastereomers (cis: trans = 2.6:1). $\mathbf{R}_f = 0.29$ for cis-**37** and 0.31 for trans-**37**

(TLC: n-hexane/EtOAc/DCM = 3/1/1).

3,4-Dichlorobenzyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (*cis*-37, 74 mg, 46%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 8.05 (t, J = 1.9 Hz, 1H), 7.90 (dt, J = 7.6, 1.5 Hz, 1H), 7.76 (td, J = 7.7, 1.8 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.30 – 7.24 (m, 2H), 7.19 (d, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.2, 2.0 Hz, 1H), 5.02 (s, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.13 – 3.05 (m, 2H), 2.95 – 2.77 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.0 (Cq), 163.8 (t, J = 33.3 Hz, Cq), 157.0 (Cq), 149.9 (CH), 141.4 (Cq), 140.1 (Cq), 137.0 (CH), 136.1 (Cq), 132.7 (Cq), 132.2 (Cq), 130.5 (CH), 129.6 (CH), 129.2 (CH), 127.2 (CH), 127.0 (CH), 126.2 (CH), 125.3 (CH), 122.5 (CH), 120.8 (CH), 115.4 (t, J = 250.2 Hz, Cq), 65.3 (CH₂), 63.1 (CH₂), 47.9 (Cq), 32.1 (t, J = 25.8 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.33 (d, J = 15.2 Hz). IR (ATR): 2960, 1764, 1730, 1589, 1468, 1216, 1126, 1036, 773 cm⁻¹. MS (ESI) m/z (relative intensity): 534 [M+H]⁺ (80), 556 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₇H₂₃NO₄F₂Cl₂ [M+H]⁺: 534.1045, found: 534.1056.

3,4-Dichlorobenzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (trans-37, 29 mg, 18%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.79 – 7.72 (m, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.45 (td, J = 7.7, 0.6 Hz, 1H), 7.31 – 7.22 (m, 3H), 7.17 (d, J = 2.0 Hz, 1H), 6.94 (dd, J = 8.2, 2.1 Hz, 1H), 5.04 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.19 – 2.97 (m, 3H), 2.81 – 2.73 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.5 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.1 (C_q), 149.8 (CH), 143.0 (C_q), 139.8 (C_q), 137.0 (CH), 136.0 (C_q), 132.8 (C_q), 132.3 (C_q), 130.6 (CH), 129.5 (CH), 129.1 (CH), 126.8 (CH), 126.6 (CH), 126.0 (CH), 124.7 (CH), 122.5 (CH), 120.8 (CH), 114.9 (t, J = 250.7 Hz, C_q), 65.5 (CH₂), 63.1 (CH₂), 48.5 (C_q), 33.6 (t, J = 26.0 Hz, CH), 31.6 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.33 (d, J = 14.9 Hz). IR (ATR): 2959, 1764, 1730, 1589, 1469, 1211, 1123, 1024, 775 cm⁻¹. MS (ESI) m/z calcd for C₂₇H₂₃NO₄F₂Cl₂ [M+H]⁺: 534.1045, found: 534.1060.

Compound **38** was obtained following the general procedure with **1i** (58 mg, 0.3 mmo), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $15/1/1 \rightarrow 8/1/1$) yielded **38** (92 mg, 65%) with two separable diastereomers (cis: trans = 3.2:1). $\mathbf{R}_{\rm f} = 0.29$ for cis-**38** and 0.31 for trans-**38** (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Thiophen-2-ylmethyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (cis-38, 70 mg, 50%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃)

 δ = 8.72 – 8.67 (m, 1H), 8.02 (s, 1H), 7.93 – 7.87 (m, 1H), 7.74 (td, J = 7.7, 1.9 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.28 – 7.21 (m, 2H), 6.98 (d, J = 2.4 Hz, 1H), 6.91 (dd, J = 5.1, 3.5 Hz, 1H), 5.23 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.11 – 3.03 (m, 2H), 2.95 – 2.73 (m, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.1 (C_q), 163.8 (t, J = 33.3 Hz, C_q), 157.2 (C_q), 149.8 (CH), 141.3 (C_q), 139.9 (C_q), 137.8 (C_q), 136.9 (CH), 129.1 (CH), 127.9 (CH), 127.3 (CH), 126.8 (CH), 126.7 (CH), 126.1 (CH), 125.3 (CH), 122.4 (CH), 120.9 (CH), 115.4 (t, J = 250.2 Hz, C_q), 63.0 (CH₂), 61.5 (CH₂), 47.7 (C_q), 32.1 (t, J = 25.8 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.26 (d, J = 15.4 Hz). IR (ATR): 2959, 1762, 1467, 1308, 1220, 1036, 773, 700 cm⁻¹. MS (ESI) m/z (relative intensity): 472 [M+H]⁺ (60), 494 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₅H₂₃NO₄F₂S [M+Na]⁺: 494.1208, found: 494.1207.

Thiophen-2-ylmethyl

(1r,3r)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutan e-1-carboxylate (trans-38, 22 mg, 15%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) $\delta = 8.72 - 8.66$ (m, 1H), 7.87 (dt, J = 7.7, 1.4 Hz, 1H), 7.81 (t, J = 1.9 Hz, 1H), 7.74 (td, J = 7.7, 1.9 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.28 – 7.22 (m, 3H), 6.99 (d, J = 2.5 Hz, 1H), 6.92 (dd, J = 5.1, 3.5 Hz, 1H), 5.27 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.16 – 3.03 (m, 1H), 3.04 – 2.95 (m, 2H), 2.77 – 2.69 (m, 2H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 174.6$ (Cq), 163.8 (t, J = 33.3 Hz, Cq), 157.3 (Cq), 149.8 (CH), 143.1 (Cq), 139.8 (Cq), 137.9 (Cq), 136.9 (CH), 129.0 (CH), 127.9 (CH), 126.8 (CH), 126.8 (CH), 126.7 (CH), 125.9 (CH), 124.7 (CH), 122.4 (CH), 120.9 (CH), 114.94 (t, J = 250.0 Hz, Cq), 63.0 (CH₂), 61.8 (CH₂), 48.5 (Cq), 33.6 (t, J = 25.9 Hz, CH), 31.7 (t, J = 5.0 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -114.34$ (d, J = 15.0 Hz). IR (ATR): 2959, 1763, 1468,

1309, 1210, 1052, 775, 703 cm⁻¹. **MS** (ESI) m/z (relative intensity): 472 [M+H]⁺ (70), 494 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for $C_{25}H_{23}NO_4F_2S$ [M+Na]⁺: 494.1208, found: 494.1214.

Compound **39** was obtained following the general procedure with **1j** (62 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded **39** (80 mg, 55%) with two separable diastereomers (cis: trans = 4.5:1). $\mathbf{R}_f = 0.25$ for cis-**39** and 0.28 for trans-**39** (TLC: n-hexane/EtOAc = 5/1).

Ethyl

2-((1s,3s)-3-(2-naphthoyl)-3-(3-(pyridin-2-yl)phenyl)cyclobutyl)-2,2-difluoroaceta te (*cis-***39**, 65 mg, 45%) was obtained as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) $\delta = 8.71$ (dt, J = 4.9, 1.3 Hz, 1H), 8.30 - 8.22 (m, 2H), 7.90 - 7.80 (m, 3H), 7.79 - 7.66 (m, 4H), 7.56 (dt, J = 7.8, 1.4 Hz, 1H), 7.55 - 7.42 (m, 3H), 7.27 - 7.20 (m, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.21 (q, J = 7.9, 7.3 Hz, 3H), 2.90 - 2.81 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) $\delta = 199.7$ (C_q), 163.9 (t, J = 33.2 Hz, C_q), 157.0 (C_q), 149.8 (CH), 142.2 (C_q), 140.7 (C_q), 136.9 (CH), 135.4 (C_q), 132.4 (C_q), 131.7 (CH), 131.0 (Cq), 129.8 (CH), 129.7 (CH), 128.6 (CH), 128.3 (CH), 127.7 (CH), 126.7 (CH), 126.4 (CH), 126.0 (CH), 125.2 (CH), 124.3 (CH), 122.5 (CH), 120.8 (CH), 115.4 (t, J = 250.3 Hz, C_q), 63.0 (CH₂), 52.6 (C_q), 32.4 (t, J = 25.8 Hz, CH), 31.6 (t, J = 4.8 Hz, CH₂), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -114.01$ (d, J = 13.2 Hz). **IR** (ATR): 2986, 1762, 1673, 1316, 1171, 1131, 773 cm⁻¹. **MS** (ESI) m/z (relative intensity): 486 [M+H]⁺ (40), 508 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₃₀H₂₅NO₃F₂ [M+H]⁺: 486.1875, found: 486.1887.

Ethyl

2-((1r,3r)-3-(2-naphthoyl)-3-(3-(pyridin-2-yl)phenyl)cyclobutyl)-2,2-difluoroaceta te (*trans-***39**,15 mg, 10%) was obtained as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ = 8.69 (d, J = 4.2 Hz, 1H), 8.33 (s, 1H), 8.04 (s, 1H), 7.88 – 7.70 (m, 6H), 7.67 (d, J = 7.9 Hz, 1H), 7.56 – 7.38 (m, 4H), 7.25 – 7.22 (m, 1H), 4.29 (q, J = 7.2 Hz, 2H), 3.23 – 3.14 (m, 2H), 3.04 – 2.93 (m, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ = 199.6 (C_q), 163.9 (t, J = 33.4 Hz, C_q), 157.0 (C_q), 149.8 (CH), 143.4 (C_q), 135.3 (C_q), 132.4 (C_q), 132.1 (CH), 130.9 (C_q), 129.8 (CH), 129.7 (CH), 128.7 (CH), 128.2 (CH), 127.7 (CH), 126.8 (CH), 126.4 (CH), 125.8 (CH), 125.6 (CH), 124.3 (CH), 122.5 (CH), 120.9 (CH), 115.3 (t, J = 249.9 Hz, C_q), 63.0 (CH₂), 53.3 (C_q), 32.9 (t, J = 25.9 Hz, CH), 31.4 (t, J = 4.8 Hz, CH₂), 14.1 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -114.11 (d, J = 13.7 Hz). **IR** (ATR): 2928, 1762, 1673, 1437, 1312, 1119, 1057, 769 cm⁻¹. **MS** (ESI) m/z (relative intensity): 486 [M+H]⁺ (70), 508 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₃₀H₂₅NO₃F₂ [M+H]⁺: 486.1875, found: 486.1881.

Ethyl

2,2-difluoro-2-(3-(methyl(phenyl)carbamoyl)-3-(3-(pyridin-2-yl)phenyl)cyclobuty l)acetate (40). The product was obtained following the general procedure with **1k** (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column

chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 2/1$) yielded **40** (57 mg, 41%) as a colorless oil with two diastereomers (cis: trans = 20:1, determined by $^{19}F\text{-NMR}$). \mathbf{R}_f = 0.15 (TLC: n-hexane/EtOAc = 3/1). $^1\mathbf{H}$ NMR (500 MHz, CDCl₃) (cis-isomer) δ = 8.69 (d, J = 4.7 Hz, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.67 - 7.56 (m, 2H), 7.35 (t, J = 7.9 Hz, 1H), 7.26 - 7.06 (m, 5H), 6.64 (d, J = 7.5 Hz, 2H), 4.24 (q, J = 7.0 Hz, 2H), 3.20 (s, 3H), 2.89 (t, J = 10.9 Hz, 2H), 2.73 - 2.59 (m, 1H), 2.10 - 1.99 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) (cis-isomer) δ = 174.0 (Cq), 163.9 (t, J = 33.5 Hz, Cq), 157.2 (Cq), 149.8 (CH), 142.5 (Cq), 142.2 (Cq), 139.9 (Cq), 136.8 (CH), 129.1 (CH), 128.9 (CH), 128.0 (CH), 126.3 (CH), 125.7 (CH), 124.2 (CH), 122.4 (CH), 120.7 (CH), 115.2 (t, J = 250.1 Hz, Cq), 62.9 (CH₂), 49.0 (Cq), 39.3 (CH₃), 32.2 (CH₂), 32.0 (t, J = 25.8 Hz, CH), 14.1 (CH₃). $1^{19}F$ NMR (471 MHz, CDCl₃) δ = -113.63 (d, J = 14.7 Hz, cis), -114.12 (d, J = 14.9 Hz, trans). IR (ATR): 2995, 1761, 1645, 1367, 1121, 773, 740, 699 cm⁻¹. MS (ESI) m/z (relative intensity): 465 [M+H]⁺ (10), 487 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for $C_{27}H_{26}N_{2}O_{3}F_{2}$ [M+H]⁺: 465.1984, found: 465.1979.

2-(3-(3-(Perfluorohexyl)-1-(phenylsulfonyl)cyclobutyl)phenyl)pyridine (41). The product was obtained following the general procedure with 11 (58 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (*n*-hexane/EtOAc = $10/1 \rightarrow 3/1$) yielded 41 (85 mg, 43%) as a colorless oil with two diastereomers, separable by column chromatography (*cis: trans* = 16:1). **R**_f = 0.26 (TLC: *n*-hexane/EtOAc = 3/1). ¹**H NMR** (500 MHz, CDCl₃) (*cis*-isomer) δ = 8.66 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 7.97 (ddd, *J* = 7.8, 1.8, 1.0 Hz, 1H), 7.77 − 7.70 (m, 2H), 7.56 − 7.47 (m, 2H), 7.40 − 7.28 (m, 5H), 7.24 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 7.15 (ddd, *J* = 7.8, 2.0, 1.0 Hz, 1H), 3.58 (td, *J* = 10.0, 2.7 Hz, 2H), 3.01 − 2.88 (m, 1H), 2.82 − 2.73 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) (*cis*-isomer) δ = 156.5 (C_a),

149.9 (CH), 139.7 (C_q), 136.9 (CH), 134.9 (C_q), 134.4 (C_q), 133.9 (CH), 129.8 (CH), 129.6 (CH), 128.8 (CH), 128.7 (CH), 128.0 (CH), 127.6 (CH), 122.7 (CH), 120.7 (CH), 65.4 (C_q), 29.5 (CH), 29.3 (t, J = 5.4 Hz, CH₂). ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -80.79, -120.60 (q, J = 16.0, 15.0 Hz), -122.14 (t, J = 14.5 Hz), -122.87, -126.09 – -126.20 (m). **IR** (ATR): 3069, 2962, 1199, 1144, 770, 691, 616, 587 cm⁻¹. **MS** (ESI) m/z (relative intensity): 668 [M+H]⁺ (10), 690 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₇H₁₈NO₂F₁₃S [M+Na]⁺: 690.0743, found: 690.0747.

Compound 42 was obtained following the general procedure with 1m (61 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded 42 (121 mg, 84%) with two separable diastereomers (major: minor = 2.8:1). $\mathbf{R}_f = 0.30$ for major-42 and 0.33 for minor-42 (TLC: n-hexane/EtOAc = 3/1).

Ethyl

(1r,3r)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenyl-3-(3-(pyridin-2-yl)phenyl)c yclobutane-1-carboxylate (*major*-42, 89 mg, 62%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.66 = (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 8.03 (t, J = 1.8 Hz, 1H), 7.77 – 7.69 (m, 2H), 7.67 – 7.64 (m, 1H), 7.41 – 7.34 (m, 2H), 7.28 – 7.22 (m, 4H), 7.20 (ddd, J = 7.3, 4.8, 1.2 Hz, 1H), 7.12 – 7.09 (m, 1H), 4.28 (q, J = 7.2 Hz, 2H), 3.88 (q, J = 7.1 Hz, 2H), 3.52 – 3.41 (m, 4H), 1.32 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 170.9 (t, J = 5.1 Hz, C_q), 163.2 (t, J = 32.8 Hz, C_q), 157.5 (C_q), 149.8 (CH), 149.2 (C_q), 147.9 (C_q), 139.5 (C_q), 136.9 (CH), 128.9 (CH), 128.6 (CH), 127.3 (CH), 126.1 (CH), 125.6 (CH), 125.1 (CH), 124.8 (CH), 122.3 (CH), 120.8 (CH), 114.2 (t, J = 253.8 Hz, C_q), 63.0 (CH₂), 61.9 (CH₂), 48.3 (t, J = 25.9 Hz, C_q), 45.6 (C_q), 38.7 (t, J = 3.7 Hz, CH₂), 14.0 (CH₃), 13.5 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -112.96. **IR** (ATR): 2981, 1771, 1726, 1314, 1135, 1067, 775, 703 cm⁻¹. **MS** (ESI) m/z (relative intensity): 480 [M+H]⁺ (80), 502 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₈H₂₇NO₄F₂ [M+Na]⁺: 502.1800, found: 502.1813.

Ethyl

(1s,3s)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenyl-3-(3-(pyridin-2-yl)phenyl)c yclobutane-1-carboxylate (*minor*-42, 32 mg, 22%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.67 (dd, J = 5.1, 1.5 Hz, 1H), 7.87 (t, J = 1.9 Hz, 1H), 7.75 – 7.62 (m, 3H), 7.44 – 7.32 (m, 3H), 7.28 – 7.17 (m, 4H), 7.14 – 7.08 (m, 1H), 4.29 (q, J = 7.2 Hz, 2H), 3.91 (q, J = 7.1 Hz, 2H), 3.52 – 3.42 (m, 4H), 1.33 (t, J = 7.1 Hz, 3H), 0.93 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.9 (t, J = 5.2 Hz, C_q), 163.2 (t, J = 32.8 Hz, C_q), 157.5 (C_q), 150.0 (C_q), 149.8 (CH), 147.1 (CH), 139.8 (CH), 136.8 (CH), 129.0 (CH), 128.5 (CH), 126.5 (CH), 126.2 (CH), 126.1 (CH), 124.7 (CH), 124.1 (CH), 122.3 (CH), 120.8 (CH), 114.2 (t, J = 253.9 Hz, C_q), 63.0 (CH₂), 61.9 (CH₂), 48.3 (t, J = 25.9 Hz, C_q), 45.66 (C_q), 38.7 (t, J = 3.7 Hz, CH₂), 14.0 (CH₃), 13.6 (CH₃). ¹⁹F NMR (377 MHz, CDCl₃) δ = -112.87. IR (ATR): 2981, 1770, 1726, 1311, 1137, 1072, 774, 702 cm⁻¹. MS (ESI) m/z (relative intensity): 480 [M+H]⁺ (60), 502 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₇NO₄F₂ [M+Na]⁺: 502.1800, found: 502.1819.

Compound **43** was obtained following the general procedure with **1m** (61 mg, 0.3 mmol), 5-methyl-2-phenylpyrimidine (153 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 12/1/1$) yielded **43** (114 mg, 77%) with two separable diastereomers (major: minor = 1.6:1). $\mathbf{R}_f = 0.29$ for

major-43 and 0.31 for *minor*-43 (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Ethyl

(1r,3r)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-(3-(5-methylpyrimidin-2-yl)phenyl) -3-phenylcyclobutane-1-carboxylate (major-43, 70 mg, 47%) was obtained as a colorless oil. HNMR (500 MHz, CDCl₃) δ = 8.61 (d, J = 0.8 Hz, 2H), 8.50 (t, J = 1.9 Hz, 1H), 8.20 (dt, J = 7.8, 1.4 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.32 – 7.24 (m, 4H), 7.15 – 7.08 (m, 1H), 4.31 (q, J = 7.2 Hz, 2H), 3.88 (q, J = 7.2 Hz, 2H), 3.57 – 3.44 (m, 4H), 2.33 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H). HQ NMR (126 MHz, CDCl₃) δ = 171.0 (Cq), 163.2 (t, J = 32.7 Hz, Cq), 162.4 (Cq), 157.5 (CH), 149.4 (Cq), 147.8 (Cq), 137.8 (Cq), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.5 (Cq), 126.0 (CH), 125.9 (CH), 125.8 (CH), 125.6 (CH), 114.3 (t, J = 253.6 Hz, Cq), 63.0 (CH₂), 61.9 (CH₂), 48.3 (t, J = 25.9 Hz, Cq), 45.6 (Cq), 38.7 (t, J = 3.7 Hz, Cq), 15.7 (CH₃), 14.1 (CH₃), 13.5 (CH₃). HR (471 MHz, CDCl₃) δ = -113.03. IR (ATR): 2988, 1771, 1725, 1428, 1312, 1136, 1065, 703 cm⁻¹. MS (ESI) m/z (relative intensity): 495 [M+H]⁺ (40), 517 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₈N₂O₄F₂ [M+Na]⁺: 517.1909, found: 517.1920.

Me
$$\sim$$
 N \sim CF₂CO₂Et \sim CO₂Et

Ethyl

(1s,3s)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-(3-(5-methylpyrimidin-2-yl)phenyl) -3-phenylcyclobutane-1-carboxylate (*minor*-43, 44 mg, 30%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.61 (d, J = 0.8 Hz, 2H), 8.33 (t, J = 1.7 Hz, 1H), 8.18 (dt, J = 7.7, 1.4 Hz, 1H), 7.46 – 7.43 (m, 2H), 7.38 (t, J = 7.4 Hz, 1H),

7.35 – 7.29 (m, 1H), 7.29 – 7.24 (m, 2H), 7.12 (t, J = 7.4 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.93 (q, J = 7.1 Hz, 2H), 3.54 – 3.44 (m, 4H), 2.32 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ = 170.9 (C_q), 163.2 (t, J = 32.8 Hz, C_q), 162.4 (C_q), 157.4 (CH), 149.9 (C_q), 147.3 (C_q), 138.0 (C_q), 128.9 (CH), 128.5 (CH), 128.4 (C_q), 127.6 (CH), 126.4 (CH), 126.1 (CH), 125.7 (CH), 124.8 (CH), 114.2 (t, J = 253.9 Hz, C_q), 63.0 (CH₂), 61.9 (CH₂), 48.35 (t, J = 26.0 Hz, C_q), 45.7 (C_q), 38.6 (t, J = 3.7 Hz, CH₂), 15.7 (CH₃), 14.1 (CH₃), 13.6 (CH₃). ¹⁹F **NMR** (471 MHz, CDCl₃) δ = -112.92. **IR** (ATR): 2988, 1771, 1723, 1310, 1135, 1071, 910, 732 cm⁻¹. **MS** (ESI) m/z (relative intensity): 495 [M+H]⁺ (40), 517 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₈H₂₈N₂O₄F₂ [M+Na]⁺: 517.1909, found: 517.1916.

Compound 44 was obtained following the general procedure with 1m (61 mg, 0.3 mmol), 2-phenyl-4,5-dihydrooxazole (132 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 2/1$) yielded 44 (68 mg, 48%) with two separable diastereomers (major: minor = 1.4:1). $\mathbf{R}_f = 0.14$ for major-44 and 0.17 for minor-44 (TLC: n-hexane/EtOAc = 3/1).

Ethyl

(1r,3r)-3-(3-(4,5-dihydrooxazol-2-yl)phenyl)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenylcyclobutane-1-carboxylate (*major*-44, 40 mg, 28%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.00 (t, J = 1.6 Hz, 1H), 7.72 (dt, J = 7.7, 1.2 Hz, 1H), 7.49 (ddd, J = 7.9, 2.1, 1.2 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.26 – 7.22 (m, 3H), 7.14 – 7.10 (m, 1H), 4.41 (t, J = 9.4 Hz, 2H), 4.30 (q, J = 7.2 Hz, 2H), 4.05 (t, J = 9.5 Hz, 2H), 3.91 (q, J = 7.1 Hz, 2H), 3.46 – 3.42 (m, 4H), 1.34 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

= 170.8 (t, J = 5.0 Hz, C_q), 164.7 (C_q), 163.1 (t, J = 32.7 Hz, C_q), 149.0 (C_q), 147.9 (C_q), 129.5 (CH), 128.7 (CH), 128.6 (CH), 127.9 (C_q), 126.1 (CH), 126.1 (CH), 126.0 (CH), 125.5 (CH), 114.2 (t, J = 253.5 Hz, C_q), 67.7 (CH₂), 63.0 (CH₂), 61.9 (CH₂), 55.0 (CH₂), 48.1 (t, J = 26.0 Hz, C_q), 45.4 (C_q), 38.6 (t, J = 3.4 Hz, CH₂), 14.0 (CH₃), 13.5 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -113.07$. **IR** (ATR): 2986, 1771, 1726, 1310, 1136, 1065, 704, 583 cm⁻¹. **MS** (ESI) m/z (relative intensity): 472 [M+H]⁺ (85), 494 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for $C_{26}H_{27}NO_{5}F_{2}$ [M+Na]⁺: 494.1750, found: 494.1760.

Ethyl

(1s,3s)-3-(3-(4,5-dihydrooxazol-2-yl)phenyl)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenylcyclobutane-1-carboxylate (*minor*-44, 28 mg, 20%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.87 (t, J = 1.8 Hz, 1H), 7.71 (dt, J = 7.3, 1.6 Hz, 1H), 7.41 – 7.31 (m, 4H), 7.29 – 7.23 (m, 2H), 7.15 – 7.10 (m, 1H), 4.41 (t, J = 9.5 Hz, 2H), 4.30 (q, J = 7.2 Hz, 2H), 4.04 (t, J = 9.5 Hz, 2H), 3.92 (q, J = 7.1 Hz, 2H), 3.46 – 3.42 (m, 4H), 1.34 (t, J = 7.1 Hz, 3H), 0.93 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.8 (t, J = 5.2 Hz, C_q), 164.8 (C_q), 163.1 (t, J = 32.8 Hz, C_q), 149.9 (C_q), 147.0 (C_q), 128.7 (CH), 128.6 (CH), 128.5(CH), 127.9 (C_q), 126.3 (CH), 126.2 (CH), 125.9 (CH), 125.1 (CH), 114.1 (t, J = 253.8 Hz, C_q), 67.7 (CH₂), 63.0 (CH₂), 61.9 (CH₂), 54.9 (CH₂), 48.2 (t, J = 26.0 Hz, C_q), 45.4 (C_q), 38.5 (t, J = 3.8 Hz, CH₂), 14.0 (CH₃), 13.5 (CH₃). ¹⁹F NMR (377 MHz, CDCl₃) δ = -113.05. IR (ATR): 2985, 1770, 1725, 1310, 1136, 1066, 810, 705 cm⁻¹. MS (ESI) m/z (relative intensity): 472 [M+H]⁺ (60), 494 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₆H₂₇NO₃F₂ [M+Na]⁺: 494.1750, found: 494.1767.

Compound 45 was obtained following the general procedure with 1m (61 mg, 0.3)

mmol), 2-phenylthiazole (145 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 12/1/1$) yielded **45** (80 mg, 55%) with two separable diastereomers (major: minor = 2:1). $\mathbf{R}_{\rm f}$ = 0.40 for major-45 and 0.43 for minor-45 (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Ethyl

(1r,3r)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenyl-3-(3-(thiazol-2-yl)phenyl)cy clobutane-1-carboxylate (*major*-45, 53 mg, 36%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.02 (d, J = 1.9 Hz, 1H), 7.83 (d, J = 3.2 Hz, 1H), 7.69 (dt, J = 7.7, 1.4 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.33 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 3.3 Hz, 1H), 7.27 – 7.22 (m, 4H), 7.15 – 7.06 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 3.90 (q, J = 7.1 Hz, 2H), 3.46 (s, 4H), 1.32 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.8 (C_q), 168.5 (C_q), 163.1 (t, J = 32.8 Hz, C_q), 148.9 (C_q), 148.6 (C_q), 143.8 (CH), 133.8 (C_q), 129.2 (CH), 128.7 (CH), 128.3 (CH), 126.2 (CH), 125.5 (CH), 124.6 (CH), 124.4 (CH), 119.0 (CH), 114.2 (t, J = 253.7 Hz, C_q), 63.0 (CH₂), 62.0 (CH₂), 48.14 (t, J = 26.0 Hz, C_q), 45.5 (C_q), 38.63 (t, J = 3.8 Hz, CH₂), 14.0 (CH₃), 13.5 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ = -113.01. IR (ATR): 2986, 1771, 1723, 1311, 1136, 1029, 910, 731 cm⁻¹. MS (ESI) *m/z* (relative intensity): 486 [M+H]⁺ (40), 508 [M+Na]⁺ (100). HR-MS (ESI) *m/z* calcd for C₂₆H₂₅NO₄F₂S [M+Na]⁺: 508.1365, found: 508.1369.

$$CF_2CO_2Et$$

Ethyl

(1s,3s)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenyl-3-(3-(thiazol-2-yl)phenyl)cy clobutane-1-carboxylate (minor-45, 27 mg, 19%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.84 (t, J = 1.8 Hz, 1H), 7.81 (d, J = 3.3 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.34 – 7.19 (m, 5H), 7.09 (t, J = 7.4 Hz, 1H), 4.26 (q, J = 7.2 Hz, 2H), 3.88 (q, J = 7.2 Hz, 2H), 3.42 (s, 4H), 1.30 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 170.8 (C_q) 168.4 (C_q), 163.1 (C_q), 150.5 (C_q), 146.9 (C_q), 143.8 (CH), 133.9 (C_q), 129.3 (CH), 128.6 (CH), 127.2 (CH), 126.4 (CH), 126.3 (CH), 124.6 (CH), 123.4 (CH), 119.0 (CH), 114.2 (t, J = 253.7 Hz, C_q), 63.0 (CH₂), 61.9 (CH₂), 48.3 (t, J = 26.0 Hz, C_q), 45.5 (C_q), 38.6 (t, J = 3.7 Hz, CH₂), 14.0 (CH₃), 13.6 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ = -112.97. IR (ATR): 2986, 1770, 1723, 1310, 1135, 1064, 1020, 700 cm⁻¹. MS (ESI) m/z (relative intensity): 486 [M+H]⁺ (30), 508 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₆H₂₅NO₄F₂S [M+H]⁺: 486.1345, found: 486.1346.

Compound **46** was obtained following the general procedure with **1h** (70 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded **46** (127 mg, 83%) with two separable diastereomers (major: minor = 5:1). $\mathbf{R}_{\rm f} = 0.21$ for major-**46** and 0.19 for minor-**46** (TLC: n-hexane/EtOAc = 3/1).

Ethyl

2-((1r,3r)-1-benzoyl-3-phenyl-3-(3-(pyridin-2-yl)phenyl)cyclobutyl)-2,2-difluoroa cetate (*major-***46**, 106 mg, 69%) was obtained as a colorless oil. ¹**H NMR** (500 MHz, CDCl₃) δ = 8.58 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.69 – 7.59 (m, 3H), 7.61 – 7.55 (m, 2H), 7.40 – 7.34 (m, 2H), 7.29 – 7.22 (m, 6H), 7.20 – 7.07 (m, 4H), 4.15 (q, J = 7.2 Hz, 2H), 3.71 – 3.64 (m, 4H), 1.21 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ

= 199.7 (t, J = 2.6 Hz, C_q), 162.7 (t, J = 32.5 Hz, C_q), 157.3 (C_q), 149.6 (CH), 148.5 (C_q), 147.2 (C_q), 139.5 (C_q), 136.7 (CH), 135.3 (C_q), 132.7 (CH), 129.1 (t, J = 2.3 Hz, CH), 129.0 (CH), 128.6 (CH), 128.2 (CH), 127.3 (CH), 126.1 (CH), 125.7 (CH), 125.0 (CH), 124.9 (CH), 122.2 (CH), 120.7 (CH), 114.9 (t, J = 256.0 Hz, C_q), 63.3 (CH₂), 53.4 (t, J = 24.1 Hz, C_q), 45.6 (C_q), 40.9 (t, J = 3.8 Hz, CH₂), 13.9 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -108.28. IR (ATR): 3059, 1763, 1673, 1469, 1312, 1131, 730, 697 cm⁻¹. MS (ESI) m/z (relative intensity): 512 [M+H]⁺ (100), 534 [M+Na]⁺ (85). HR-MS (ESI) m/z calcd for $C_{32}H_{27}NO_3F_2$ [M+Na]⁺: 534.1851, found: 534.1845.

Ethyl

2-((1s,3s)-1-benzoyl-3-phenyl-3-(3-(pyridin-2-yl)phenyl)cyclobutyl)-2,2-difluoroa cetate (*minor*-46, 21 mg, 14%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.61 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 7.81 – 7.74 (m, 3H), 7.73 (t, J = 1.9 Hz, 1H), 7.63 (td, J = 7.7, 1.9 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.41 – 7.29 (m, 6H), 7.31 – 7.21 (m, 3H), 7.19 – 7.16 (m, 2H), 4.09 – 3.99 (m, 4H), 3.24 (dd, J = 13.1, 1.6 Hz, 2H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 199.8 (C_q), δ 163.3 (t, J = 33.4 Hz, C_q), 157.1 (C_q), 149.7 (CH), 143.6 (C_q), 140.3 (C_q), 139.3 (C_q), 136.7 (CH), 133.8 (C_q), 132.8 (CH), 123.0 (CH), 129.4 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 127.8 (CH), 126.5 (CH), 125.6 (CH), 124.6 (CH), 122.3 (CH), 120.7 (CH), 116.4 (t, J = 256.1 Hz, C_q), 62.6 (CH₂), 50.9 (C_q), 45.3 (t, J = 23.5 Hz, C_q), 39.4 (t, J = 4.4 Hz, CH₂), 13.9 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.06. IR (ATR): 3061, 1760, 1678, 1589, 1314, 1136, 730, 698 cm⁻¹. MS (ESI) m/z (relative intensity): 512 [M+H]⁺ (60), 534 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₃₂H₂₇NO₃F₂ [M+Na]⁺: 534.1851, found: 534.1857.

Ethyl

2,2-difluoro-2-(1-(methoxy(methyl)carbamoyl)-3-phenyl-3-(3-(pyridin-2-yl)phen vl)cyclobutyl)acetate (47). The product was obtained following the general procedure with 10 (65 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2,2-difluoroacetate (183 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 3/1$) yielded 47 (105 mg, 71%) as a colorless oil with two diastereomers (major: minor = 6:1). $\mathbf{R}_{\rm f}$ = 0.17 (TLC: *n*-hexane/EtOAc = 2/1). ¹**H NMR** (500 MHz, CDCl₃) $\delta = 8.68 - 8.61$ (m, 1H, major+minor), 7.97 (t, J = 1.8 Hz, 0.84H, major), 7.79 - 7.63 (m, 3.13H, major+minor), 7.38 – 7.26 (m, 6H, major+minor), 7.23 – 7.11 (m, 2H, major+minor), 4.23 (q, J = 7.1 Hz, 1.73H, major), 4.08 (q, J = 7.2 Hz, 0.29H, minor), 3.63 – 3.51 (m, 6H, major+minor), 3.21 - 2.97 (m, 4H, major+minor), 1.31 (t, J = 7.2 Hz, 2.61H, major), 1.14 (t, J = 7.1 Hz, 0.40H, minor). ¹³C NMR (126 MHz, CDCl₃) $\delta = 169.7$ (C_q, major+minor), 163.2 (Cq, major+minor), 157.5 (Cq, major), 157.2 (Cq, minor), 149.7 (CH, major), 149.7 (CH, minor), 149.0 (C_q, major+minor), 148.7 (C_q, major+minor), 139.7 (C_q, minor), 139.6 (C_q, major), 136.8 (CH, major), 136.66 (CH, minor), 129.0 (CH, major), 128.8 (CH, minor), 128.5 (CH, major), 128.4 (CH, minor), 128.2 (CH, minor), 127.6 (CH, minor), 127.1 (CH, major), 126.4 (CH, minor), 125.9 (CH, major), 125.8 (CH, major), 125.2 (CH, minor), 124.8 (CH, major), 124.7 (CH, major), 124.6 (CH, minor), 122.2 (CH, major+minor), 120.7 (CH, major), 120.7 (CH, minor), 116.9 $(t, J = 255.8 \text{ Hz}, C_q, minor), 114.8 (t, J = 255.8 \text{ Hz}, C_q, major), 63.1 (CH₂, major),$ 62.5 (CH₂, minor), 60.8 (CH₃, major), 60.4 (CH₃, minor), 48.8 (t, J = 25.0 Hz, C_q, major+minor), 45.1 (C_q, major+minor), 39.3 (t, J=3.8 Hz, CH₂, major), 38.2 (CH₂, minor), 14.0 (CH₃, major), 13.9 (CH₃, minor). ¹⁹F NMR (471 MHz, CDCl₃) $\delta =$ -111.32 (major), -114.00 (minor). **IR** (ATR): 2978, 1763, 1642, 1468, 1310, 1133, 995, 733 cm⁻¹. **MS** (ESI) m/z (relative intensity): 495 [M+H]⁺ (70), 517 [M+Na]⁺ (100).**HR-MS** (ESI) m/z calcd for $C_{28}H_{28}N_2O_4F_2$ [M+Na]⁺: 517.1909, found:

517.1906.

Compound **48** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and 1,1,1,2,2,3,3,4,4-nonafluoro-4-iodobutane (311 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $30/1/1 \rightarrow 20/1/1$) yielded **48** (93 mg, 55%) with two separable diastereomers (cis: trans = 1.6:1). **R**_f = 0.30 for cis-**48** and 0.33 for trans-**48** (TLC: n-hexane/EtOAc/DCM = 10/1/1).

Benzyl

(1s,3s)-3-(perfluorobutyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-carboxylate

(cis-48, 57 mg, 34%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.71 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 8.08 (dt, J = 2.5, 1.1 Hz, 1H), 7.96 – 7.90 (m, 1H), 7.76 (td, J = 7.7, 1.8 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.29 – 7.24 (m, 4H), 7.20 – 7.14 (m, 2H), 5.09 (s, 2H), 3.18 – 2.81 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.0 (C_q), 157.1 (C_q), 149.9 (CH), 140.7 (C_q), 140.1 (C_q), 137.0 (CH), 135.8 (C_q), 129.3 (CH), 128.6 (CH), 128.3 (CH), 127.8 (CH), 127.3 (CH), 126.3 (CH), 125.5 (CH), 122.5 (CH), 120.9 (CH), 67.1 (CH₂), 48.0 (C_q), 31.2 (t, J = 5.2 Hz, CH₂), 29.7 (t, J = 24.8 Hz, CH). ¹⁹F NMR (471 MHz, CDCl₃) δ = -80.93 – -81.06 (m), -120.95 (q, J = 13.5 Hz), -123.80 (dt, J = 8.9, 4.3 Hz), -126.32 (td, J = 12.4, 3.9 Hz). IR (ATR): 1731, 1464, 1229, 1161, 1128, 773, 740, 694 cm⁻¹. MS (ESI) m/z (relative intensity): 562 [M+H]⁺ (100), 584 [M+Na]⁺ (80). HR-MS (ESI) m/z calcd for C₂₇H₂₀NO₂F₉ [M+Na]⁺: 584.1243, found: 584.1244.

2-Py
$$C_4F_9$$
 BnO₂C H

Benzyl

 $(1r,\!3r)\text{-}3\text{-}(perfluor obutyl)\text{-}1\text{-}(3\text{-}(pyridin-2\text{-}yl)phenyl)cyclobutane\text{-}1\text{-}carboxylate}$

(trans-48, 36 mg, 21%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.92 - 7.86 (m, 1H), 7.85 (t, J = 1.8 Hz, 1H), 7.79 - 7.71 (m, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.30 - 7.23 (m, 5H), 7.20 - 7.14 (m, 2H), 5.13 (s, 2H), 3.31 - 3.04 (m, 3H), 2.84 - 2.75 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.4 (C_q), 157.1 (C_q), 149.9 (CH), 143.0 (C_q), 139.9 (C_q), 136.9 (CH), 135.8 (C_q), 129.1 (CH), 128.6 (CH), 128.3 (CH), 127.7 (CH), 126.6 (CH), 126.0 (CH), 124.6 (CH), 122.5 (CH), 120.8 (CH), 67.3 (CH₂), 48.9 (C_q), 31.8 (t, J = 5.2 Hz, CH₂), 31.2 (t, J = 25.1 Hz, CH). ¹⁹F NMR (471 MHz, CDCl₃) δ = -80.95 - -81.06 (m), -121.00 (q, J = 13.3 Hz), -123.93 (dt, J = 9.2, 4.1 Hz), -126.34 (td, J = 12.3, 3.8 Hz). IR (ATR): 1730, 1463, 1231, 1167, 1131, 741, 693 cm⁻¹. MS (ESI) m/z (relative intensity): 562 [M+H]⁺ (100), 584 [M+Na]⁺ (65). HR-MS (ESI) m/z calcd for C₂₇H₂₀NO₂F₉ [M+Na]⁺: 584.1243, found: 584.1249.

Compound **49** was obtained following the general procedure **1a** (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-6-iodohexane (401 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = 30/1/1 $\rightarrow 20/1/1$) yielded **49** (113 mg, 57%) with two separable diastereomers (cis: trans = 2.1:1). $\mathbf{R}_{\rm f} = 0.30$ for cis-**49** and 0.33 for trans-**49** (TLC: n-hexane/EtOAc/DCM = 10/1/1).

Benzyl

(1s,3s)-3-(perfluorohexyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-carboxylate (*cis*-49, 76 mg, 38%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.71 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.08 (t, J = 1.8 Hz, 1H), 7.96 – 7.90 (m, 1H), 7.76

(td, J = 7.7, 1.8 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.30 – 7.23 (m, 4H), 7.21 – 7.14 (m, 2H), 5.09 (s, 2H), 3.18 – 3.09 (m, 2H), 3.05 – 2.81 (m, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 174.0$ (C_q), 157.1 (C_q), 149.9 (CH), 140.7 (C_q), 140.1 (C_q), 136.9 (CH), 135.8 (C_q), 129.3 (CH), 128.6 (CH), 128.3 (CH), 127.8 (CH), 127.30 (CH), 126.3 (CH), 125.5 (CH), 122.5 (CH), 120.9 (CH), 67.1 (CH₂), 48.0 (C_q), 31.1 (t, J = 5.1 Hz, CH₂), 29.8 (t, J = 25.0 Hz, CH). ¹⁹F **NMR** (471 MHz, CDCl₃) $\delta = -80.79$, -120.73 (q, J = 15.2, 14.5 Hz), -122.20 (t, J = 14.6 Hz), -122.86, -126.15 (td, J = 15.1, 14.3, 5.6 Hz). **IR** (ATR): 1731, 1236, 1199, 1139, 909, 732, 699 cm⁻¹. **MS** (ESI) m/z (relative intensity): 662 [M+H]⁺ (100), 684 [M+Na]⁺ (95). **HR-MS** (ESI) m/z calcd for C₂₉H₂₀NO₂F₁₃ [M+Na]⁺: 684.1179, found: 684.1187.

2-Py
$$C_6F_{13}$$
 BnO₂C H

Benzyl

(1r,3r)-3-(perfluorohexyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-carboxylate

(trans-49, 37 mg, 19%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.89 (dt, J = 7.8, 1.4 Hz, 1H), 7.85 (t, J = 1.8 Hz, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.29 – 7.23 (m, 5H), 7.19 – 7.15 (m, 2H), 5.13 (s, 2H), 3.30 – 3.04 (m, 3H), 2.84 – 2.75 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.4 (C_q), 157.1 (C_q), 149.9 (CH), 143.0 (C_q), 139.9 (C_q), 136.9 (CH), 135.8 (C_q), 129.1 (CH), 128.6 (CH), 128.3 (CH), 127.7 (CH), 126.6 (CH), 126.0 (CH), 124.6 (CH), 122.5 (CH), 120.9 (CH), 67.3 (CH₂), 48.9 (C_q), 31.8 (t, J = 5.1 Hz, CH₂), 31.3 (t, J = 25.0 Hz, CH). ¹⁹F NMR (471 MHz, CDCl₃) δ = -80.77 (t, J = 9.7 Hz), -120.76 (qd, J = 14.3, 4.0 Hz), -122.20 (t, J = 13.6 Hz), -122.94 (d, J = 67.5 Hz), -126.13 (td, J = 14.9, 6.6 Hz). IR (ATR): 1730, 1462, 1237, 1145, 1138, 734, 700 cm⁻¹. MS (ESI) m/z (relative intensity): 662 [M+H]⁺ (100), 684 [M+Na]⁺ (70). HR-MS (ESI) m/z calcd for C₂₉H₂₀NO₂F₁₃ [M+Na]⁺: 684.1179, found: 684.1174.

Benzyl

3-(1-ethoxy-2-methyl-1-oxopropan-2-yl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1carboxylate (50). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2-methylpropanoate (176 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded **50** (38 mg, 28%) as a colorless oil with two diastereomers (cis: trans = 2.9:1). $\mathbf{R}_{\rm f}$ = 0.34 (TLC: *n*-hexane/EtOAc = 3/1). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.71 - 8.68$ (m, 1H, cis+trans), 8.07 (t, J = 1.7 Hz, 0.68H, cis), 7.93 – 7.82 (m, 1.33H, cis+trans), 7.76 – 7.71 (m, 1H, cis+trans), 7.68 – 7.65 (m, 1H, cis+trans), 7.53 – 7.50 (m, 0.71H, cis), 7.49 - 7.45 (m, 0.72H, cis), 7.43 - 7.39 (m, 0.44H, trans), 7.31 - 7.28 (m, 0.41H, trans), 7.26 – 7.21 (m, 4H, cis+trans), 7.19 – 7.14 (m, 2H, cis+trans), 5.10 (s, 0.46H, trans), 5.05 (s, 1.33H, cis), 4.12 - 4.00 (m, 2H, cis+trans), 2.95 - 2.37 (m, 5H, cis+trans), 1.22 (t, J = 7.1 Hz, 2.44H, cis), 1.15 (t, J = 7.1 Hz, 0.96H, trans), 1.12 – 1.06 (m, 6H, cis+trans). ¹³C NMR (126 MHz, CDCl₃) $\delta = 177.0$ (C_q, cis), 177.0 (C_q, trans), 175.5 (C_q, trans), 175.2 (C_q, cis), 157.5 (C_q, cis), 157.4 (C_q, trans), 149.8 (CH, cis), 149.8 (CH, trans), 144.5 (C_q, trans), 142.1 (C_q, cis), 139.8 (C_q, cis), 137.6 (C_q, trans), 136.8 (CH, cis), 136.8 (CH, trans), 136.2 (Cq, trans), 136.2 (Cq, cis), 128.9 (CH, cis), 128.8 (CH, trans), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 127.5 (CH), 126.9 (CH), 125.9 (CH, cis), 125.8 (CH, cis), 125.5 (CH, trans), 124.9 (CH, trans), 122.3 (CH, cis), 122.3 (CH, trans), 120.9 (CH, cis), 120.8 (CH, trans), 66.8 (CH₂, trans), 66.6 (CH₂, cis), 60.5 (CH₂, cis+trans), 48.3 (C_q, trans), 47.0 (C_q, cis), 43.3 (C_q, trans), 43.2 (C_q, cis), 38.7 (CH, trans), 36.8 (CH, cis), 34.2 (CH₂, trans), 33.4 (CH₂, cis), 21.9 (CH₃, trans), 21.8 (CH₃, cis), 14.4 (CH₃, cis), 14.3 (CH₃, trans). IR (ATR): 2980, 1722, 1466, 1272, 1138, 1025, 775, 744, 699 cm⁻¹. MS (ESI) m/z (relative intensity): 458 [M+H]⁺ (40), 480 [M+Na]⁺ (100). **HR-MS** (ESI) m/zcalcd for C₂₉H₃₁NO₄ [M+H]⁺: 458.2326, found: 458.2326.

Compound **51** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromopropanoate (163 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 10/1/1$) yielded **51** (54 mg, 41%) with two separable diastereomers (cis: trans = 1.8:1). $\mathbf{R}_{\rm f} = 0.33$ for cis-**51** and 0.36 for trans-**51** (TLC: n-hexane/EtOAc/DCM = 5/1/1). Note: product **51** was obtained from a prochiral radical species, only two isomers were observed in this case, i.e. cis-**51** and trans-**51**.

Benzyl

(1s,3s)-3-(1-ethoxy-1-oxopropan-2-yl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-ca rboxylate (*cis*-51, 35 mg, 26%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 8.04 (td, J = 1.8, 0.7 Hz, 1H), 7.90 (dt, J = 6.8, 1.8 Hz, 1H), 7.77 – 7.70 (m, 1H), 7.67 (dt, J = 8.0, 1.1 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.26 – 7.21 (m, 4H), 7.19 – 7.14 (m, 2H), 5.06 (s, 2H), 4.10 (qd, J = 7.1, 1.6 Hz, 2H), 2.84 – 2.75 (m, 2H), 2.70 – 2.62 (m, 1H), 2.61 – 2.54 (m, 1H), 2.48 – 2.41 (m, 1H), 2.39 – 2.30 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H), 1.07 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 175.4 (C_q), 175.3 (C_q), 157.4 (C_q), 149.8 (CH), 142.2 (C_q), 139.8 (C_q), 136.8 (CH), 136.1 (C_q), 129.0 (CH), 128.5 (CH), 128.1 (CH), 127.7 (CH), 127.6 (CH), 125.8 (CH), 125.7 (CH), 122.3 (CH), 120.9 (CH), 66.7 (CH₂), 60.4 (CH₂), 48.1 (C_q), 45.2 (CH), 36.7 (CH₂), 36.2 (CH₂), 32.4 (CH), 14.5 (CH₃), 14.4 (CH₃). IR (ATR): 2980, 1726, 1589, 1462, 1166, 1134, 775, 699 cm⁻¹. MS (ESI) m/z (relative intensity): 444 [M+H]⁺ (70), 466 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₈H₂₉NO₄ [M+Na]⁺: 466.1989, found: 466.1995.

Benzyl

(1r,3r)-3-(1-ethoxy-1-oxopropan-2-yl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-ca rboxylate (trans-51, 19 mg, 14%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.87 – 7.83 (m, 2H), 7.77 – 7.70 (m, 1H), 7.67 (dt, J = 8.0, 1.1 Hz, 1H), 7.42 (td, J = 7.6, 0.8 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.26 – 7.21 (m, 4H), 7.19 – 7.14 (m, 2H), 5.10 (s, 2H), 4.10 (qd, J = 7.1, 1.8 Hz, 2H), 3.16 – 3.02 (m, 2H), 2.62 – 2.52 (m, 1H), 2.43 – 2.35 (m, 1H), 2.36 – 2.27 (m, 1H), 2.26 – 2.20 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H), 1.07 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 175.3 (Cq), 175.3 (Cq), 157.4 (Cq), 149.8 (CH), 144.6 (Cq), 139.7 (Cq), 136.8 (CH), 136.2 (Cq), 128.9 (CH), 128.5 (CH), 128.0 (CH), 127.6 (CH), 126.9 (CH), 125.5 (CH), 124.9 (CH), 122.3 (CH), 120.9 (CH), 66.9 (CH₂), 60.4 (CH₂), 49.1 (Cq), 45.8 (CH), 37.7 (CH₂), 37.2 (CH₂), 34.0 (CH), 14.4 (CH₃), 14.3 (CH₃). IR (ATR): 2980, 1724, 1588, 1457, 1166, 1131, 776, 698 cm⁻¹. MS (ESI) m/z (relative intensity): 444 [M+H]⁺ (100), 466 [M+Na]⁺ (95). HR-MS (ESI) m/z calcd for C₂₈H₂₉NO₄ [M+H]⁺: 444.2169, found: 444.2174.

Compound **52** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromoacetate (150 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc/DCM = $20/1/1 \rightarrow 10/1/1$) yielded **52** (74 mg, 57%) with two separable diastereomers (cis: trans = 1.5:1). $\mathbf{R}_{\rm f} = 0.30$ for cis-**52** and 0.32 for trans-**52** (TLC: n-hexane/EtOAc/DCM = 5/1/1).

Benzyl

(1s,3s)-3-(2-ethoxy-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-carboxyl ate (*cis*-52, 44 mg, 34%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 8.03 (s, 1H), 7.92 – 7.88 (m, 1H), 7.73 (dd, J = 7.5, 1.8 Hz, 1H), 7.67 (dt, J = 8.0, 1.2 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.27 – 7.21 (m, 4H), 7.20 – 7.15 (m, 2H), 5.07 (s, 2H), 4.10 (q, J = 7.2 Hz, 2H), 2.93 – 2.82 (m, 2H), 2.67 – 2.57 (m, 3H), 2.50 – 2.43 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 175.4 (C_q), 172.3 (C_q), 157.4 (C_q), 149.8 (CH), 142.4 (C_q), 139.8 (C_q), 136.8 (CH), 136.1 (C_q), 129.0 (CH), 128.5 (CH), 128.1 (CH), 127.7 (CH), 127.5 (CH), 125.7 (CH), 125.6 (CH), 122.3 (CH), 120.9 (CH), 66.7 (CH₂), 60.4 (CH₂), 48.8 (C_q), 40.6 (CH₂), 37.7 (CH₂), 25.8 (CH), 14.4 (CH₃). IR (ATR): 2983, 1725, 1588, 1464, 1131, 1025, 742, 700 cm⁻¹. MS (ESI) m/z (relative intensity): 430 [M+H]⁺ (100), 452 [M+Na]⁺ (70). HR-MS (ESI) m/z calcd for C₂₇H₂₇NO₄ [M+H]⁺: 430.2013, found: 430.2015.

$$\begin{array}{c} \text{2-Py} \\ \text{BnO}_2\text{C} \\ \end{array} \\ \text{H} \end{array}$$

Benzyl

(1r,3r)-3-(2-ethoxy-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-carboxyl ate (*trans*-52, 30 mg, 23%) was obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 8.69 (ddd, J = 5.0, 1.9, 1.0 Hz, 1H), 7.88 – 7.82 (m, 2H), 7.76 – 7.64 (m, 2H), 7.42 (td, J = 7.5, 0.9 Hz, 1H), 7.31 – 7.21 (m, 5H), 7.20 – 7.14 (m, 2H), 5.10 (s, 2H), 4.10 (q, J = 7.1 Hz, 2H), 3.23 – 3.12 (m, 2H), 2.90 – 2.77 (m, 1H), 2.43 – 2.26 (m, 4H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 175.3 (C_q), 172.2 (C_q), 157.4 (C_q), 149.8 (CH), 144.6 (C_q), 139.7 (C_q), 136.8 (CH), 136.2 (C_q), 128.9 (CH), 128.5 (CH), 128.0 (CH), 127.6 (CH), 127.0 (CH), 125.5 (CH), 124.9 (CH), 122.3 (CH), 120.8 (CH), 66.9 (CH₂), 60.4 (CH₂), 49.8 (C_q), 41.2 (CH₂), 38.7 (CH₂), 27.3 (CH), 14.4 (CH₃). IR (ATR): 2982, 1725, 1588, 1457, 1144, 1028, 738, 698 cm⁻¹. MS (ESI) m/z (relative intensity): 430 [M+H]⁺ (100), 452 [M+Na]⁺ (95). HR-MS (ESI) m/z calcd for C₂₇H₂₇NO₄ [M+H]⁺: 430.2013, found: 430.2029.

Benzyl

1-(2-chloro-5-(pyrimidin-2-yl)phenyl)-3-(2-ethoxy-2-oxoethyl)cyclobutane-1-carb oxylate (53). The product was obtained following the general procedure with 1a (56) mg, 0.3 mmol), 2-(4-chlorophenyl)pyrimidine (171 mg, 0.9 mmol), and ethyl 2-bromoacetate (150 mg, 0.9 mmol) for 46 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 3/1$) yielded 53 (67 mg, 48%) as a colorless oil with two diastereomers (cis: trans = 1.3:1). $\mathbf{R}_{\rm f}$ = 0.27 (TLC: n-hexane/EtOAc = 3/1). ¹**H NMR** (500 MHz, CDCl₃) $\delta = 8.81 - 8.78$ (m, 2H, cis+trans), 8.67 (d, J = 2.1Hz, 0.54H, cis), 8.42 (d, J = 2.1 Hz, 0.34H, trans), 8.34 (dd, J = 8.3, 2.1 Hz, 0.59H, cis), 8.29 (dd, J = 8.3, 2.1 Hz, 0.37H, trans), 7.48 (d, J = 8.4 Hz, 0.58H, cis), 7.43 (d, J = 8.3 Hz, 0.37 H, trans), 7.27 - 7.22 (m, 3H, cis+trans), 7.21 - 7.15 (m, 3H, 3H,)cis+trans), 5.14 (s, 0.85H, trans), 5.10 (s, 1.11H, cis), 4.13 – 4.08 (m, 2H, cis+trans), 3.19 - 3.02 (m, 1H, cis+trans), 2.91 - 2.85 (m, 1H, cis+trans), 2.73 - 2.56 (m, 3H, cis+trans), 2.46 – 2.34 (m, 2H, cis+trans), 1.26 – 1.21 (m, 3H, cis+trans). ¹³C NMR (126 MHz, CDCl₃) $\delta = 174.8$ (C_q, cis), 174.6 (C_q, trans), 172.5 (C_q, cis), 172.2 (C_q, trans), 163.9 (Cq, cis), 163.9 (Cq, trans), 157.4 (CH, cis+trans), 141.8 (Cq, trans), 139.8 (Cq, cis), 137.3 (Cq, cis+trans), 136.2 (Cq, trans), 136.2 (Cq, cis), 136.2 (Cq, trans), 136.0 (C_q, cis), 130.6 (CH, cis), 130.3 (CH, trans), 128.5 (CH, trans), 128.5 (CH, cis), 128.3 (CH, trans), 128.1 (CH, cis), 128.0 (CH, cis), 128.0 (CH, trans), 128.0 (CH, trans), 127.8 (CH, cis), 127.6 (CH, cis), 127.5 (CH, trans), 119.4 (CH, cis+trans), 67.0 (CH₂, cis), 66.9 (CH₂, trans), 60.4 (CH₂, trans), 60.4 (CH₂, cis), 49.7 (C_q, trans), 49.0 (C_q, cis), 41.4 (CH₂, trans), 40.4 (CH₂, cis), 38.4 (CH₂, trans), 36.4 (CH₂, cis), 26.7 (CH, trans), 25.7 (CH, cis), 14.4 (CH₃, cis), 14.4 (CH₃, trans). IR (ATR): 2982, 1726, 1560, 1418, 1181, 1137, 1028, 803, 701 cm⁻¹. **MS** (ESI) m/z(relative intensity): 465 $[M+H]^+$ (5), 487 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{26}H_{25}N_2O_4C1 [M+Na]^+$: 487.1395, found: 487.1398.

Benzyl

3-(2-ethoxy-2-oxoethyl)-1-(5-(pyrimidin-2-yl)-2-(trifluoromethoxy)phenyl)cyclob utane-1-carboxylate (54). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-(4-(trifluoromethoxy)phenyl)pyrimidine (216 mg, 0.9 mmol), and ethyl 2-bromoacetate (150 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 3/1$) yielded 54 (90 mg, 58%) as a colorless oil with two diastereomers (cis: trans = 1.6:1). $\mathbf{R}_{\rm f} = 0.30$ (TLC: *n*-hexane/EtOAc = 3/1). ¹**H NMR** (500 MHz, CDCl₃) δ = 8.81 – 8.78 (m, 2H, cis+trans), 8.67 (d, J = 2.2 Hz, 0.50H), 8.45 – 8.38 (m, 1.41H, cis+trans), 7.35 – 7.24 (m, 4H, cis+trans), 7.21 – 7.17 (m, 3H, cis+trans), 5.12 (s, 0.73H, trans), 5.09 (s, 1.19H, cis), 4.13 – 4.08 (m, 2H, cis+trans), 3.15 – 3.00 (m, 1H, cis+trans), 2.86 – 2.80 (m, 1H, cis+trans), 2.74 - 2.65 (m, 2H, cis+trans), 2.59 - 2.55 (m, 1H, cis+trans), 2.42 – 2.31 (m, 2H, cis+trans), 1.25 – 1.21 (m, 3H, cis+trans). ¹³C NMR (126 MHz, CDCl₃) $\delta = 174.6$ (C_q, cis), 172.4 (C_q, trans), 172.4 (C_q, cis), 172.1 (C_q, trans), 163.6 (C_q, cis), 163.4 (C_q, trans), 157.4 (CH, cis+trans), 150.0 (C_q, cis), 149.4 (C_q, trans), 136.1 (C_q, trans), 136.0 (C_q, cis), 135.4 (C_q, trans), 135.4 (C_q, cis), 135.2 (C_q, cis), 133.5 (C_q, trans), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 128.0 (CH), 127.9 (CH), 127.7 (CH), 119.4 (CH, cis+trans), 118.3 (d, J=2.2Hz, CH, trans), 118.0 (d, J = 2.4 Hz, CH, cis), 66.9 (CH₂, cis), 66.9 (CH₂, trans), 60.4 (CH₂, trans), 60.4 (CH₂, cis), 47.5 (C_q, trans), 46.7 (C_q, cis), 41.3 (CH₂, trans), 40.3 (CH₂, cis), 38.4 (CH₂, trans), 36.3 (CH₂, cis), 27.3 (CH, trans), 25.7 (CH, cis), 14.4 (CH₃, cis), 14.3 (CH₃, trans). ¹⁹F NMR (471 MHz, CDCl₃) $\delta = -55.97$ (d, J = 1.8 Hz, trans), -55.98 (d, J = 1.9 Hz, cis). IR (ATR): 2984, 1728, 1563, 1424, 1252, 1128, 1025, 804, 703 cm⁻¹. **MS** (ESI) m/z (relative intensity): 515 [M+H]⁺ (10), 537 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{27}H_{25}N_2O_5F_3$ $[M+Na]^+$: 537.1608, found: 537.1609.

Compound **55** was obtained following the general procedure with **1a** (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and ethyl 2-bromo-2-fluoroacetate (166 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded **55** (48 mg, 36%) with two separable diastereomers (cis: trans = 3:1). $\mathbf{R}_f = 0.22$ for cis-**55** and 0.25 for trans-**55** (TLC: n-hexane/EtOAc = 3/1). Note: product **55** was obtained from a prochiral radical species, only two isomers were observed in this case, i.e. cis-**55** and trans-**55**.

Benzyl

(1s,3s)-3-(2-ethoxy-1-fluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-carboxylate (*cis*-55, 36 mg, 27%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.05 (dt, J = 1.8, 1.1 Hz, 1H), 7.93 – 7.89 (m, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.67 (dt, J = 8.0, 1.1 Hz, 1H), 7.49 – 7.44 (m, 2H), 7.27 – 7.23 (m, 4H), 7.20 – 7.16 (m, 2H), 5.08 (s, 2H), 4.93 – 4.78 (m, 1H), 4.22 (qd, J = 7.1, 3.7 Hz, 2H), 3.04 – 2.94 (m, 2H), 2.84 – 2.64 (m, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.7 (C_q), 168.8 (d, J = 24.4 Hz, C_q), 157.2 (C_q), 149.7 (CH), 141.9 (C_q), 139.7 (C_q), 137.0 (CH), 136.0 (C_q), 129.1 (CH), 128.6 (CH), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.5 (CH), 126.0 (CH), 125.6 (CH), 122.4 (CH), 120.9 (CH), 89.8 (d, J = 185.7 Hz, CH), 66.8 (CH₂), 61.7 (CH₂), 48.2 (C_q), 33.1 (d, J = 5.9 Hz, CH₂), 32.5 (d, J = 4.3 Hz, CH₂), 31.0 (d, J = 22.7 Hz, CH), 14.3 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ = -199.10. IR (ATR): 2955, 1728, 1589, 1465, 1267, 1162, 1024, 775, 744 cm⁻¹. MS (ESI) m/z (relative intensity): 448 [M+H]⁺ (30), 470 [M+Na]⁺ (100). HR-MS (ESI) m/z calcd for C₂₇H₂₆NO₄F [M+H]⁺: 448.1919, found: 448.1920.

Benzyl

(1r,3r)-3-(2-ethoxy-1-fluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-carboxylate (*trans*-55, 12 mg, 9%) was obtained as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (ddd, J = 4.8, 1.9, 1.0 Hz, 1H), 7.89 – 7.86 (m, 1H), 7.85 (t, J = 1.9 Hz, 1H), 7.75 (ddd, J = 8.0, 7.4, 1.8 Hz, 1H), 7.67 (dt, J = 8.0, 1.1 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.26 – 7.23 (m, 4H), 7.19 – 7.15 (m, 2H), 5.11 (s, 2H), 4.83 – 4.71 (m, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.08 – 2.93 (m, 3H), 2.72 – 2.62 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 175.0 (Cq), 168.8 (d, J = 24.5 Hz, Cq), 157.2 (Cq), 149.7 (CH), 143.8 (Cq), 139.5 (Cq), 137.0 (CH), 136.0 (Cq), 129.0 (CH), 128.6 (CH), 128.2 (CH), 127.7 (CH), 126.9 (CH), 125.7 (CH), 124.9 (CH), 122.4 (CH), 120.9 (CH), 89.5 (d, J = 185.7 Hz, CH), 67.1 (CH₂), 61.7 (CH₂), 49.1 (Cq), 33.7 (d, J = 5.9 Hz, CH₂), 32.9 (d, J = 4.3 Hz, CH₂), 32.5 (d, J = 22.5 Hz, CH), 14.3 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ = -199.21. IR (ATR): 2956, 1728, 1585, 1462, 1265, 1162, 1025, 778, 740 cm⁻¹. MS (ESI) m/z calcd for C₂₇H₂₆NO₄F [M+H]⁺: 448.1919, found: 448.1921.

Benzyl

3-(2-(cyclohexylamino)-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclob utane-1-carboxylate (56). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and 2-bromo-N-cyclohexyl-2,2-difluoroacetamide (230 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 2/1$) yielded 56 (56 mg, 36%) as a colorless oil with two diastereomers (cis: trans = 2.8:1).

 $\mathbf{R}_{\rm f} = 0.13$ (TLC: *n*-hexane/EtOAc = 2/1). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.71 - 8.68$ (m, 1H, cis+trans), 8.02 (s, 0.72H, cis), 7.94 – 7.85 (m, 1H, cis+trans), 7.85 (t, J=1.8 Hz, 0.29H, trans), 7.76 – 7.72 (m, 1H, cis+trans), 7.68 – 7.65 (m, 1H, cis+trans), 7.48 – 7.41 (m, 2H, cis+trans), 7.29 – 7.21 (m, 4H, cis+trans), 7.22 – 7.13 (m, 2H, cis+trans), 5.11 (s, 0.49H, trans), 5.08 (s, 1.38H, cis), 3.80 – 3.70 (m, 1H, cis+trans), 3.27 – 2.93 (m, 3H, cis+trans), 2.84 – 2.67 (m, 2H, cis+trans), 1.96 – 1.87 (m, 2H, cis+trans), 1.77 – 1.67 (m, 2H, cis+trans), 1.67 – 1.59 (m, 1H, cis+trans), 1.42 – 1.11 (m, 6H, cis+trans). ¹³C NMR (126 MHz, CDCl₃) $\delta = 174.7$ (C_q, trans), 174.5 (C_q, cis), 162.7 (t, J = 29.0 Hz, C_q , trans), 162.7 (t, J = 29.0 Hz, C_q , cis), 157.3 (C_q , trans), 157.2 (C_q, cis), 149.8 (CH, cis), 149.8 (CH, trans), 143.5 (C_q, trans), 141.7 (C_q, cis), 139.9 (C_q, cis), 139.7 (C_q, trans), 136.9 (CH, cis), 136.8 (CH, trans), 135.9 (C_q, cis), 135.9 (C_q, trans), 129.1 (CH, cis), 128.9 (CH, trans), 128.6 (CH, trans), 128.5 (CH, cis), 128.2 (CH, trans), 128.2 (CH, cis), 127.8 (CH, cis), 127.7 (CH, trans), 127.3 (CH, cis), 126.7 (CH, trans), 126.1 (CH, cis), 125.8 (CH, trans), 125.4 (CH, cis), 124.7 (CH, trans), 122.4 (CH, cis), 122.4 (CH, trans), 120.8 (CH, cis+trans), 117.3 (t, $J = 253.2 \text{ Hz}, C_q, cis), 116.7 \text{ (t, } J = 253.2 \text{ Hz}, C_q, trans), 67.1 \text{ (CH}_2, trans), 66.9 \text{ (CH}_2, trans)$ cis), 48.6 (CH, cis), 48.6 (CH, trans), 48.1 (C_q , cis+trans), 33.3 (t, J = 26.3 Hz, CH, trans), 32.8 (CH₂, cis), 32.8 (CH₂, trans), 31.8 (t, J = 4.9 Hz, CH₂, trans), 31.7 (t, J =26.3 Hz, CH, cis), 31.3 (t, J = 4.9 Hz, CH₂, cis), 25.4 (CH₂, cis), 25.4 (CH₂, trans), 24.8 (CH₂, cis), 24.8 (CH₂, trans). ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -114.84 – -115.01 (m, cis+trans). IR (ATR): 3330, 2932, 1730, 1683, 1218, 1171, 1130, 740 cm⁻¹. MS (ESI) m/z (relative intensity): 519 [M+H]⁺ (30), 541 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₃₁H₃₂N₂O₃F₂ [M+H]⁺: 519.2454, found: 519.2459.

Benzyl

3-(2-(diethylamino)-1,1-difluoro-2-oxoethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobuta

ne-1-carboxylate (57). The product was obtained following the general procedure with 1a (56 mg, 0.3 mmol), 2-phenylpyridine (140 mg, 0.9 mmol), and 2-bromo-N,N-diethyl-2,2-difluoroacetamide (207 mg, 0.9 mmol) for 24 h. Purification by column chromatography on silica gel (n-hexane/EtOAc = $10/1 \rightarrow 2/1$) yielded 57 (92 mg, 62%) as a colorless oil with two diastereomers (cis: trans = 3.8:1). $\mathbf{R}_{\rm f}$ = 0.2 (TLC: *n*-hexane/EtOAc = 2/1). ¹**H NMR** (400 MHz, CDCl₃) δ = 8.71 – 8.68 (m, 1H, cis+trans), 8.05 (t, J = 1.9 Hz, 0.74H, cis), 7.94 – 7.84 (m, 1.28H, cis+trans), 7.76 - 7.70 (m, 1H, cis+trans), 7.69 - 7.64 (m, 1H, cis+trans), 7.49 - 7.41 (m, 1.71H, cis+trans), 7.33 – 7.30 (m, 0.43H, trans), 7.26 – 7.20 (m, 4H, cis+trans), 7.20 – 7.15 (m, 2H, cis+trans), 5.11 (s, 0.39H, trans), 5.08 (s, 1.49H, cis), 3.57 – 3.44 (m, 2H, cis+trans), 3.39 - 3.30 (m, 2H, cis+trans), 3.19 - 3.01 (m, 3H, cis+trans), 2.91 -2.67 (m, 2H, cis+trans), 1.22 – 1.12 (m, 6H, cis+trans). ¹³C NMR (101 MHz, CDCl₃) $\delta = 174.9 \; (C_q, trans), 174.8 \; (C_q, cis), 162.3 \; (t, J = 29.2 \; Hz, C_q, trans), 162.2 \; (t, J = 29.2 \; Hz, C_q, trans)$ 29.2 Hz, C_q, cis), 157.3 (C_q, trans), 157.3 (C_q, cis), 149.8 (CH, cis), 149.8 (CH, trans), 143.9 (Cq, trans), 142.1 (Cq, cis), 139.8 (Cq, cis), 139.6 (Cq, trans), 136.8 (CH, cis), 136.8 (CH, trans), 136.1 (C_q, cis), 136.0 (C_q, trans), 129.0 (CH, cis), 128.9 (CH, trans), 128.5 (CH, trans), 128.5 (CH, cis), 128.1 (CH, trans), 128.0 (CH, cis), 127.7 (CH, cis), 127.6 (CH, trans), 127.4 (CH, cis), 126.9 (CH, trans), 125.9 (CH, cis), 125.6 (CH, trans), 125.5 (CH, cis), 124.8 (CH, trans), 122.3 (CH, cis), 122.3 (CH, trans), 120.8 (CH, cis+trans), 119.1 (t, J = 256.5 Hz, C_q , cis), 118.5 (t, J = 256.5 Hz, C_q, trans), 67.0 (CH₂, trans), 66.7 (CH₂, cis), 48.7 (C_q, trans), 48.1 (C_q, cis), 41.7 (CH_2, cis) , 41.6 $(CH_2, trans)$, 41.3 (CH_2, cis) , 41.3 $(CH_2, trans)$, 34.1 (t, J = 26.2 Hz)CH, trans), 32.7 (t, J = 26.0 Hz, CH, cis), 32.3 (t, J = 5.4 Hz, CH₂, trans), 31.9 (t, J = 5.4 Hz, CH₂, trans) 5.4 Hz, CH₂, cis), 14.4 (CH₃, cis), 14.3 (CH₃, trans), 12.4 (CH₃, cis+trans). ¹⁹F NMR $(377 \text{ MHz}, \text{CDCl}_3) \delta = -108.53 \text{ (d, } J = 15.8 \text{ Hz, } trans), -108.67 \text{ (d, } J = 15.6 \text{ Hz, } cis).$ IR (ATR): 2979, 1729 1658, 1459, 1213, 1108, 1025, 745 cm⁻¹. MS (ESI) m/z(relative intensity): 493 $[M+H]^+$ (30), 515 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for C₂₉H₃₀N₂O₃F₂ [M+H]⁺: 493.2297, found: 493.2318.

5. Gram-Scale Synthesis and Late-Stage Derivatization

5.1 Gram-scale

In an N₂ filled glovebox, [Ru(O₂CMes)₂(*p*-cymene)] (252 mg, 10.0 mol%), P(4-CF₃C₆H₄)₃ (210 mg, 10.0 mol%), Na₂CO₃ (954 mg, 9.0 mmol, 2.0 equiv.), 1,4-dioxane (30.0 mL), **1a** (840 mg, 4.5 mmol, 1.0 equiv.), **2a** (2.1 g, 13.5 mmol, 3.0 equiv.), **3a** (2.75 g, 13.5 mmol, 3.0 equiv.) were added into an oven-dried 100 mL round bottomed flask. The flask was capped with a septum, sealed with electrical tape, and moved out of the glovebox. The reaction mixture was stirred at 65 °C for 48 h. After the completion of reaction, the mixture was filtered through a pad of Celite, washing with EtOAc. The combined organic solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc =5/1) to afford the desired product **4** in 1.4 g, 67% yield (isolated *trans*-isomers: 353 mg, *cis*-isomers: 1049 mg, *cis*: *trans* =3:1).

5.2 Late-Stage Derivatization

5.2.1. Photo-induced ruthenium-catalyzed ortho-C(sp2)-H functionalization⁵

2-Py

H + R-X

$$\frac{[Ru(OAc)_2(p\text{-cymene})] (10 \text{ mol}\%)}{K_2CO_3, 1,4\text{-dioxane,}}$$
Blue led, RT, 24 h

BnO₂C

 CF_2CO_2Et

In an N₂ filled glovebox, [Ru(OAc)₂(*p*-cymene)] (7.1 mg, 10.0 mol %), K₂CO₃ (55 mg, 0.4 mmol, 2.0 equiv.), 1,4-dioxane (1.0 mL), *cis*-4 (93 mg, 0.2 mmol, 1.0 equiv.) and ArI or RBr (0.4 mmol, 2.0 equiv.) were added into an oven-dried 10 mL vial. The vial was capped with a septum, sealed with electrical tape, and moved out of the glovebox. The reaction mixture was stirred under visible light irradiation (2 x Kessil A360N, temperature was maintained between 30~35 °C). The distance of the lamps from the reaction vial is 9 cm. After 24 h, the mixture was filtered through a pad of Celite (Et₂O),

and the solvent was removed under reduced pressure. The desired products arylation **58** and allylation **59** were purified by column chromatography on silica gel (*n*-hexane/EtOAc).

Benzyl

(1s,3s)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)-1-(4'-methoxy-2-(pyridin-2-yl)-[1,1'biphenyl]-4-yl)cyclobutane-1-carboxylate (58). The product was obtained following the above procedure with 1-iodo-4-methoxybenzene (94 mg, 0.4 mmol). $\mathbf{R}_{\rm f} = 0.47$ (TLC: n-hexane/EtOAc = 2/1). Purification by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 2/1$) yielded **58** (112 mg, 98%) as a colorless oil. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 8.64 \text{ (ddd}, J = 4.9, 1.8, 1.0 \text{ Hz}, 1\text{H}), 7.72 \text{ (d}, J = 2.1 \text{ Hz}, 1\text{H}),$ 7.49 (dd, J = 8.0, 2.1 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.28 – 7.25 (m, 3H), 7.22 – 7.19 (m, 2H), 7.12 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 7.08 - 7.05 (m, 2H), 6.88 (dt, J = 7.9, 1.1 Hz, 1H), 6.80 - 6.76 (m, 2H), 5.10 (s, 2H), 4.29 (q, J = 7.2 Hz, 2H), 3.78 (s, 3H), 3.12 - 3.04 (m, 2H), 2.96 - 2.76 (m, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (126) MHz, CDCl₃) $\delta = 174.3$ (C_q), 163.8 (t, J = 33.3 Hz, C_q), 159.3 (C_q), 158.8 (C_q), 149.6 (CH), 139.9 (C_g), 139.7 (C_g), 139.5 (C_g), 135.9 (C_g), 135.4 (CH), 133.2 (C_g), 130.8(CH), 128.9 (CH), 128.5 (CH), 128.1 (CH), 127.8 (CH), 127.0 (CH), 125.6 (CH), 121.6 (CH), 115.4 (t, J = 250.7 Hz, C_q), 113.7 (CH), 66.9 (CH₂), 63.0 (CH₂), 55.3 (CH₃), 47.6 (C_q), 32.1 (t, J = 25.8 Hz, CH), 31.1 (t, J = 4.8 Hz, CH₂), 14.1 (CH₃). ¹⁹F **NMR** (471 MHz, CDCl₃) $\delta = -114.26$ (d, J = 15.4 Hz). **IR** (ATR): 2961, 1763, 1730, 1463, 1306, 1249, 1039, 745 cm⁻¹. **MS** (ESI) m/z (relative intensity): 572 [M+H]⁺ (30), 594 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{34}H_{31}NO_5F_2$ $[M+Na]^+$: 594.2063, found: 594.2068.

Benzyl

(1s,3s)-1-(4-allyl-3-(pyridin-2-yl)phenyl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cycl obutane-1-carboxylate (59). The product was obtained following the above procedure with 3-bromoprop-1-ene (48 mg, 0.4 mmol). $\mathbf{R}_{\rm f} = 0.15$ (TLC: n-hexane/EtOAc = 5/1). Purification by column chromatography on silica gel $(n-\text{hexane/EtOAc} = 10/1 \rightarrow 5/1)$ yielded **59** (59 mg, 58%) as a colorless oil. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 8.68 \text{ (ddd}, J = 4.9, 1.8, 1.0 \text{ Hz}, 1\text{H}), 7.71 \text{ (td}, J = 7.7, 1.8 \text{ Hz}, 1.8, 1.0 \text{ Hz}, 1.0 \text{ Hz}, 1.8, 1.0 \text{ Hz}, 1.0 \text{ Hz}, 1.8, 1.0 \text{ Hz}, 1.8, 1.0 \text{ Hz}, 1.0$ 1H), 7.42 - 7.38 (m, 2H), 7.30 (dd, J = 7.8, 1.1 Hz, 2H), 7.28 - 7.24 (m, 4H), 7.20 -7.16 (m, 2H), 5.85 (ddt, J = 16.6, 10.1, 6.5 Hz, 1H), 5.07 (s, 2H), 4.98 – 4.94 (m, 1H), 4.88 (dg, J = 17.0, 1.7 Hz, 1H), 4.27 (g, J = 7.1 Hz, 2H), 3.47 (dt, J = 6.5, 1.6 Hz, 2H),3.05 - 2.99 (m, 2H), 2.90 - 2.68 (m, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (126) MHz, CDCl₃) $\delta = 174.3$ (C_q), 163.8 (t, J = 33.3 Hz, C_q), 159.6 (C_q), 149.3 (CH), 140.8 (C_q) , 138.9 (C_q) , 137.4 (CH), 137.2 (C_q) , 136.3 (CH), 136.0 (C_q) , 130.5 (CH), 128.5 (CH), 128.3 (CH), 128.1 (CH), 127.8 (CH), 126.8 (CH), 124.3 (CH), 122.1 (CH), 115.9 (CH₂), 115.4 (t, J = 249.5 Hz, CH₂), 66.9 (CH₂), 63.0 (CH₂), 47.4 (C_q), 37.2 (CH₂), 32.1 (t, J = 25.7 Hz, CH), 31.1 (t, J = 4.8 Hz, CH₂), 14.1 (CH₃). ¹⁹F NMR (471) MHz, CDCl₃) $\delta = -114.28$ (d, J = 15.5 Hz). IR (ATR): 2978, 1763, 1730, 1465, 1308, 1226, 1039, 746 cm⁻¹. **MS** (ESI) m/z (relative intensity): 506 [M+H]⁺ (40), 528 $[M+Na]^+$ (100). **HR-MS** (ESI) m/z calcd for $C_{30}H_{29}NO_4F_2$ $[M+Na]^+$: 528.1957, found: 528.1963.

5.2.2. Conversion of pyridine ring to polycyclic pyridinium salt⁵

A 15 mL Schlenk tube was charged with alkyne (18 mg, 0.1 mmol), [RhCl₂Cp*]₂ (1.3 mg, 2 mol%), AgBF₄ (39 mg, 0.2 mmol, 2.0 equiv.), ^tAmOH (1 mL) and *cis-***4** (56 mg, 0.12 mmol, 1.2 equiv.) or *major-***42** (57 mg, 0.12 mmol, 1.2 equiv.). The mixture was stirred at RT for 24 h. Afterwards, the mixture was diluted with CH₂Cl₂ and filtered through a pad of celite, which was washed with CH₂Cl₂. The filtrate was concentrated in vacuo. The desired products **60** and **62** were purified by column chromatography on silica gel (DCM/MeOH), respectively.

10-((**1s,3s**)-**1-**((**Benzyloxy**)**carbonyl**)-**3-**(**2-ethoxy-1,1-difluoro-2-oxoethyl**)**cyclobut yl**)-**6,7-diphenylpyrido**[**2,1-a**]**isoquinolin-5-ium tetrafluoroborate** (**60**). The product was obtained following the above procedure. $\mathbf{R}_f = 0.24$ (TLC: DCM/MeOH = 20/1). Purification by column chromatography on silica gel (DCM/MeOH = 20/1) yielded **60** (75 mg, 86%) as a yellow solid. **M.p.**: 200 – 206 °C. ¹**H NMR** (500 MHz, CDCl₃) $\delta = 9.44$ (d, J = 8.7 Hz, 1H), 8.97 (s, 1H), 8.75 (d, J = 6.9 Hz, 1H), 8.54 (t, J = 7.9 Hz, 1H), 7.92 – 7.85 (m, 2H), 7.59 (d, J = 8.6 Hz, 1H), 7.50 – 7.37 (m, 6H), 7.35 – 7.25 (m, 5H), 7.26 – 7.19 (m, 4H), 5.10 (s, 2H), 4.32 (q, J = 7.0 Hz, 2H), 3.28 –

3.19 (m, 2H), 3.01 – 2.91 (m, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 173.4$ (C_q), 163.6 (t, J = 33.1 Hz, C_q), 144.7 (C_q), 143.6 (C_q), 140.4 (CH), 138.6 (C_q), 136.7 (C_q), 136.3 (CH), 135.5 (C_q), 134.0 (C_q), 132.9 (CH), 131.8 (C_q), 131.1 (CH), 130.7 (C_q), 130.6 (CH), 130.1 (CH), 129.9 (CH), 128.7 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 125.0 (C_q), 124.7 (CH), 124.3 (CH), 123.2 (CH), 115.3 (t, J = 250.1 Hz, C_q), 67.6 (CH₂), 63.3 (CH₂), 48.7 (C_q), 32.1 (t, J = 25.7 Hz, CH), 31.2 (t, J = 4.8 Hz, CH₂), 14.1 (CH₃). ¹⁹F **NMR** (471 MHz, CDCl₃) $\delta = -114.46$ (d, J = 13.9 Hz), -153.30, -153.36. **IR** (ATR): 2962, 1762, 1729, 1466, 1314, 1055, 910, 703 cm⁻¹. **HR-MS** (ESI) m/z calcd for C₄₁H₃₄NO₄F₂ [M]⁺: 642.2450, found: 642.2448.

10-((1r,3r)-3-(2-Ethoxy-1,1-difluoro-2-oxoethyl)-3-(ethoxycarbonyl)-1-phenylcycl obutyl)-6,7-diphenylpyrido[2,1-a]isoquinolin-5-ium tetrafluoroborate (**62**). The product was obtained following the above procedure. Purification by column chromatography on silica gel (DCM/MeOH = 20/1) yielded **62** (57 mg, 77%) as a yellow solid. Recrystallized on DCM/*n*-hexanes. **M.p.**: >243 °C. ¹**H NMR** (500 MHz, CDCl₃) δ = 9.79 (d, J = 9.1 Hz, 1H), 9.23 (d, J = 1.8 Hz, 1H), 8.76 – 8.66 (m, 2H), 7.94 – 7.87 (m, 2H), 7.53 (d, J = 8.7 Hz, 1H), 7.46 – 7.39 (m, 5H), 7.33 – 7.27 (m, 7H), 7.16 – 7.11 (m, 3H), 4.35 (q, J = 7.2 Hz, 2H), 3.99 (q, J = 7.1 Hz, 2H), 3.71 – 3.64 (m, 4H), 1.40 (t, J = 7.2 Hz, 3H), 1.01 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ = 171.0 (t, J = 5.1 Hz, Cq), 163.1 (t, J = 33.0 Hz, Cq), 152.5 (Cq), 148.0 (Cq), 143.7 (Cq), 140.6 (CH), 137.7 (Cq), 137.0 (Cq), 135.7 (CH), 133.9 (Cq), 133.4 (CH), 131.0 (CH), 130.7 (CH), 130.7 (Cq), 130.7 (Cq), 130.1 (CH), 130.0 (CH), 129.1 (CH), 128.7 (CH), 128.6 (CH), 128.2 (CH), 126.6 (CH), 125.8 (CH), 125.0 (Cq), 125.0 (CH), 124.5 (CH), 122.7 (CH), 114.0 (t, J = 252.8 Hz, Cq), 63.3 (CH₂), 62.5 (CH₂), 47.8 (t, J

= 25.9 Hz, C_q), 46.1 (C_q), 38.6 (t, J = 3.8 Hz, CH₂), 14.0 (CH₃), 13.7 (CH₃). ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -112.59, -152.87, -152.93. **IR** (ATR): 2972, 1770, 1727, 1468, 1311, 1062, 703 cm⁻¹. **HR-MS** (ESI) m/z calcd for C₄₂H₃₆NO₄F₂ [M]⁺: 656.2607, found: 656.2616.

5.2.3. Copper-catalyzed synthesis of N,O-bidentate organic difluoroboron $complexes^6$

To a 20 mL Schlenk tube with a magnetic stir bar was charged with Cu(OAc)₂ (7.3 mg, 20 mol%), AgBF₄ (58 mg, 1.5 equiv.), PivOH (31 mg, 1.5 equiv.), and *cis-***4** (93 mg, 0.2 mmol) in toluene (1.0 mL) under air atmosphere. The resulting mixture was stirred at 145 °C for 24 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with dichloromethane. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to provide the desired product **61**.

Benzyl

(1s,3s)-1-(6,6-difluoro-6H-6l4,7l4-benzo[e]pyrido[1,2-c][1,3,2]oxazaborinin-2-yl)-3-(2-ethoxy-1,1-difluoro-2-oxoethyl)cyclobutane-1-carboxylate (61). The product was obtained following the above procedure. $\mathbf{R}_{\rm f} = 0.15$ (TLC: *n*-hexane/EtOAc/DCM = 3/1/1). Purification by column chromatography on silica gel

(*n*-hexane/EtOAc/DCM = 10/5/1→6/2/1) yielded **61** (42 mg, 40%) as a yellow solid. **M.p.**: 150 – 152 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.72 (ddd, J = 6.0, 1.7, 0.8 Hz, 1H), 8.17 (ddd, J = 8.4, 7.5, 1.7 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 2.4 Hz, 1H), 7.62 (ddd, J = 7.3, 5.9, 1.2 Hz, 1H), 7.56 (dd, J = 8.6, 2.3 Hz, 1H), 7.31 – 7.23 (m, 3H), 7.22 – 7.14 (m, 3H), 5.09 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.12 – 3.04 (m, 2H), 2.94 – 2.80 (m, 1H), 2.74 – 2.65 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 174.2 (C_q), 163.7 (t, J = 33.2 Hz, C_q), 155.3 (t, J = 2.9 Hz, C_q), 150.0 (C_q), 142.5 (CH), 141.5 (t, J = 2.2 Hz, CH), 135.7 (CH), 133.2 (C_q), 133.1 (CH), 128.7 (CH), 128.4 (CH), 128.0 (CH), 123.7 (CH), 123.3 (CH), 121.2 (CH), 120.8 (CH), 116.0 (CH), 115.4 (t, J = 250.7 Hz, C_q), 67.1 (CH₂), 63.1 (CH₂), 47.3 (C_q), 32.0 (t, J = 25.7 Hz, CH), 31.1 (t, J = 4.9 Hz, CH₂) 14.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.25 (d, J = 15.6 Hz), -147.04 (d, J = 22.6 Hz). ¹¹B NMR (161 MHz, CDCl₃) δ = 1.06. IR (ATR): 2961, 1762, 1728, 1498, 1308, 1065, 920, 739 cm⁻¹. HR-MS (ESI) m/z calcd for C₂₇H₂₄NO₅F₄B [M+Na][†]: 552.1581, found: 552.1581.

2-Py
$$CO_{2}Et$$

$$CU(OAc)_{2}, PivOH$$

$$AgBF_{4}, toluene,$$

$$145 °C, 24 h$$

$$CF_{2}CO_{2}Et$$

$$CO_{2}Et$$

$$CF_{2}CO_{2}Et$$

$$CF_{2}CO_{2}Et$$

$$CF_{2}CO_{2}Et$$

To a 20 mL Schlenk tube with a magnetic stir bar was charged with Cu(OAc)₂ (8.0 mg, 20 mol%), AgBF₄ (64 mg, 1.5 equiv.), PivOH (34 mg, 1.5 equiv.), and *major-42* (109 mg, 0.21 mmol) in toluene (1.1 mL) under air atmosphere. The resulting mixture was stirred at 145 °C for 24 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with dichloromethane. The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to provide the desired product **63**.

Ethyl

(1r,3r)-3-(6,6-difluoro-6H-6l4,7l4-benzo[e]pyrido[1,2-c][1,3,2]oxazaborinin-2-yl)-1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3-phenylcyclobutane-1-carboxylate (63). The product was obtained following the above procedure. $\mathbf{R}_{\rm f} = 0.15$ (TLC: n-hexane/EtOAc/DCM = 3/1/1). Purification by column chromatography on silica gel $(n-\text{hexane/EtOAc/DCM} = 10/5/1 \rightarrow 6/2/1)$ yielded 63 (57 mg, 50%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) $\delta = 8.67$ (dt, J = 5.9, 1.3 Hz, 1H), 8.18 (ddd, J = 8.8, 7.3, 1.6 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 2.3 Hz, 1H), 7.56 (ddd, J = 7.3, 5.9, 1.3 Hz, 1H), 7.47 (dd, J = 8.7, 2.4 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.26 – 7.20 (m, 2H), 7.17 (t, J = 7.3 Hz, 1H), 7.11 (d, J = 8.6 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.93 (q, J =7.1 Hz, 2H), 3.48 - 3.37 (m, 4H), 1.34 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) $\delta = 170.9$ (C_q), 163.1 (t, J = 32.8 Hz, C_q), 154.3 (t, J = 3.0Hz, C_q), 150.3 (C_q), 148.7 (C_q), 142.5 (CH), 141.4 (t, J = 2.2 Hz, CH), 139.4 (C_q), 133.7 (CH), 128.8 (CH), 126.4 (CH), 125.6 (CH), 123.1 (CH), 123.1 (CH), 121.0 (CH), 120.7 (CH), 115.5 (C_q), 114.1 (t, J = 254.5 Hz, C_q), 63.1 (CH₂), 62.2 (CH₂), $48.2 \text{ (t, } J = 25.8 \text{ Hz, } C_q), 45.1 \text{ (C}_q), 38.7 \text{ (t, } J = 3.5 \text{ Hz, } CH_2), 14.0 \text{ (CH}_3), 13.7 \text{ (CH}_3).$ ¹⁹**F NMR** (471 MHz, CDCl₃) $\delta = -112.73$, -146.95 (d, J = 20.6 Hz). ¹¹**B NMR** (161 MHz, CDCl₃) $\delta = 1.06$. IR (ATR): 2989, 1769, 1725, 1497, 1307, 1065, 916, 731 cm⁻¹. **HR-MS** (ESI) m/z calcd for C₂₈H₂₆NO₅F₄B [M+Na]⁺: 566.1737, found: 566.1764.

5.2.4. Coversion pyridine ring to to 2-formylpyrrolepolycyclic⁵

To a solution of *major*-46 (92 mg, 0.18 mmol) in acetonitrile (0.5 mL) was added CH₃I (82 mg, 0.54 mmol) under N₂ in a two-necked flask. The mixture was stirred at 80 °C for 12 h, and then cooled to room temperature. The solvent was removed under reduced pressure. The residue was washed with EtOAc to afford a colorless liquid, which was used for the next step without further purification. A 10 mL Schlenk tube was charged with the colorless liquid, I₂ (28 mg, 0.11 mmol), K₂CO₃ (100 mg, 0.72 mmol), methyl methacrylate (MMA) (20 μL, 0.18 mmol), H₂O (0.4 mL) and DCE (0.4 mL) in the air. The mixture was stirred at 80 °C for 24 hours. After cooling to room temperature, water was added into the solution, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified by chromatography on silica gel to afford the corresponding product 64.

Ethvl

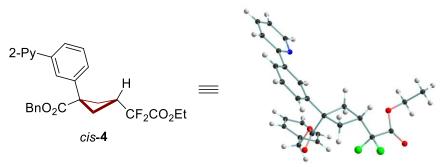
2-(1-benzoyl-3-(3-(5-formyl-1-methyl-1H-pyrrol-2-yl)phenyl)-3-phenylcyclobutyl)-2,2-difluoroacetate (**64**). The product was obtained following the above procedure. $\mathbf{R}_{\mathrm{f}} = 0.29$ (TLC: *n*-hexane/EtOAc = 3/1). Purification by column chromatography on silica gel (*n*-hexane/EtOAc = $10/1 \rightarrow 5/1$) yielded **64** (63 mg, 65%) as a colorless oil. **¹H NMR** (400 MHz, CDCl₃) $\delta = 9.54$ (s, 1H), 7.63 (d, J = 7.0 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.38 – 7.27 (m, 4H), 7.26 – 7.08 (m, 7H), 6.91 (d, J = 4.1 Hz, 1H), 6.07 (d, J = 4.1 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.72 – 3.60 (m, 7H), 1.24 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 199.2$ (C_q), 179.7 (CH), 162.6 (t, J = 32.6 Hz,

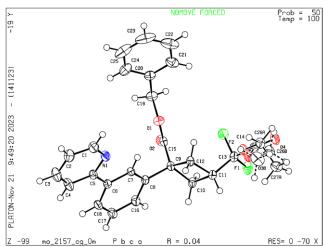
C_q), 148.3 (C_q), 147.3 (C_q), 144.1 (C_q), 135.1 (C_q), 133.1 (C_q), 133.1 (CH), 131.1 (C_q), 129.2 (CH), 128.9 (CH), 128.7 (CH), 128.3 (CH), 127.5 (CH), 127.1 (CH), 126.8 (CH), 126.3 (CH), 125.5 (CH), 124.5 (CH), 114.7 (t, J = 256.3 Hz, C_q), 110.8 (CH), 63.3 (CH₂), 53.4 (t, J = 24.1 Hz, C_q), 45.6 (C_q), 40.7 (t, J = 3.8 Hz, CH₂), 34.3 (CH₃), 13.9 (CH₃). ¹⁹**F NMR** (377 MHz, CDCl₃) $\delta = -108.26$. **IR** (ATR): 2988, 1762, 1658, 1451, 1308, 1134, 781, 703 cm⁻¹. **MS** (ESI) m/z (relative intensity): 542 [M+H]⁺ (10), 564 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₃₃H₂₉NO₄F₂ [M+Na]⁺: 564.1957, found: 564.1966.

5.2.5. Reduction to product to alcohol derivatives⁷

2-Py
$$CF_2CO_2Et$$
 $NaBH_4$ CF_2CO_2Et $THF, 3 h$ BnO_2C H CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH CF_2CH_2OH

To a solution of *trans-4* (47 mg, 0.1 mmol) in THF (3 mL) was slowly added NaBH₄ (38 mg, 10 equiv.) at 0 °C. The resulting mixture was stirred at room temperature for 3 h and then the crude was diluted with saturated NaCl solution and then extracted with DCM (3 times). The combined organic layers were concentrated under vacuo. The residue was purified by column chromatography on silica gel to provide the desired product **65**.


$$2-Py$$
 CF_2CH_2OH
 BnO_2C
 H


Benzyl

(1r,3r)-3-(1,1-difluoro-2-hydroxyethyl)-1-(3-(pyridin-2-yl)phenyl)cyclobutane-1-c arboxylate (65). The product was obtained following the above procedure. $\mathbf{R}_f = 0.21$ (TLC: n-hexane/EtOAc = 2/1). Purification by column chromatography on silica gel (n-hexane/EtOAc = $5/1 \rightarrow 2/1$) yielded 65 (35 mg, 82%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.70$ (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.88 - 7.83 (m, 2H), 7.76

(td, J = 7.7, 1.9 Hz, 1H), 7.68 (dt, J = 8.0, 1.1 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.33 – 7.23 (m, 5H), 7.21 – 7.16 (m, 2H), 5.13 (s, 2H), 3.68 (t, J = 12.6 Hz, 2H), 3.14 – 2.98 (m, 3H), 2.82 – 2.68 (m, 3H). ¹³C **NMR** (101 MHz, CDCl₃) $\delta = 175.0$ (C_q), 157.3 (C_q), 149.7 (CH), 143.7 (C_q), 139.6 (C_q), 137.0 (CH), 135.9 (C_q), 128.9 (CH), 128.6 (CH), 128.6 (CH), 128.2 (CH), 127.7 (CH), 126.8 (CH), 125.8 (CH), 124.8 (CH), 122.4 (CH), 122.0 (t, J = 243.4 Hz, C_q), 121.0 (CH), 67.1 (CH₂), 63.0 (t, J = 31.8 Hz, CH₂), 48.8 (C_q), 32.6 (t, J = 26.7 Hz, CH), 31.9 (t, J = 5.3 Hz, CH₂). ¹⁹F **NMR** (377 MHz, CDCl₃) $\delta = -117.57$ (q, J = 13.1 Hz). **IR** (ATR): 2955, 2151, 1726, 1462, 1274, 1076, 776, 744 cm⁻¹. **MS** (ESI) m/z (relative intensity): 424 [M+H]⁺ (70), 446 [M+Na]⁺ (100). **HR-MS** (ESI) m/z calcd for C₂₅H₂₃NO₃F₂ [M+Na]⁺: 446.1538, found: 446.1542.

6. X-Ray Crystallographic Analysis

Compound 4:

CCDC number 2344922
Empirical formula C₂₇H₂₅F₂NO₄
Formula weight 465.48
Temperature [K] 100.00
Crystal system orthorhombic
Space group *Pbca* (61)
(number)

 a [Å]
 8.3511(5)

 b [Å]
 18.8360(12)

 c [Å]
 28.8201(19)

 $\begin{array}{lll} \alpha \, [^{\circ}] & 90 \\ \beta \, [^{\circ}] & 90 \\ \gamma \, [^{\circ}] & 90 \\ \end{array}$ $\begin{array}{lll} Volume \, [\mathring{A}^{3}] & 4533.40 \end{array}$

Volume [Å³] 4533.4(5) Z 8

 $\rho_{\text{calc}} [\text{gcm}^{-3}]$ 1.364 $\mu [\text{mm}^{-1}]$ 0.102 F(000)1952

Crystal size [mm 3] 0.64×0.528×0.052

Crystal colour colourless

Crystal shape plate

Radiation Mo $K_α$ (λ=0.71073 Å) 2θ range [°] 4.32 to 57.41 (0.74 Å)

Index ranges $-11 \le h \le 11$

 $-25 \le k \le 25$ $-38 \le l \le 36$

Reflections collected 97486 Independent 5855

reflections $R_{\text{int}} = 0.0422$

 $R_{\text{sigma}} = 0.0139$

Completeness to 100.0 %

 $\theta = 25.242^{\circ}$

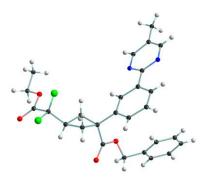
Data / Restraints / 5855/5/337

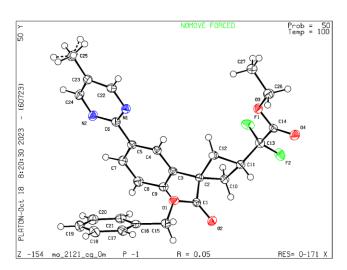
Parameters

Absorption 0.9291/1.0000 correction (numerical)

 $T_{min}\!/T_{max}\;(method)$

Goodness-of-fit on 1.015


 F^2


Final *R* indexes $R_1 = 0.0412$ $[I \ge 2\sigma(I)]$ $wR_2 = 0.1053$ Final *R* indexes $R_1 = 0.0507$ [all data] $wR_2 = 0.1136$ Largest peak/hole 0.45/-0.26

 $[e\mathring{A}^{-3}]$

Compound 11

Me
$$N$$
 CF_2CO_2Et
 H
 $trans-11$

CCDC number 2344920

Empirical formula $C_{27}H_{26}F_2N_2O_4$

Formula weight 480.50

Temperature [K] 100.00

Crystal system triclinic

Space group (number) $P\overline{1}$ (2) a [Å] 5.9961(3) b [Å] 13.4143(6) c [Å] 16.2788(8)

 $\alpha \ [^{\circ}] \hspace{1cm} 67.329(2)$

 β [°] 80.531(2) γ [°] 89.643(2)

Volume [Å³] 1189.38(10)

Z 2

 $\rho_{\text{calc}} [\text{gcm}^{-3}]$ 1.342 $\mu [\text{mm}^{-1}]$ 0.101 F(000)504

Crystal size [mm 3] 0.482×0.064×0.05

Crystal colour colourless
Crystal shape needle

Radiation $MoK_α$ (λ=0.71073 Å) 2θ range [°] 5.05 to 57.53 (0.74 Å)

Index ranges $-8 \le h \le 8$

 $-17 \le k \le 18$

 $-21 \le l \le 22$

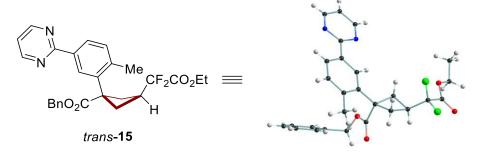
Reflections collected 54218 Independent reflections 6170

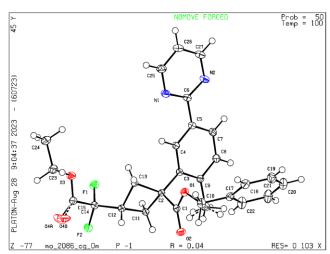
 $R_{\rm int}=0.0605$

 $R_{\text{sigma}} = 0.0336$

Completeness to 99.9 %

 $\theta = 25.242^{\circ}$


Data / Restraints / 6170/5/334


Parameters

Goodness-of-fit on F^2 1.067

Final R indexes $R_1 = 0.0454$ $[I \ge 2\sigma(I)]$ $wR_2 = 0.1133$ Final R indexes $R_1 = 0.0629$ [all data] $wR_2 = 0.1248$ Largest peak/hole [eÅ⁻³] 0.31/-0.29

Compound 15

CCDC number 2344919

 $Empirical \ formula \qquad \qquad C_{27}H_{26}F_2N_2O_4$

480.50 Formula weight 100.00 Temperature [K] Crystal system triclinic Space group (number) $P\overline{1}$ (2) a [Å] 6.2826(9) *b* [Å] 9.2964(19) c [Å] 20.794(4) $\alpha\, [^\circ]$ 79.178(6) β [°] 88.421(9) γ [°] 73.984(7)

Volume [Å³] 1146.2(4)

 Z 2

 $\rho_{\text{calc}} [\text{gcm}^{-3}]$ 1.392

 $\mu [\text{mm}^{-1}]$ 0.105

 F(000) 504

Crystal size [mm 3] 0.688×0.206×0.092

Crystal colour colourless
Crystal shape plank

Radiation $MoK_α$ (λ=0.71073 Å) 2θ range [°] 3.99 to 65.22 (0.66 Å)

Index ranges $-9 \le h \le 6$

 $-13 \le k \le 14$

 $-31 \leq l \leq 31$

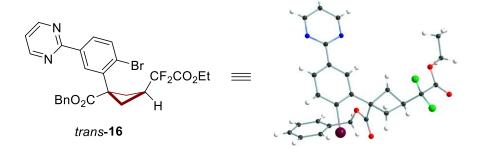
Reflections collected 59997 Independent reflections 7944

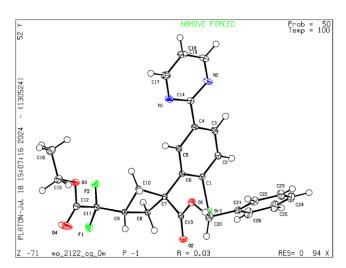
 $R_{\rm int} = 0.0217$

 $R_{\text{sigma}} = 0.0125$

Completeness to 100.0 %

 $\theta = 25.242^{\circ}$


Data / Restraints / 7944/7/347


Parameters

Goodness-of-fit on F^2 1.032

Final R indexes $R_1 = 0.0367$ $[I \ge 2\sigma(I)]$ $wR_2 = 0.1009$ Final R indexes $R_1 = 0.0417$ [all data] $wR_2 = 0.1056$ Largest peak/hole $[e\mathring{A}^{-3}]$ 0.50/-0.26

Compound 16

CCDC number 2344921

 $Empirical\ formula \qquad \quad C_{26}H_{23}BrF_2N_2O_4$

Formula weight 545.37 Temperature [K] 100.00 Crystal system triclinic Space group (number) $P\overline{1}$ (2) *a* [Å] 6.2690(4) b [Å] 9.2980(12) c [Å] 20.950(3) $\alpha\, [^\circ]$ 79.183(3)

β [°] 88.173(3) γ [°] 73.796(2)

Volume [Å³] 1151.5(2)

Z 2

 $\rho_{\text{calc}} [\text{gcm}^{-3}]$ 1.573 $\mu [\text{mm}^{-1}]$ 1.838 F(000)556

Crystal size [mm 3] 1.021×0.064×0.062

Crystal colour colourless
Crystal shape needle

Radiation $MoK_α$ (λ=0.71073 Å) 2θ range [°] 3.96 to 59.15 (0.72 Å)

Index ranges $-6 \le h \le 8$

 $-12 \le k \le 12$

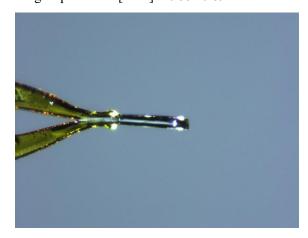
 $-29 \le l \le 29$

Reflections collected 56568 Independent reflections 6471

 $R_{\rm int}=0.0318$

 $R_{\text{sigma}} = 0.0176$

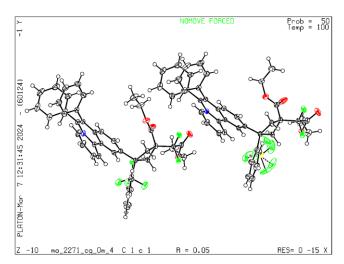
Completeness to 100.0 %


 $\theta=25.242^{\circ}$

Data / Restraints / 6471/0/317

Parameters

Goodness-of-fit on F^2 1.143


Final *R* indexes $R_1 = 0.0298$ $[I \ge 2\sigma(I)]$ $wR_2 = 0.0695$ Final *R* indexes $R_1 = 0.0324$ [all data] $wR_2 = 0.0708$ Largest peak/hole [eÅ⁻³] 0.55/-0.89

Note: There is a B-level Alert (expalanation: This crystal has a long needle-like shape, with one side being particularly elongated, as shown in the picture. However, this does not affect the crystal's quality). The excellent quality of our crystal is reflected in its R value and wR_2 value.

Compound 62

$$\begin{array}{c} Ph \\ Ph \\ \hline Ph \\ CO_2Et \\ \hline CF_2CO_2Et \\ \end{array} \equiv$$

CCDC number 2344923

Empirical formula C₄₂H₃₆BF₆NO₄

Formula weight 743.53
Temperature [K] 100.00
Crystal system monoclinic
Space group (number) Cc (9)

 a [Å]
 21.9525(19)

 b [Å]
 19.4921(16)

 c [Å]
 16.6861(11)

α [°] 90

β [°] 92.932(2)

γ [°] 90

Volume [Å³] 7130.6(10)

Z 8

 $\rho_{\text{calc}} [\text{gcm}^{-3}]$ 1.385 $\mu [\text{mm}^{-1}]$ 0.109 F(000)3088

Crystal size [mm 3] 0.44×0.374×0.206

Crystal colour colourless
Crystal shape plate

Radiation $MoK_α$ (λ=0.71073 Å) 2θ range [°] 3.65 to 59.35 (0.72 Å)

Index ranges $-30 \le h \le 30$

 $-27 \le k \le 27$

 $-23 \le l \le 23$

Reflections collected 20095 Independent reflections 20095

 $R_{\rm int} = 0.0558$

 $R_{\text{sigma}} = 0.0248$

Completeness to 100.0 %

 $\theta = 25.242^{\circ}$

Data / Restraints / 20095/78/1023

Parameters

Absorption correction 0.668091/0.849665

 T_{min}/T_{max} (method) (multi-scan)

Goodness-of-fit on F^2 1.031

Final *R* indexes $R_1 = 0.0464$ $[I \ge 2\sigma(I)]$ $wR_2 = 0.1234$ Final *R* indexes $R_1 = 0.0482$ [all data] $wR_2 = 0.1252$ Largest peak/hole 0.45/-0.31

 $[eÅ^{-3}]$

Flack X parameter 0.2(2)

7. Mechanism studies and Computational studies

7.1 Mechanism studies

7.1.1 Radical trapping experiment

In an N₂ filled glovebox, [Ru(O₂CMes)₂(*p*-cymene)] (16.8 mg, 10.0 mol%), P(4-CF₃C₆H₄)₃ (7.0 mg, 10.0 mol%), Na₂CO₃ (64 mg, 0.6 mmol, 2.0 equiv.), 1,4-dioxane (2.0 mL), **1a** (56 mg, 0.3 mmol, 1.0 equiv.), **2a** (140 mg, 0.9 mmol, 3.0 equiv.), **3a** (183 mg, 0.9 mmol, 3.0 equiv.) and TEMPO (141 mg, 0.9 mmol, 3.0 equiv.) were added into an oven-dried 20 mL pressure tube. The reaction mixture was stirred at 65 ° for 24 h. After cooling to ambient temperature, no desired product was observed and the difluoroalkyl radical TEMPO adduct was detected *via* high resolution mass-spectrometry (HRMS), which means the mechanism involves a radical process.

7.1.2. *p*-Cymene-free ruthenium complex as the catalyst

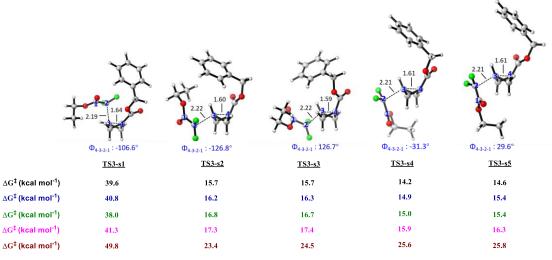
In an N₂ filled glovebox, ruthenium complex **66** (17 mg, 10.0 mol%), P(4-CF₃C₆H₄)₃ (14.0 mg, 5.0 mol%), MesCO₂H (9.8 mg, 20.0 mol%), Na₂CO₃ (64 mg, 0.6 mmol, 2.0 equiv.), 1,4-dioxane (2.0 mL), **1a** (56 mg, 0.3 mmol, 1.0 equiv.), **2a** (140 mg, 0.9 mmol, 3.0 equiv.) and **3a** (183 mg, 0.9 mmol, 3.0 equiv.) were added into an oven-dried 20 mL pressure tube. The reaction mixture was stirred at 65 °C for 30 h. After cooling to ambient temperature, the mixture was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 5/1) to afford the desired product **4** in 55% yield (*cis*: *trans* =3:1, determined by ¹⁹**F-NMR**).

7.1.3. Carboxylate-free ruthenium(II) phosphine complex as the catalyst

In an N₂ filled glovebox, Carboxylate-free ruthenium(II) phosphine complex **67** (56 mg, 10.0 mol%), MesCO₂H (9.8 mg, 20.0 mol%), Na₂CO₃ (64 mg, 0.6 mmol, 2.0 equiv.), 1,4-dioxane (2.0 mL), **1a** (56 mg, 0.3 mmol, 1.0 equiv.), **2a** (140 mg, 0.9 mmol, 3.0 equiv.) and **3a** (183 mg, 0.9 mmol, 3.0 equiv.) were added into an oven-dried 20 mL pressure tube. The reaction mixture was stirred at 65 °C for 24 h. After cooling to ambient temperature, the mixture was purified by column chromatography on silica gel (n-hexane/EtOAc = 5/1) to afford the desired product **4** in 78% yield (cis: trans = 3:1, determined by ¹⁹**F-NMR**).

Control experiment was conducted without MesCO₂H, the desired product **4** was obtained in 14% yield (*cis*: *trans* =3:1, determined by ¹⁹**F-NMR**).

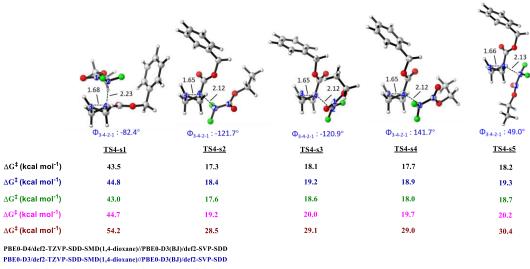
7.2 Computational studies


All DFT calculations were performed with Gaussian 16, Revision A.03 package⁸. Geometry optimizations were conducted at the PBE0^{9,10} level of theory in combination with Grimme's D3 dispersion corrections with a Becke-Johnson damping scheme (D3BJ)^{11,12} in the gas phase. All atoms were described with a def2-SVP basis set^{13,14}, while ruthenium was also described with a SDD pseudopotential^{15,16}. Analytical frequency calculations were also carried out at the same level of theory to confirm each optimized stationary point as an energy minimum (zero imaginary frequencies) or a transition state (one imaginary frequency) and to further provide thermal and nonthermal corrections to the Gibbs free energy at 338.15 K and 1 atm. Furthermore, three DFT functionals (PBE0, B3LYP^{17,18}, and M06¹⁹) with a def2-TZVP^{13,14} basis and a SDD pseudopotential for ruthenium^{15,16} were further used to compute the solvation single-point energies in 1,4-dioxane with implicit solvation model SMD²⁰. All reported energies are based on gas-phase Gibbs

free energies with def2-SVP basis set for which the electronic energies were corrected with a def2-TZVP basis set and solvent effects.

7.2.1. Reaction with monosubstitued BCB 1a.

Following generation of the difluoroalkyl radical through the ruthenacycle-mediated-halogen atom transfer (Ru-XAT) process, subsequent regio-selectivity of radical attack at the two possible sites on BCB was probed using DFT calculations. (Figure S1-S2). As illustrated in Figure S1, for monosubstituted BCB 1a, the difluoroalkyl radical attack at the unsubstituted carbon, considering various conformers, was initially explored. Within the tested various functionals, TS3-s4 was identified as the most stable conformer where the difluoroalkyl radical oriented inward to the BCB backbone. In the case of radical attack at the ester-substituted site, TS4-s2 exhibits greater stability compared with other conformers with the difluoroalkyl radical lying parallel to the ester group of the BCB. During the cleavage of the σ-bridge bond in BCB 1a, the slightly shorter bridge C-C bond distance (1.61 Å) and the longer C-C_{RF} bond distance (2.21 Å) in TS3-s4, compared to TS4-s2, indicated the first radical attacked at the unsubstituted site proceeded through an earlier transition state that structurally resembles the starting BCBs. This was also evidenced by the relatively lower spin densities observed on the carbon atom of BCB distal to the attack pathway in TS3-4 (0.21), compared to that on in TS4-2 (0.35). Related results are illustrated in Figure S3.


Conformers for TS3:

PBE0-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD PBE0-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD B3LYP-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD B3LYP-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD M06-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD M06-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

Figure S1. Conformational searches for the first radical attack step at the unsubstituted site of monosubstituted BCB **1a** at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

Conformers for TS4:

PBE0-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
PBE0-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
M06-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

Figure S2. Conformational searches for the first radical attack step at the ester-substituted site of monosubstituted BCB **1a** at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

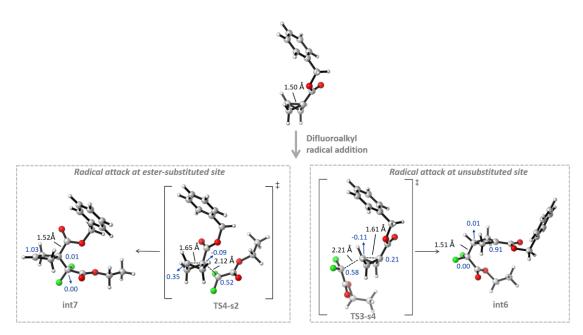
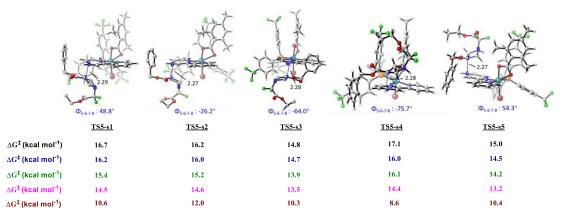


Figure S3. Optimized geometries and spin densities of computed structures in the first radical attack step with monosubstituted BCB 1a.

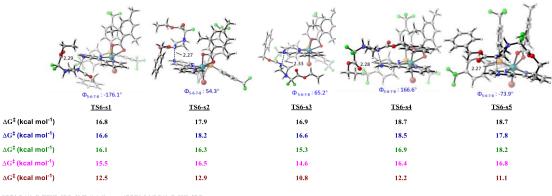
For the second electrophilic radical attack at the phenyl ring of the ruthenium complex, the energy barriers for the generation of *cis*-and *trans*-diastereomers was found to be closely comparable. Therefore, Boltzmann distribution analysis, in combination with different hybrid functionals, was employed to further elucidate the diastereomeric ratio. According to Maxwell-Boltzmann statistics, the parameters of each low energy conformer were weighted using the Boltzmann distribution (equations 1 and 2) where the energy of a given conformer was calculated relative to the lowest energy conformation.


$$c_i = \frac{e^{-\Delta G_i^{\ddagger}/RT}}{e^{-\Delta G_1^{\ddagger}/RT} + e^{-\Delta G_2^{\ddagger}/RT} + \dots + e^{-\Delta G_n^{\ddagger}/RT}} \quad (1)$$

$$\Delta G_w^{\ddagger} = c_1 \Delta G_1^{\ddagger} + c_2 \Delta G_2^{\ddagger} + \dots + c_n \Delta G_n^{\ddagger} \quad (2)$$

Regarding the formation of the *cis*-diastereomer, five low-energy transition state conformers (with energy differences within 2 kcal mol⁻¹) were identified, including three conformers associated with radical attack from below the arene plane and the other two conformers from above. Similarly, five lowest-lying conformations were also calculated for the *trans*-diastereomer. Subsequently, based on different

regioisomeric transition states and their associated energy barriers, Boltzmann-weighted Gibbs free energies ΔG_w^{\ddagger} were calculated for the formation of *cis*- and *trans*-diastereomers, respectively. The corresponding results are presented in **Table S2**.

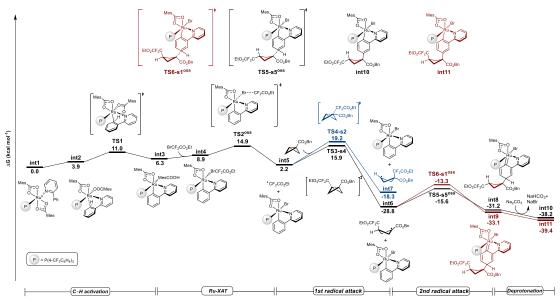

Conformers for TS5^{oss}:

PBE0-D4/dcf2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/dcf2-SVP-SDD
PBE0-D3/dcf2 TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/dcf2-SVP-SDD
B3LYP-D4/dcf2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/dcf2-SVP-SDD
B3LYP-D3/dcf2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/dcf2-SVP-SDD
M06-D3/dcf2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/dcf2-SVP-SDD

Figure S4. Conformational searches for the second radical attack step at the arene moiety of the ruthenium complex at the open-shell singlet state for the generation of *cis*-product at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

Conformers for TS6^{oss}:

PBE0-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
PBE0-D3/def2 TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
M06/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

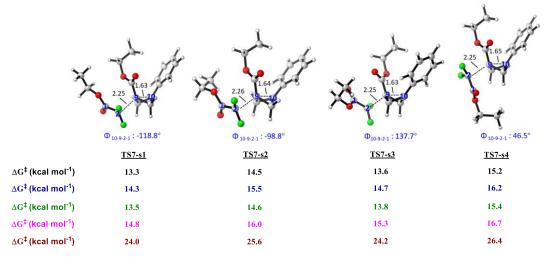

Figure S5. Conformational searches for the second radical attack step at the arene moiety of the ruthenium complex at the open-shell singlet state for the generation of *trans*-product at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

The calculated Boltzmann-weighted energy barrier for the formation of

cis-diastereomer was generally lower than that of the *trans*-diastereomer formation when employing PBE0 and B3LYP hybrid functionals. However, when employing Minnesota M06 functional, opposite selectivity was observed where the *cis*-structure became the predominant species. For each functional without dispersion correction, including PBE0-noD and B3LYP-noD, the calculated energy barrier ranged from to 30 to 38 kcal mol⁻¹, rendering the formation of the desired product unfeasible. These results highlight the critical role of dispersion corrections in many hybrid functionals. Further analysis of different dispersion correction versions revealed that the energy barriers calculated with D3 corrections were generally lower than those obtained with D4 corrections. Among all the tested functionals, B3LYP-D3(BJ) outperformed the others, indicating the generation of the *cis*-diastereomer being more favorable than that of the *trans*-diastereomer, with a calculated *cis:trans* ratio of 2.4:1 at 65 °C. This aligns with the experimentally determined ratio (3.1:1), although the computed ratio is slightly lower.

Table S2. Boltzmann-weighted Gibbs free energies and the corresponding ratios of the two diastereomers for the reaction with monosubstituted BCB 1a with different functionals.

	PBE0-D4	PBE0-D3	PBE0-noD	B3LYP-D	B3LYP-D	B3LYP-no	M06
	T DEC D 1	TBE0 B3	T BEO HOD	4	3	D	1,100
$\Delta G_w^{\ddagger}(\text{TS6}^{\text{oss}})$	15.0	14.8	30.5	14.2	14.4	36.6	11.6
$\Delta G_w^{\ddagger}(\text{TS7}^{\text{oss}})$	17.0	16.8	31.7	15.7	15.0	38.2	11.1
$\Delta\Delta G^{\ddagger}$	-2.0	-2.0	-1.2	-1.5	-0.6	-1.6	0.5
Calculated	19.6/1	19.6/1	6.0/1	9.3/1	2.4/1	10.8/1	1/2.1
ratio	19.0/1	19.0/1	0.0/1	9.3/1	4.4 /1	10.8/1	1/2.1
Experimental ratio				3.	1/1		

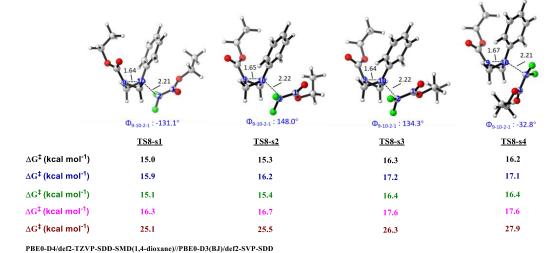

Figure S6. Computed relative Gibbs free energies (ΔG_{338.15}) in kcal mol⁻¹ for ruthenium-catalyzed *meta*-C–H alkylation reaction with BCB **1a** at the B3LYP-D3/def2-TZVP-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP level of theory.

7.2.2. Reaction with disubstituted BCB 1m.

In addition to the monosubstituted BCB 1a, conformers investigation for the radical attack at the disubstituted BCB 1m was also explored. Related results for phenyl- and ester-disubstituted BCB are presented from Figure S7 to S12. For the first radical attack step, four distinct conformers exhibited different dihedral angles between the bridge C-C bond of the BCB core and the difluoroalkyl radical backbone. Besides, two pathways were considered depending on whether the radical attack occurs at the ester-substituted carbon (as shown in Figure S7) or at the phenyl-substituted site (as shown in Figure S8). Among the conformers explored, TS7-s1 was considered to the most stable structure when radical attack occurred at the ester-substituted site, with consideration of different computational functionals. And for the alternative pathway, TS8-s1 showed greater stability relative to other conformers. A comparison of these two transition states revealed that TS7-s1 is more favorable by 1.5 kcal mol⁻¹ with B3LYP-D3(BJ), due to the formation of a more stable benzylic radical. The higher stability of the benzylic radical than the ester-substituted radical is supported by the relatively lower spin densities on the benzylic carbon in int12 (0.79) than that in int13 (0.92), as shown in **Figure S9**. In this scenario, the transition states for radical attack at the phenyl site was classified as earlier transition states, characterized by the slightly

elongated C-C bridge bond distance of BCB (1.63 Å) and the quite far C-C bond distance between the BCB and the difluoro alkyl radicals (2.25 Å) in **TS7-s1**.

Conformers for TS7:



PBE0-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
PBE0-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
M06-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

PBE0-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD B3LYP-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

Figure S7. Conformational searches for the first radical attack step at the ester-substituted site of disubstituted BCB **1m** at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

Conformers for TS8:

M06-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

Figure S8. Conformational searches for the first radical attack step at the phenyl

Figure S8. Conformational searches for the first radical attack step at the phenyl-substituted site of disubstituted BCB **1m** at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

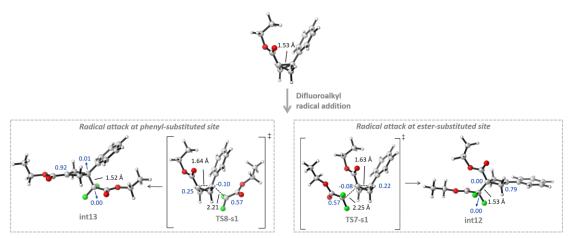
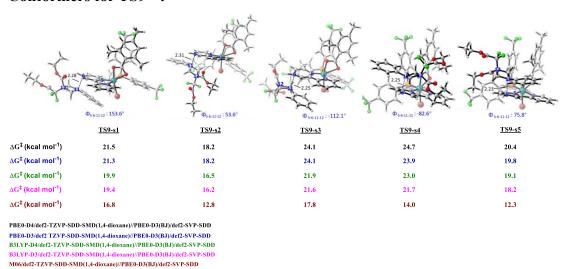
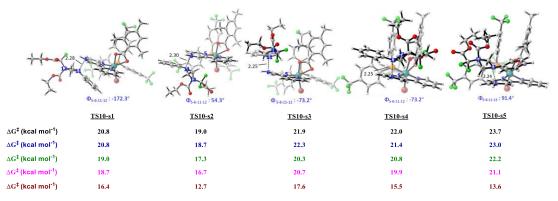



Figure S9. Optimized geometries and spin densities of computed structures in the first radical attack step with disubstituted BCB 1m.


Upon the initial radical attack at the ester-substituted site of disubstituted BCB 1m, the formed benzyl radical subsequently attacked the ruthenium(III) cyclometalated complex, giving rise to both *major*- and *minor*-isomers through TS9^{oss} and TS10^{oss}, respectively. In this process, five distinct conformers were identified, distinguished by different dihedral angles between the bridging C–C bond of the BCB core and the phenylpyridine plane, with consideration of attack orientations from both above and below the aromatic plane (Figure S10-S11).

Conformers for TS9^{oss}:

Figure S10. Conformational searches for the second radical attack step at the arene moiety of the ruthenium complex at the open-shell singlet state for the generation of *major*-product at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

Conformers for TS10^{oss}:

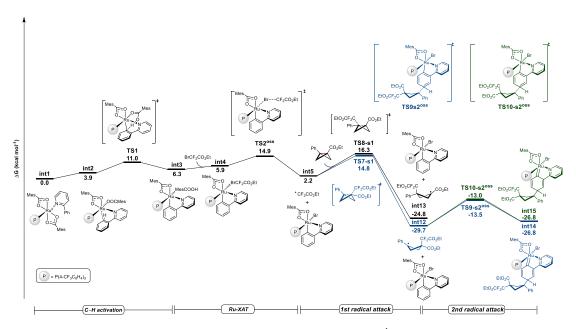

PBE0-D4/dcf2-TZVP-SDD-SMD(1,4-dioxane)/PBE0-D3(BJ)/dcf2-SVP-SDD
PBE0-D3/dcf2-TZVP-SDD-SMD(1,4-dioxane)/PBE0-D3(BJ)/dcf2-SVP-SDD
B3LYP-D4/dcf2-TZVP-SDD-SMD(1,4-dioxane)/PBE0-D3(BJ)/dcf2-SVP-SDD
SJLYP-D3/dcf2-TZVP-SDD-SMD(1,4-dioxane)/PBE0-D3(BJ)/dcf2-SVP-SDD
M06/dcf2-TZVP-SDD-SMD(1,4-dioxane)/PBE0-D3(BJ)/dcf2-SVP-SDD

Figure S11. Conformational searches for the second radical attack step at the arene moiety of the ruthenium complex at the open-shell singlet state for the generation of *minor*-product at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

Based on the Boltzmann distribution of these transition state conformers, Boltzmann-weighted Gibbs free energies ΔG_{ave} for each diastereomer were calculated and presented in **Table S3**. The final Boltzmann populations of **TS9**^{oss} and **TS10**^{oss} with different functionals showed that both PBE0 and B3LYP functionals combined with D4 dispersion corrections provided a simulated ratio (3.3:1) closely aligning with the experimental ratio (2.8:1).

Table S3. Boltzmann-weighted Gibbs free energies and the corresponding ratios of the two diastereomers for the reaction with disubstituted BCB 1m with different functionals.

	PBE0-D4	PBE0-D3	PBE0-noD	B3LYP-D	B3LYP-D	B3LYP-no	M06
	PDEU-D4	PDEU-D3	PDEU-IIOD	4	3	D	MOO
$\Delta G_w^{\ddagger}(\text{TS9}^{\text{oss}})$	18.3	18.4	51.3	16.6	16.3	43.0	12.6
$\Delta G_w^{\ddagger}(\text{TS}10^{\text{oss}})$	19.1	18.9	52.2	17.4	16.8	42.7	12.9
$\Delta\Delta G^{\ddagger}$	-0.8	-0.5	-0.9	-0.8	-0.5	0.3	-0.3
Calculated ratio	3.3/1	2.1/1	3.8/1	3.3/1	2.1/1	1/1.6	1.6/1
Experimental ratio			2.5	8/1			

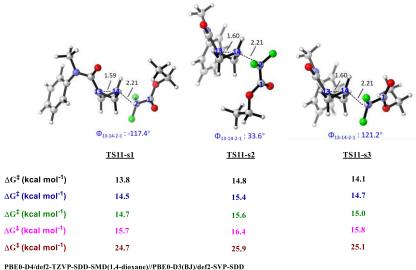
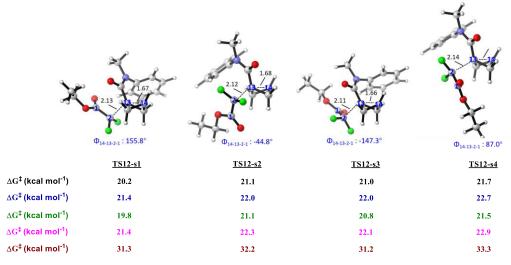


Figure S12. Computed relative Gibbs free energies (ΔG_{338.15}) in kcal mol⁻¹ for ruthenium-catalyzed *meta*-C–H alkylation reaction with BCB **1m** at the B3LYP-D3/def2-TZVP-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP level of theory.

7.2.3. Reaction with monosubstituted BCB 1k.

For substrates exhibiting substantial diastereoselectivity in product formation, such as compound 40, computational studies were also employed to evaluate the two sequential radical attacks. As shown in Figures S13 and S14, considering all relevant conformers involved, the radical attack at the unsubstituted site showed a higher preference over the attack at the amide-substituted position. This selectivity could be potentially attributed to the steric repulsions and electron-withdrawing nature of the difluoroalkyl radical. At this stage, the slightly elongated C-C bridge bond within the BCB backbone and relatively longer bond distance between the radical and BCB species in TS11-s1, indicated the radical attacked at the unsubstituted site involved an earlier transition state (Figure S15). Subsequently, the generated tertiary radical attack at the phenyl group of ruthenium(III) species showed a stronger preference for cis-product formation over trans-product formation analyzed with the PBE0, B3LYP, and M06 functionals (Figure S16-S17). Additionally, the calculated ratio, derived from Boltzmann-weighted Gibbs free energies ΔG_w^{\ddagger} , considering the contributions of each conformer, further indicated that cis-diastereomer generation is energetically much more favorable over the trans-product formation (see Table S4). This theoretical finding is consistent with experimental observation.


Conformers for TS11:

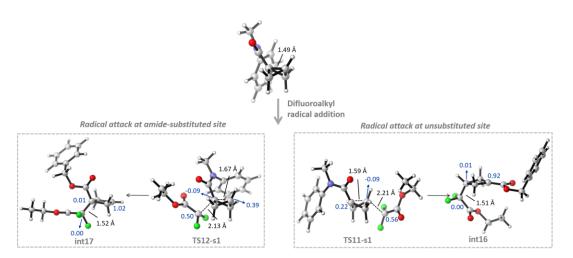
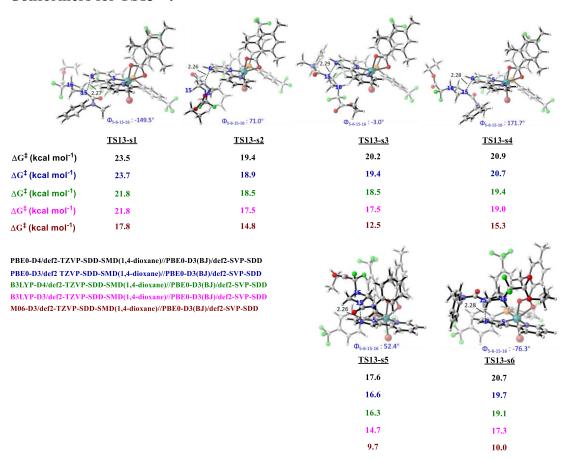
PBE0-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
PBE0-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
M06-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

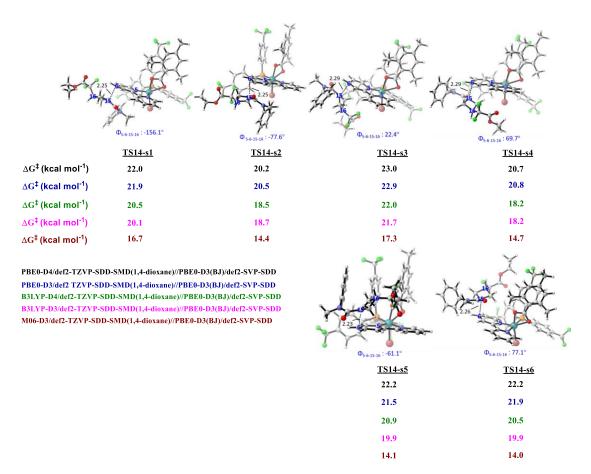
Figure S13. Conformational searches for the first radical attack step at the unsubstituted site of amide-functionalized BCB **1k** at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

Conformers for TS12:

PBE0-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
PBE0-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D4/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
B3LYP-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD
M06-D3/def2-TZVP-SDD-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP-SDD

Figure S14. Conformational searches for the first radical attack step at the amide-substituted site of amide-functionalized BCB **1k** at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.


Figure S15. Optimized geometries and spin densities of computed structures in the first radical attack step considering amide-functionalized BCB 1k.

Conformers for TS13^{oss}:

Figure S16. Conformational searches for the second radical attack step at the arene moiety of the ruthenium complex at the open-shell singlet state for the generation of *cis*-product at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

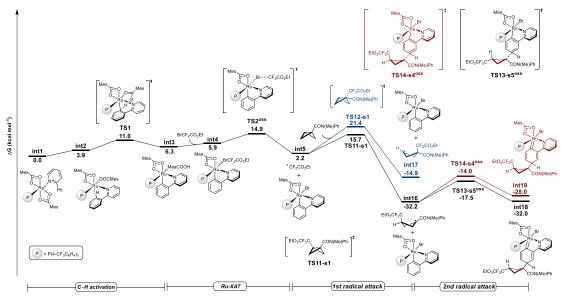

Conformers for TS14^{oss}:

Figure S17. Conformational searches for the second radical attack step at the arene moiety of the ruthenium complex at the open-shell singlet state for the generation of *trans*-product at 338.15K using various functionals. Energies are presented in the unit of kcal mol⁻¹.

Table S4. Boltzmann-weighted Gibbs free energies and the corresponding ratios of the two diastereomers for the reaction with monosubstituted BCB 1k with different functionals.

	PBE0-D4	PBE0-D3	PBE0-noD	B3LYP-D	B3LYP-D	B3LYP-noD	M06
	FBEU-D4	LDE0-D3	r beo-iioD	4	3	D3L11-IIOD	WIOO
$\Delta G_w^{\ddagger}(\text{TS}13^{\text{oss}})$	17.8	16.7	35.0	16.5	14.9	41.4	9.8
$\Delta G_w^{\ddagger}(\text{TS}14^{\text{oss}})$	20.6	20.9	37.1	18.4	18.6	43.2	14.2
$\Delta\Delta G^{\ddagger}$	-2.8	-4.2	-2.1	-1.9	-3.7	-1.8	-4.4
Calculated ratio	64.5/1	518/1	22.8/1	16.9/1	246/1	14.6/1	698/1
Experimental ratio			20	0.0/1			

Figure S18. Computed relative Gibbs free energies ($\Delta G_{338.15}$) in kcal mol⁻¹ for ruthenium-catalyzed *meta*-C–H alkylation reaction with BCB **1k** at the B3LYP-D3/def2-TZVP-SMD(1,4-dioxane)//PBE0-D3(BJ)/def2-SVP level of theory.

7.2.4. Table of Energies

Table S5. Calculated electronic energies at the B3LYP-D3(BJ)/def2-TZVP-SMD (1,4-dioxane) level of theory and Gibbs free energies with dispersion corrections for all the structures in the reaction with mono-substituted BCB **1a**. (all in Hartree).

Structure	Electronic Energy	Total Gibbs Free Energy	Frequency
int1	-3699.812482	-3699.095851	8.7175
int2	-3699.808679	-3699.089557	12.0439
TS1	-3699.792727	-3699.078363	-1006.2231
int3	-3699.803608	-3699.085756	9.6342
int4	-3679.841729	-3679.231584	5.9201
TS2oss	-3679.831286	-3679.222120	-270.3159
int5	-3174.073686	-3173.544095	8.0219
TS3-s1	-1120.887695	-1120.646676	-820.9244
TS3-s2	-1120.926142	-1120.684933	-460.5751
TS3-s3	-1120.925003	-1120.684809	-463.5763
TS3-s4	-1120.924853	-1120.687170	-537.3960
TS3-s5	-1120.924931	-1120.686535	-538.5385
TS4-s1	-1120.882538	-1120.641229	-703.7227
TS4-s2	-1120.922732	-1120.681960	-657.1695
TS4-s3	-1120.921295	-1120.680564	-638.2411
TS4-s4	-1120.921460	-1120.681130	-666.0934
TS4-s5	-1120.918991	-1120.680360	-693.1426
int6	-1121.003236	-1120.758452	16.5156
int7	-1120.981791	-1120.741679	8.0904

TS5-s1 ^{oss}	-4295.088329	-4294.279435	-395.4788
TS5-s2 ^{oss}	-4295.084035	-4294.279299	-403.2749
TS5-s3 ^{oss}	-4295.087836	-4294.281106	-398.3302
TS5-s4 ^{oss}	-4295.090129	-4294.279649	-408.5036
TS5-s5 ^{oss}	-4295.089342	-4294.281560	-383.7089
TS6-s1 ^{oss}	-4295.083733	-4294.277826	-366.1006
TS6-s2 ^{oss}	-4295.085699	-4294.276265	-373.9054
TS6-s3 ^{oss}	-4295.089659	-4294.279353	-331.3547
TS6-s4 ^{oss}	-4295.086066	-4294.276471	-373.2975
TS6-s5 ^{oss}	-4295.083084	-4294.275786	-380.4654
int8	-4295.119077	-4294.306255	10.2385
int9	-4295.118344	-4294.309331	7.9898
int10	-4281.202347	-4280.393220	8.4487
int11	-4281.196320	-4280.395212	7.6419
BrCF ₂ CO ₂ Et	-519.0795953	-519.0293513	39.1203
CF ₂ CO ₂ Et-radical	-248.3669726	-248.2413086	67.1204
MesCOOH	-539.0324782	-538.8793722	15.8559
ВСВ	-615.176318	-615.010776	21.1847

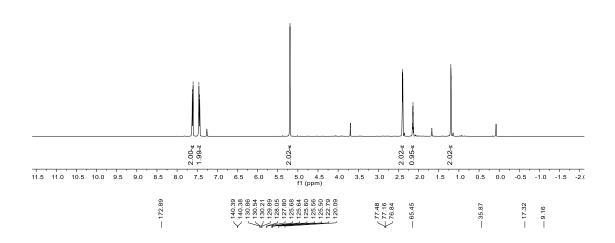
Table S6. Calculated electronic energies at the B3LYP-D3(BJ)/def2-TZVP-SMD (1,4-dioxane) level of theory and Gibbs free energies with dispersion corrections for all the structures in the reaction with disubstituted BCB **1m**. (all in Hartree).

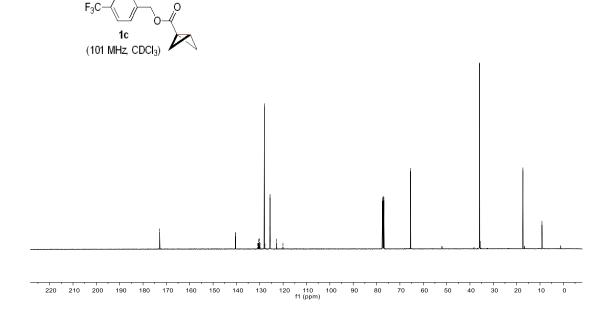
Structure	Electronic Energy	Total Gibbs Free Energy	Frequency
TS7-s1	-1160.275457	-1160.007624	-494.0650
TS7-s2	-1160.273309	-1160.005820	-510.8990
TS7-s3	-1160.274234	-1160.006850	-482.9898
TS7-s4	-1160.271639	-1160.004585	-534.2686
TS8-s1	-1160.274150	-1160.005309	-564.4964
TS8-s2	-1160.271656	-1160.004687	-571.4633
TS8-s3	-1160.270989	-1160.003189	-567.1970
TS8-s4	-1160.269719	-1160.003163	-627.5734
int12	-1160.346090	-1160.078546	8.6069
int13	-1160.340216	-1160.070725	15.2284
TS9-s1 ^{oss}	-4334.421295	-4333.591768	-405.6885
TS9-s2 ^{oss}	-4334.428061	-4333.596855	-375.8676
TS9-s3 ^{oss}	-4334.425185	-4333.588289	-434.6709
TS9-s4 ^{oss}	-4334.421830	-4333.588058	-440.5622
TS9-s5 ^{oss}	-4334.427750	-4333.593693	-448.8159
TS10-s1 ^{oss}	-4334.420328	-4333.592865	-378.5693
TS10-s2oss	-4334.428563	-4333.596018	-360.2427
TS10-s3oss	-4334.420952	-4333.589597	-425.6857
TS10-s4 ^{oss}	-4334.421279	-4333.590913	-420.7607

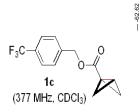
TS10-s5 ^{oss}	-4334.421397	-4333.588938	-441.5726
int14	-4334.453883	-4333.618045	9.4803
int15	-4334.456412	-4333.618010	9.5720
di-BCB	-654.522062	-654.3295230	35.0230

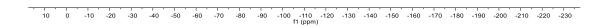
Table S7. Calculated electronic energies at the B3LYP-D3(BJ)/def2-TZVP-SMD (1,4-dioxane) level of theory and Gibbs free energies with dispersion corrections for all the structures in the reaction with mono- substituted BCB **1k**. (all in Hartree).

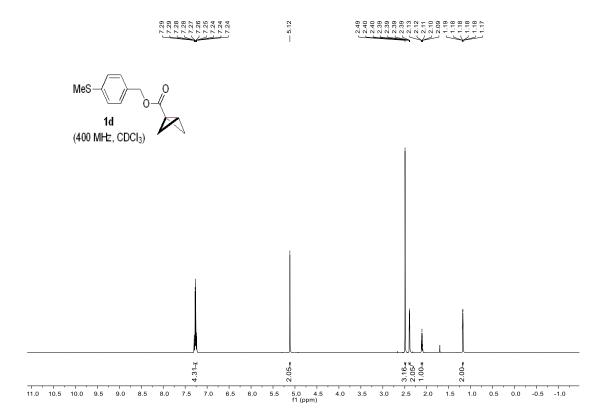
~		Total Gibbs	Free Frequenc
Structure	Electronic Energy	Energy	y
TS11-s1	-1101.044552	-1100.794343	-513.7335
TS11-s2	-1101.043680	-1100.793158	-553.1600
TS11-s3	-1101.044944	-1100.794037	-515.9488
TS12-s1	-1101.039227	-1100.785136	-671.1049
TS12-s2	-1101.036408	-1100.783685	-713.5538
TS12-s3	-1101.038491	-1100.784005	-685.3284
TS12-s4	-1101.034556	-1100.782841	-695.3724
int16	-1101.123129	-1100.870565	15.4548
int17	-1101.097235	-1100.843054	14.8308
TS13-s1 ^{oss}	-4275.198231	-4274.379865	-263.3307
TS13-s2oss	-4275.205765	-4274.386803	-413.2753
TS13-s3oss	-4275.202208	-4274.386797	-428.9938
TS13-s4 ^{oss}	-4275.198777	-4274.384427	-424.6329
TS13-s5oss	-4275.207492	-4274.391221	-434.9790
TS13-s6 ^{oss}	-4275.206389	-4274.387074	-416.8464
TS14-s1 ^{oss}	-4275.198318	-4274.382673	-451.8189
TS14-s2oss	-4275.203161	-4274.384910	-432.8178
TS14-s3oss	-4275.195933	-4274.380002	-373.2385
TS14-s4 ^{oss}	-4275.202394	-4274.385645	-406.2606
TS14-s5oss	-4275.200877	-4274.383001	-455.0885
TS14-s6 ^{oss}	-4275.199677	-4274.382905	-420.3695
int18	-4275.236131	-4274.414380	10.3103
int19	-4275.233234	-4274.407955	9.3214
CON-BCB	-595.2948546	-595.1175486	37.7081

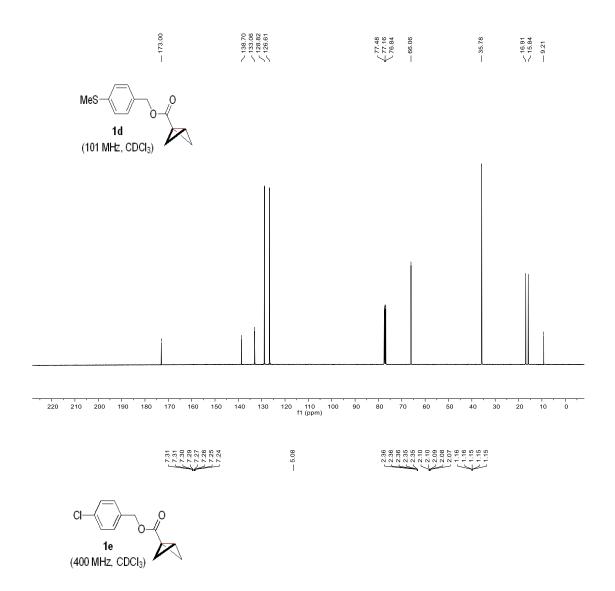

8. References

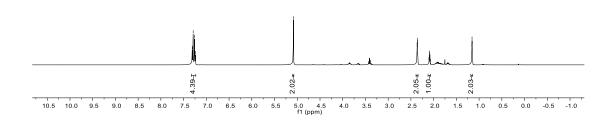

- 1. Agasti, S., Beltran, F., Pye, E. et al. A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. *Nat. Chem.* **15**, 535–541 (2023).
- 2. Ni, D. et al. Intermolecular formal cycloaddition of indoles with bicyclo[1.1.0]butanes by Lewis acid catalysis. *Angew. Chem. Int. Ed.* **62**, e202308606 (2023).
- 3. Tang, L. et al. Silver-catalyzed dearomative $[2\pi+2\sigma]$ cycloadditions of indoles with bicyclobutanes: access to indoline fused bicyclo[2.1.1]hexanes *Angew. Chem. Int. Ed.* **62**, e202310066 (2022).
- 4. Gianatassio, R. et al. Strain-release amination. Science 351, 241-246 (2016).
- 5. Wang, Y., Chen, S., Chen, X., Zangarelli, A. & Ackermann, L. Photo-induced ruthenium-catalyzed double remote C(sp²)-H/C(sp³)-H functionalizations by radical relay. *Angew. Chem. Int. Ed.* **61**, e202205562 (2022).
- 6. Tan, G., Schrader, M. L., Daniliuc, C., Strieth-Kalthoff, F. & Glorius, F. C-H activation based copper-catalyzed one-shot synthesis of N,O-bidentate organic difluoroboron complexes. *Angew. Chem. Int. Ed.* **59**, 21541–21545 (2020).
- 7. Kong, W., Yu, C., An, H. & Song, Q. Copper-catalyzed intermolecular reductive radical difluoroalkylation—thiolation of aryl alkenes. *Org. Lett.* **20**, 4975–4978 (2018).
- 8. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. Gaussian 16 Rev. A.03, Wallingford, CT, 2016.
- 9. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **110**, 6158–6170 (1999).
- Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional.
 Chem. Phys. 110, 5029–5036 (1999).

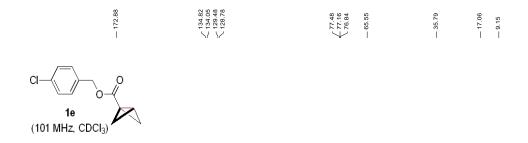

- 11. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **32**, 1456–1465 (2011).
- 12. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).
- 13. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057-1065 (2006).
- 14. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 7, 3297–3305 (2005).
- 15. Martin, J. M. L. & Sundermann, Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe. *J. Chem. Phys.* **114**, 3408–3420 (2001).
- 16. Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. *J. Chem. Phys.* **86**, 866–872 (1987).
- 17. Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* **98**, 5648–5652 (1993).
- 18. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **37**, 785–789 (1988).
- 19. Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. *Acc. Chem. Res.* 41, 157–167 (2008).
- 20. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 113, 6378–6396 (2009).

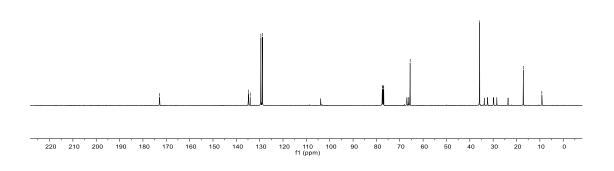

9. NMR Spectra

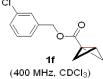


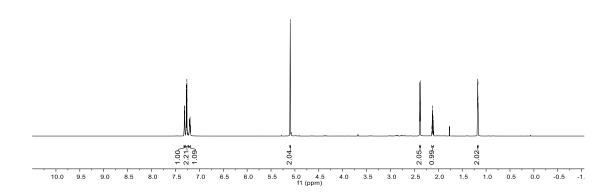


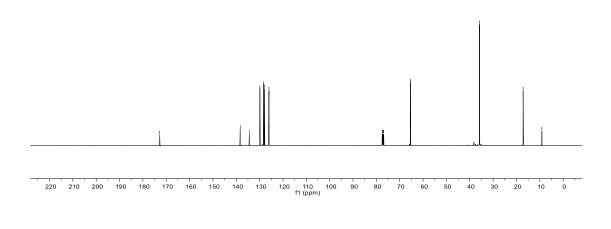


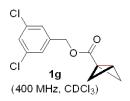


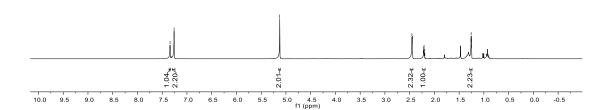


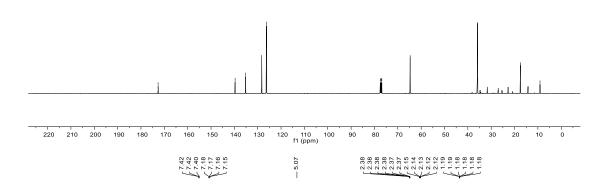


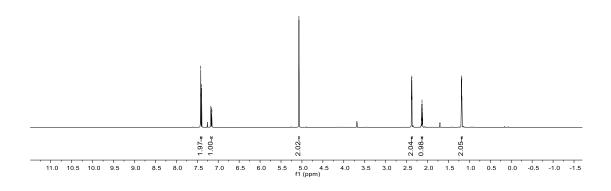


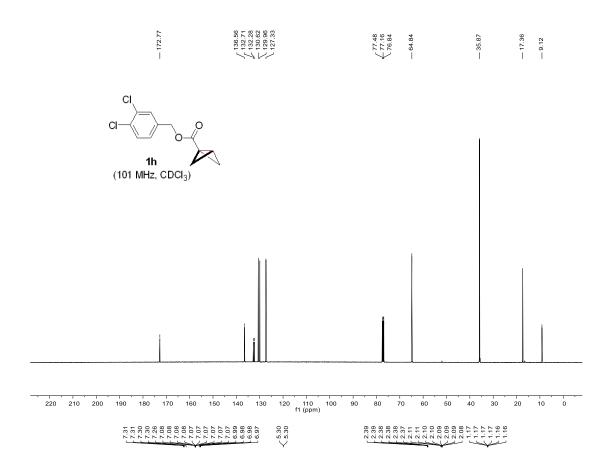


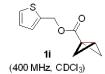


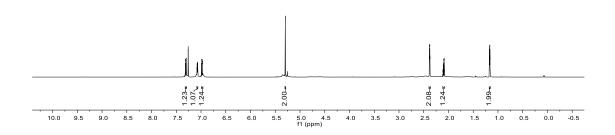


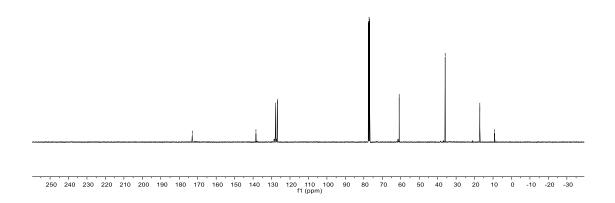


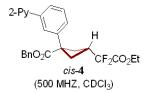


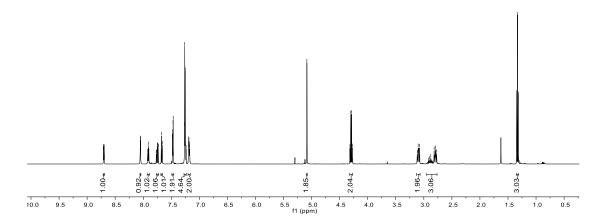


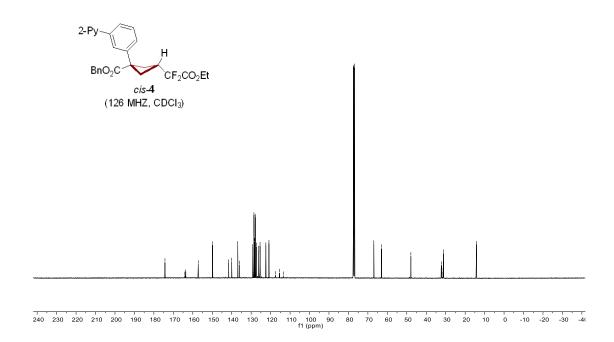


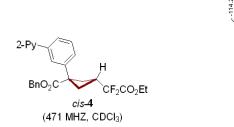


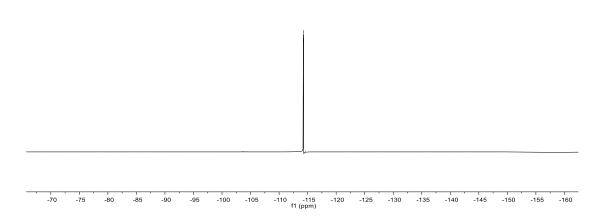


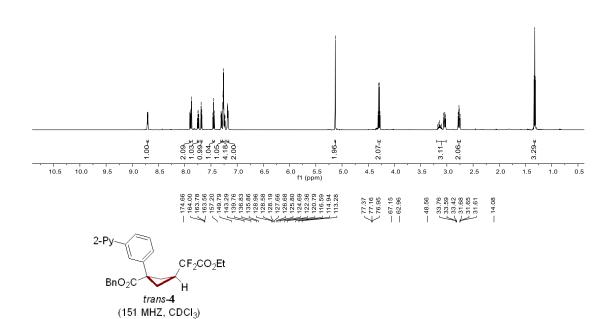


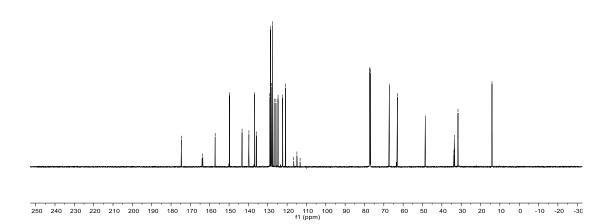


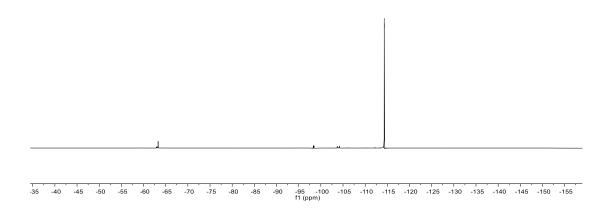


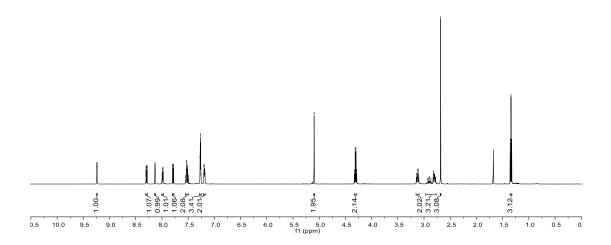


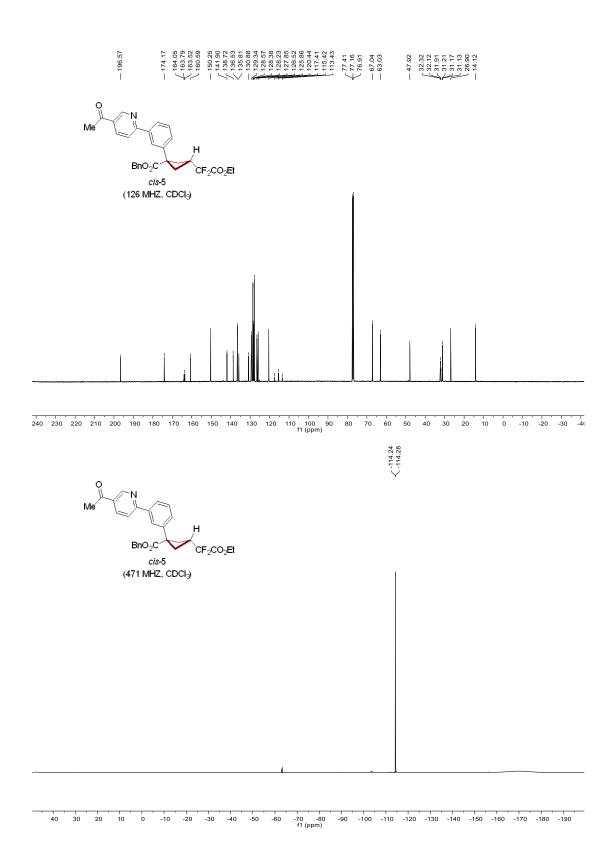


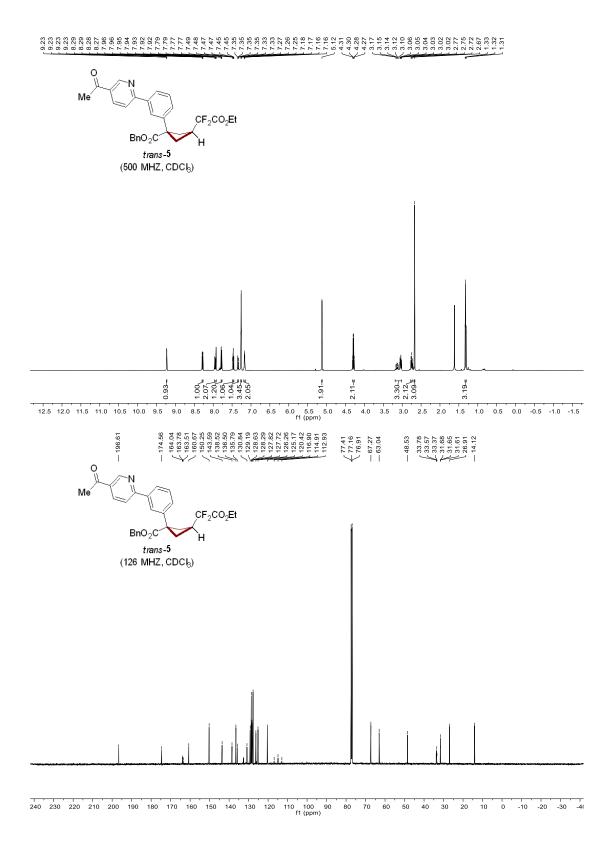


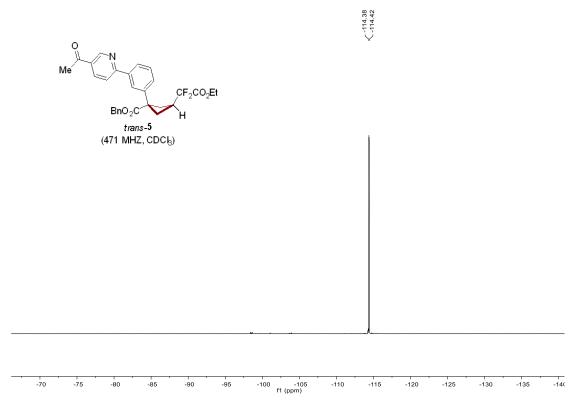


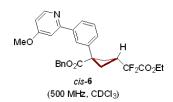


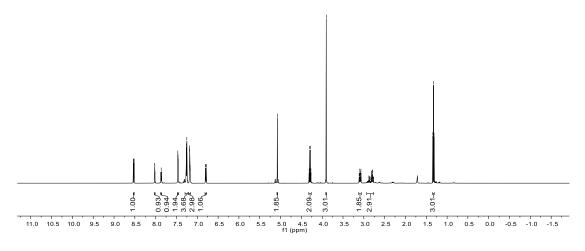


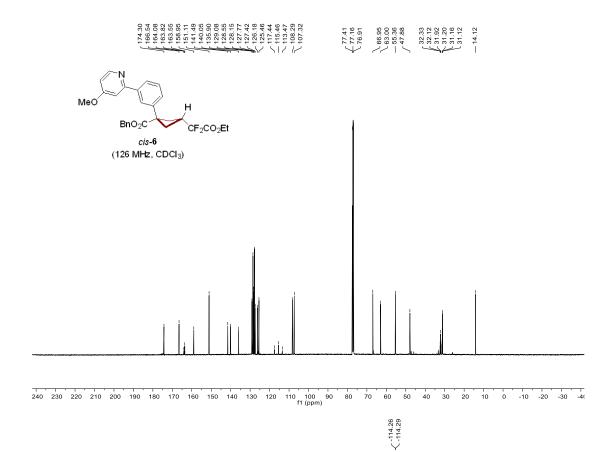


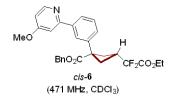


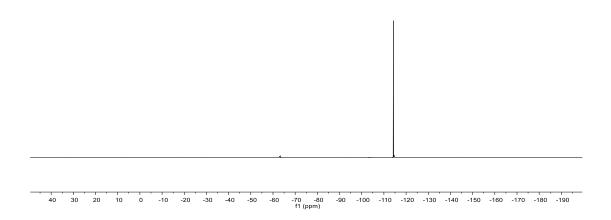


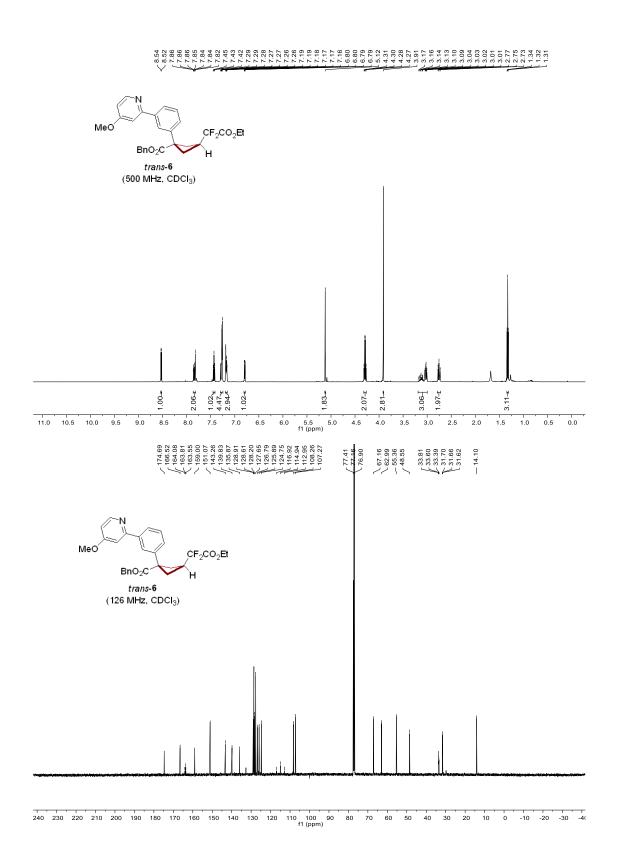


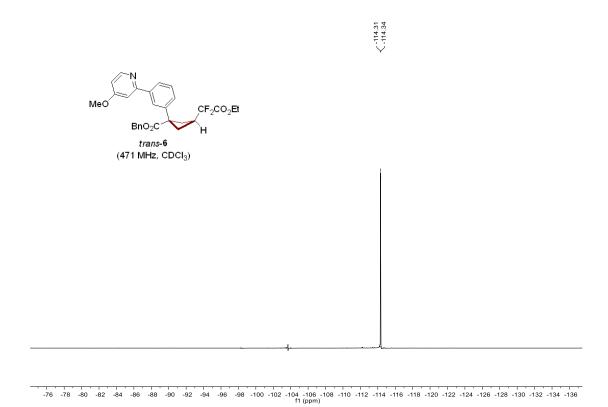


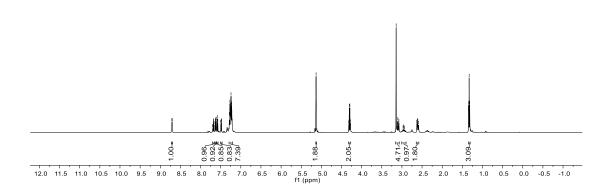


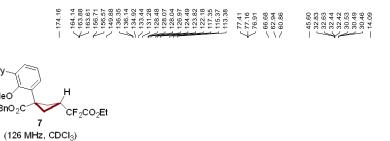


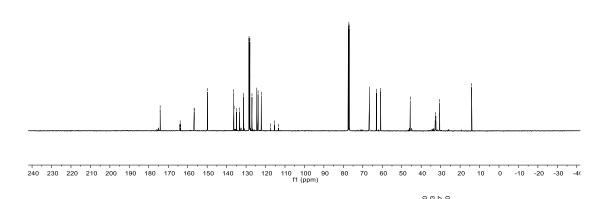


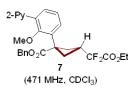




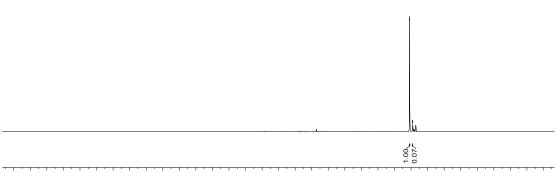


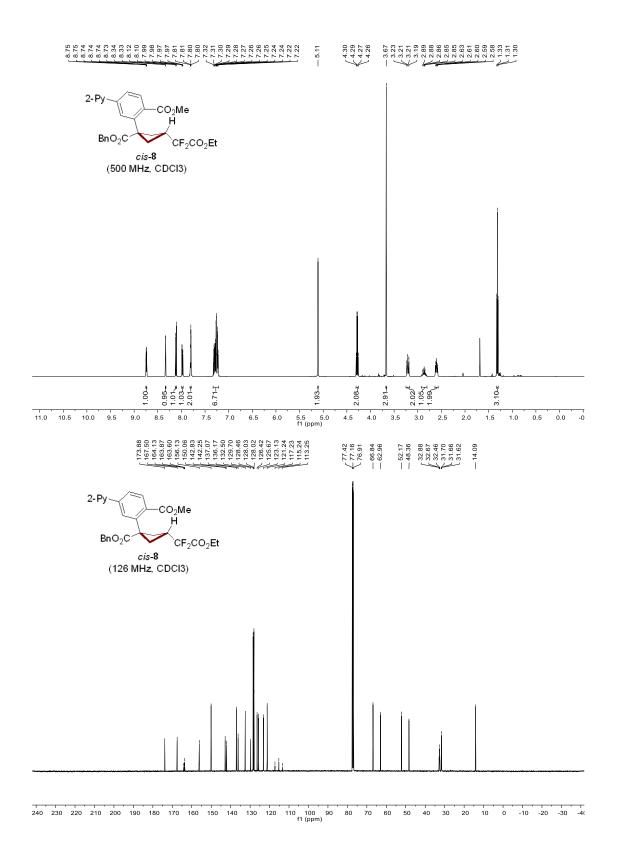


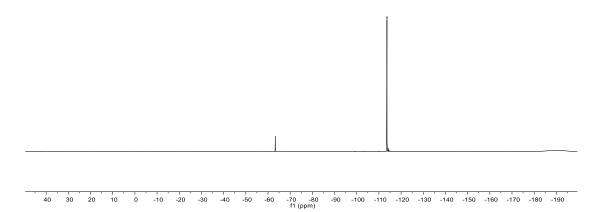




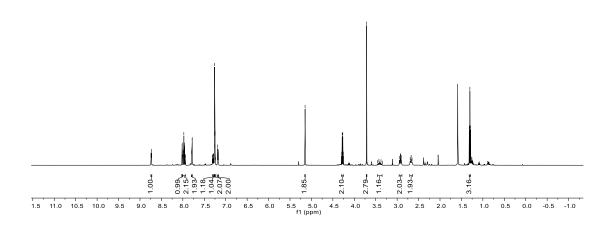
8.77 7.89

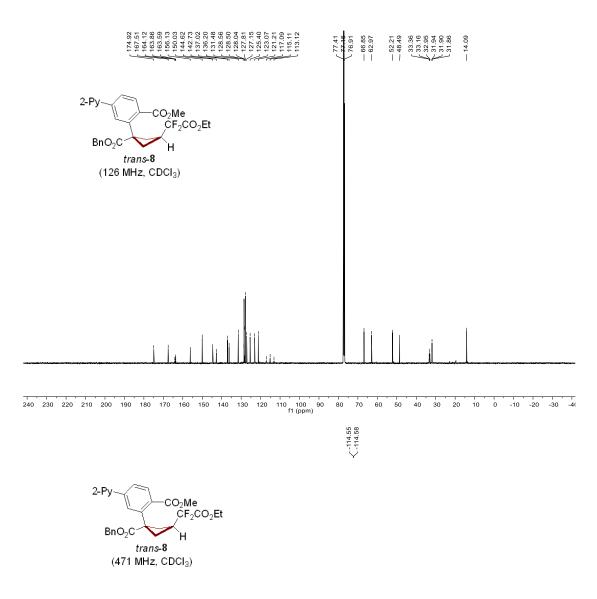


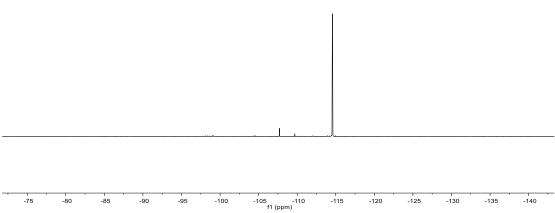



MeO

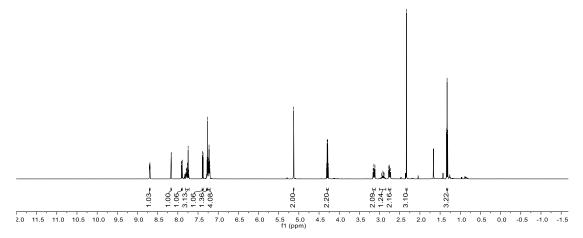
-66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 f1 (ppm)

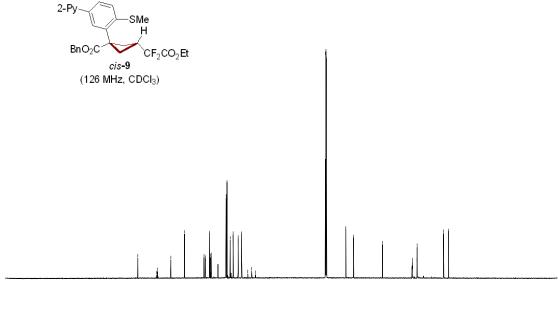


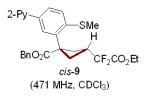


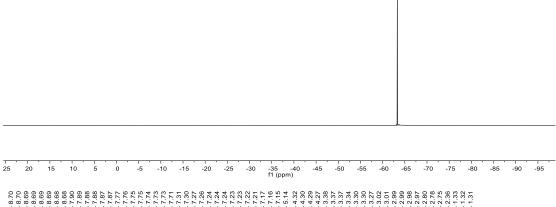


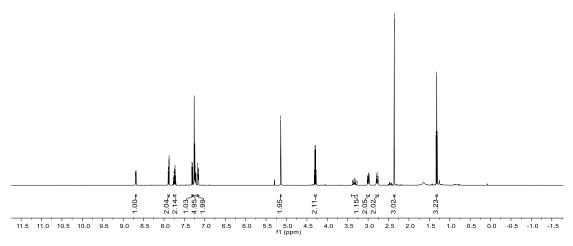
8.77 8.00 8.17 8.00

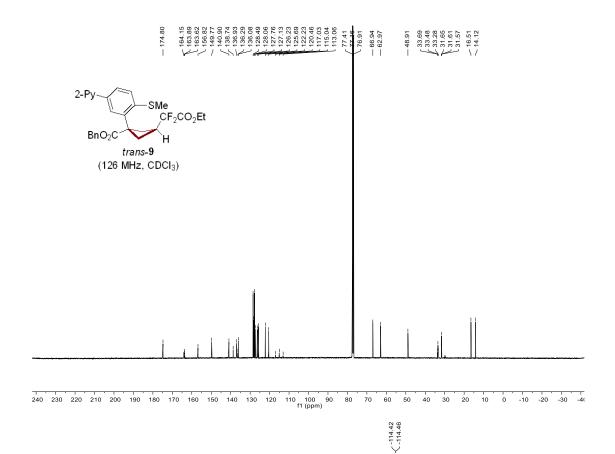

2-Py
$$CO_2Me$$
 CF_2CO_2Et BnO_2C H $trans-8$ $(500 MHz, CDCI_3)$



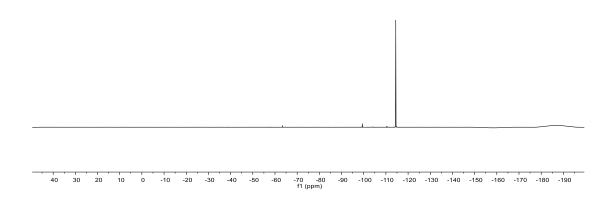


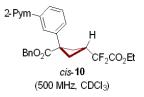


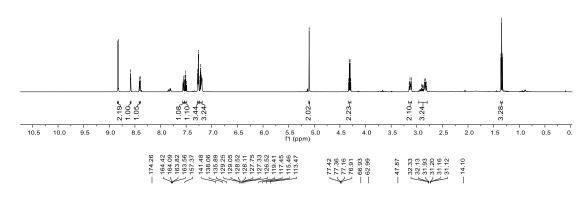


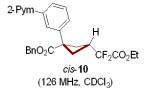


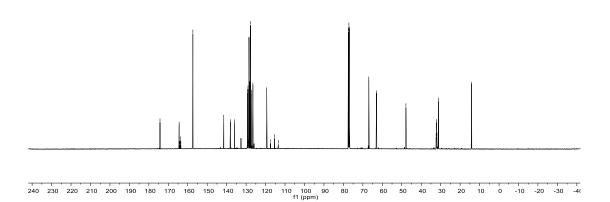
240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 ft (ppm)

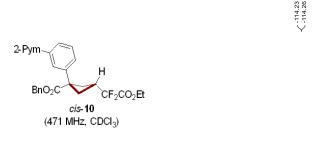


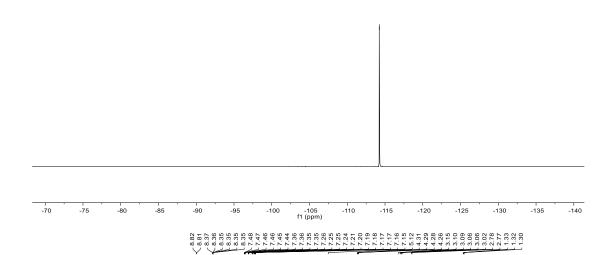


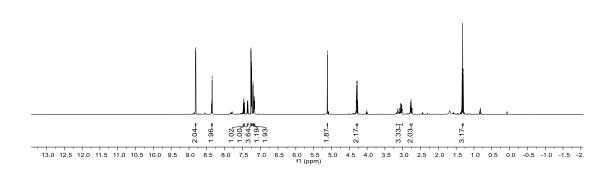


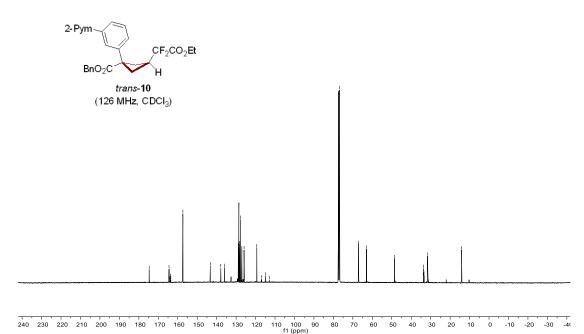


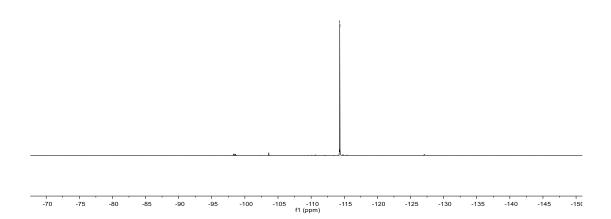


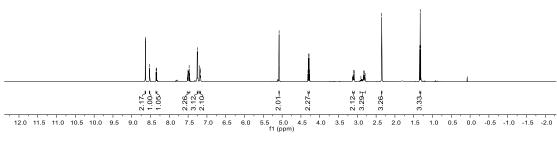


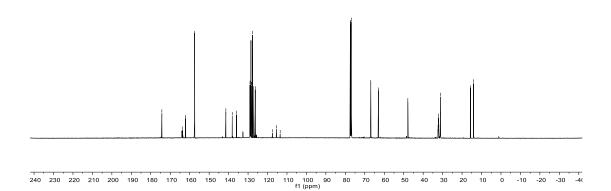


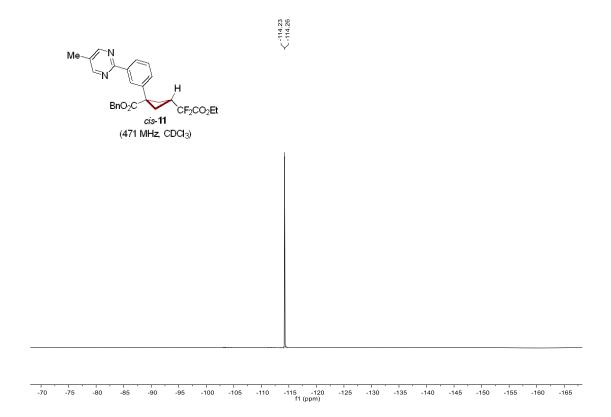


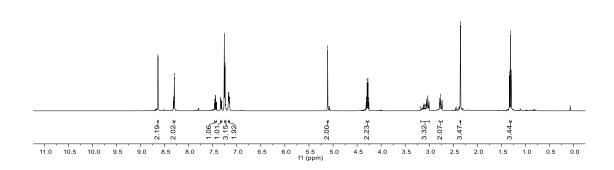


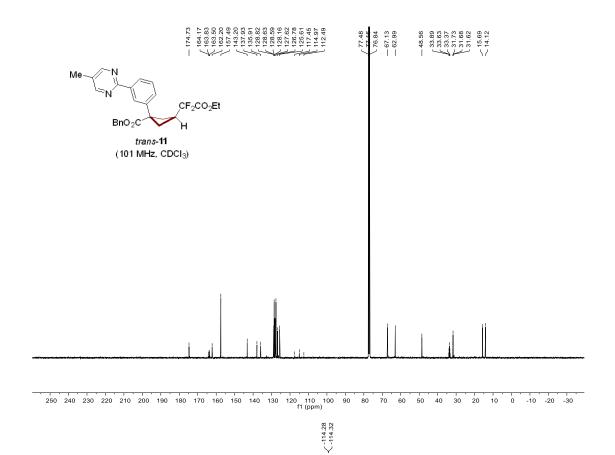


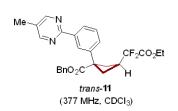


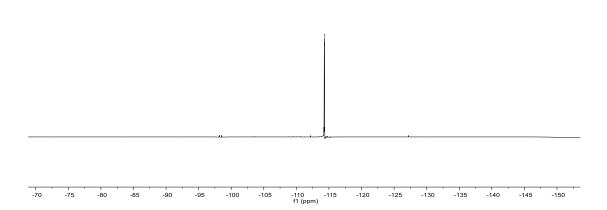


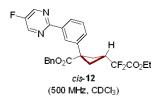

-114.35 -114.35

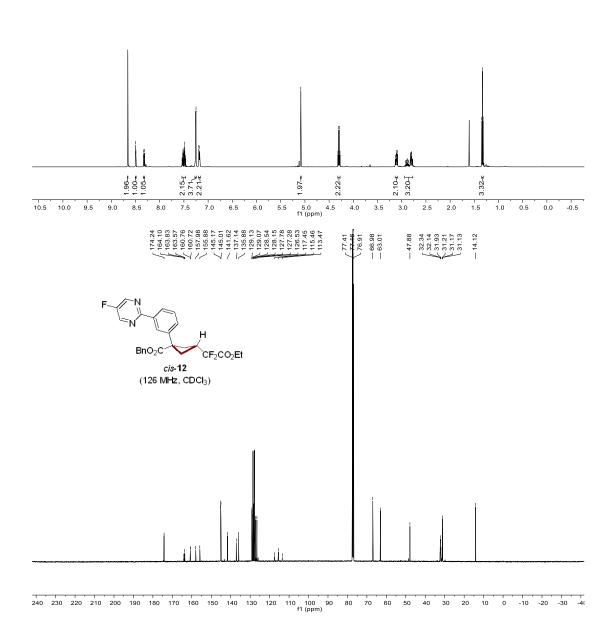


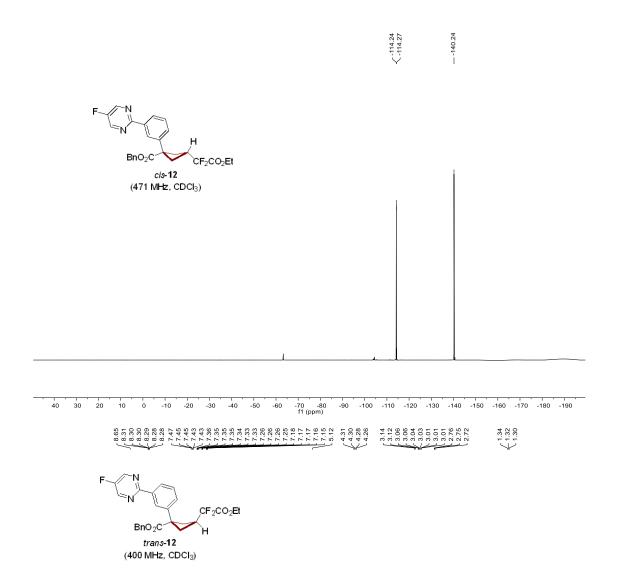

174.31 163.10 163.10 163.57 162.13 162.13 162.89 172.89 172.89 172.89 172.89 172.89 173.89 174.41 174.48 173.49

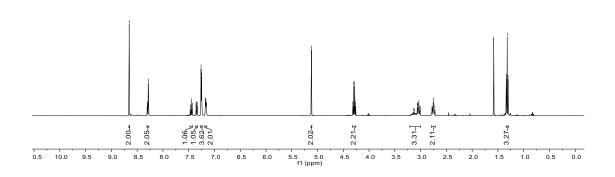


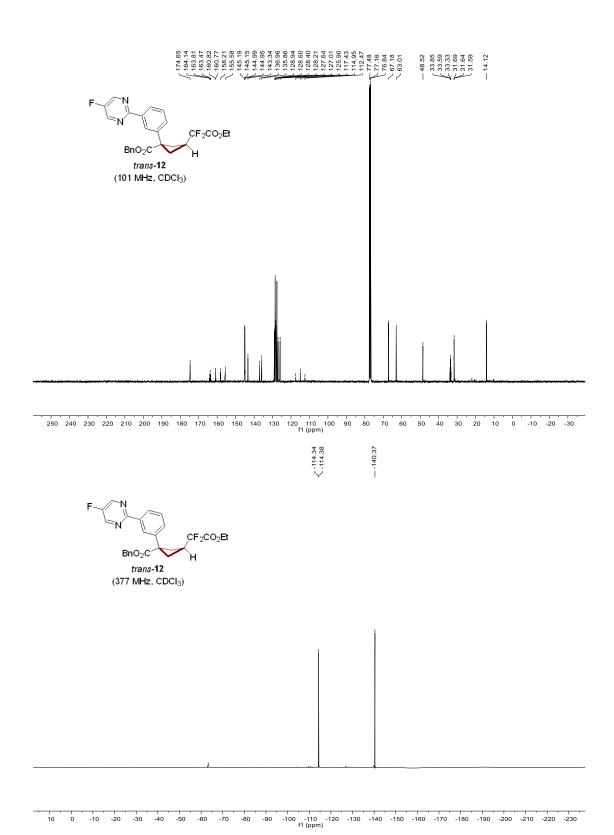


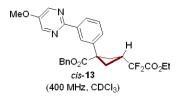


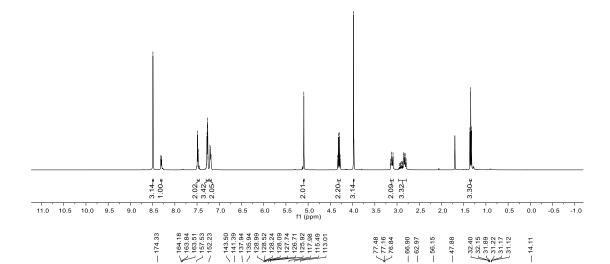


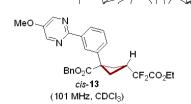


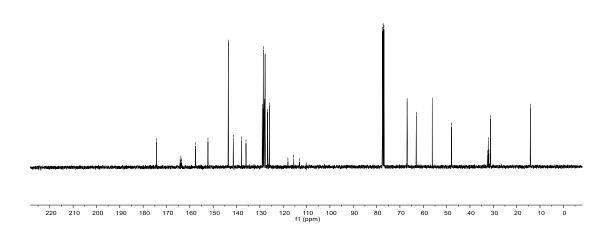


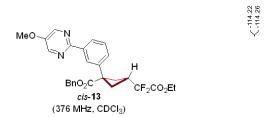


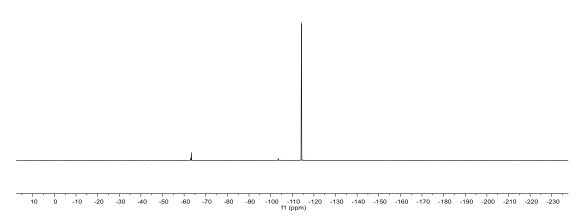


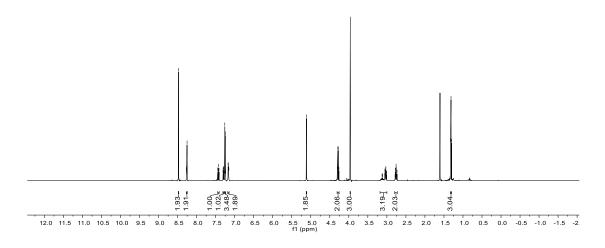


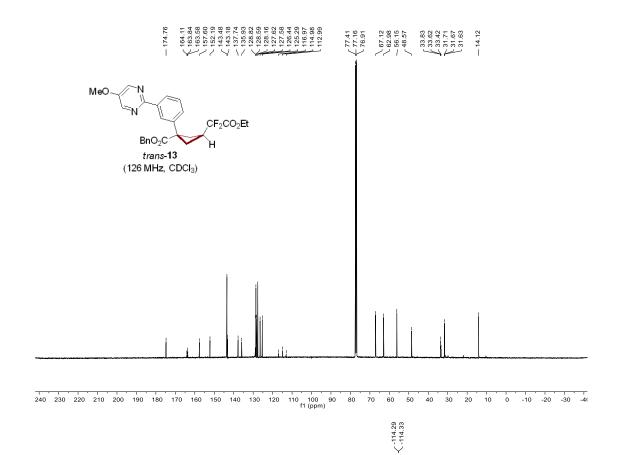


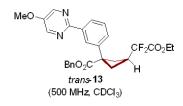


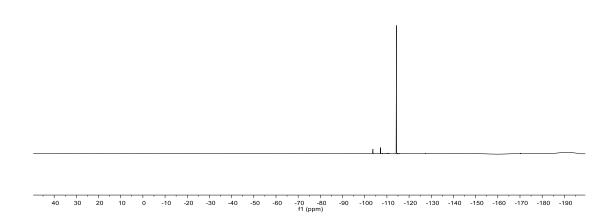


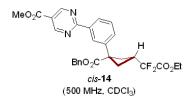


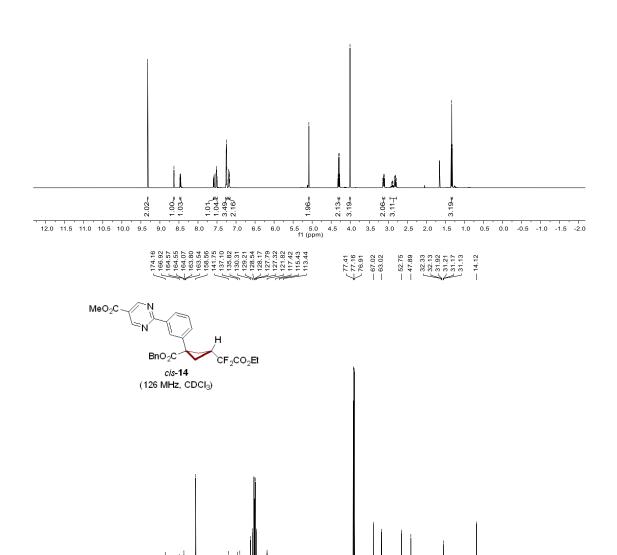


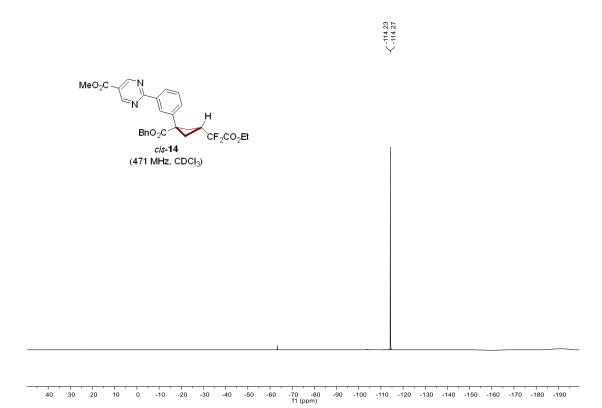


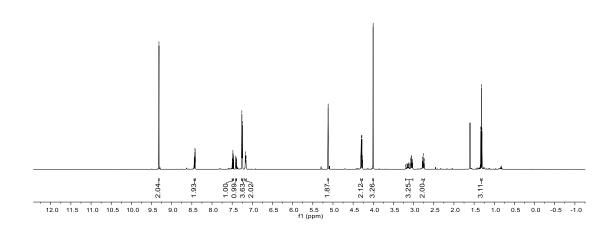


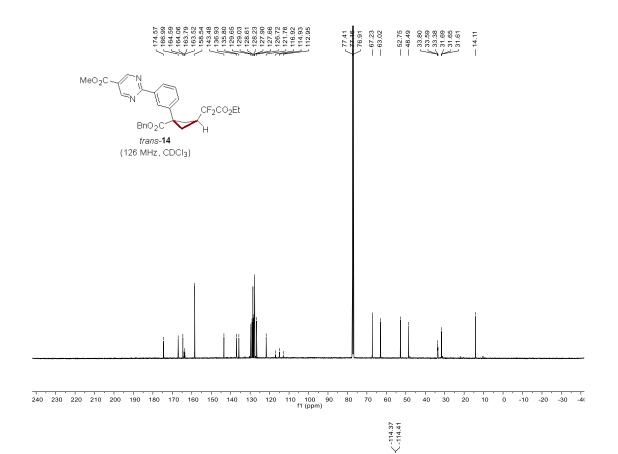


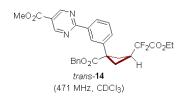


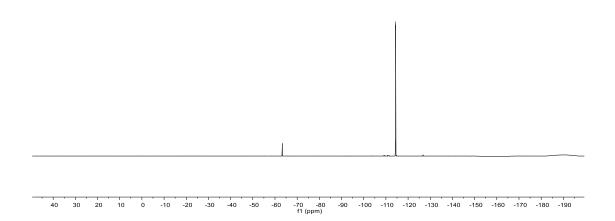


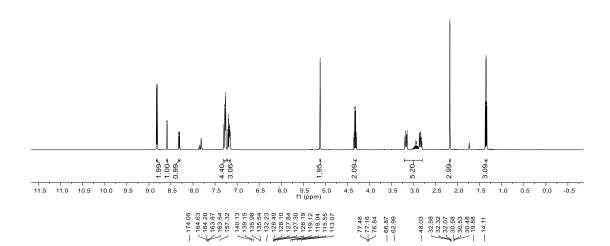


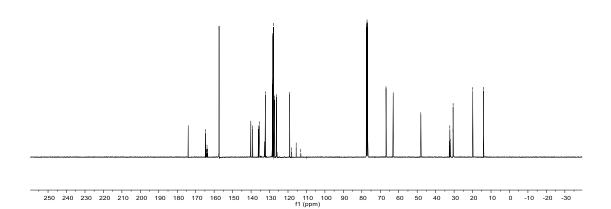


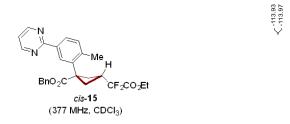


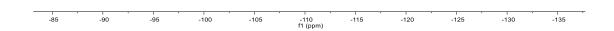


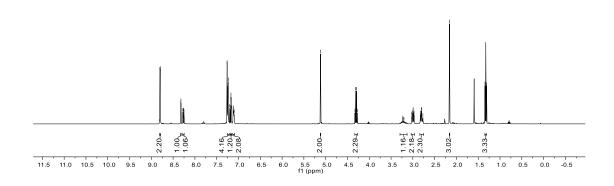

9.33 9.44 8.44 8.45

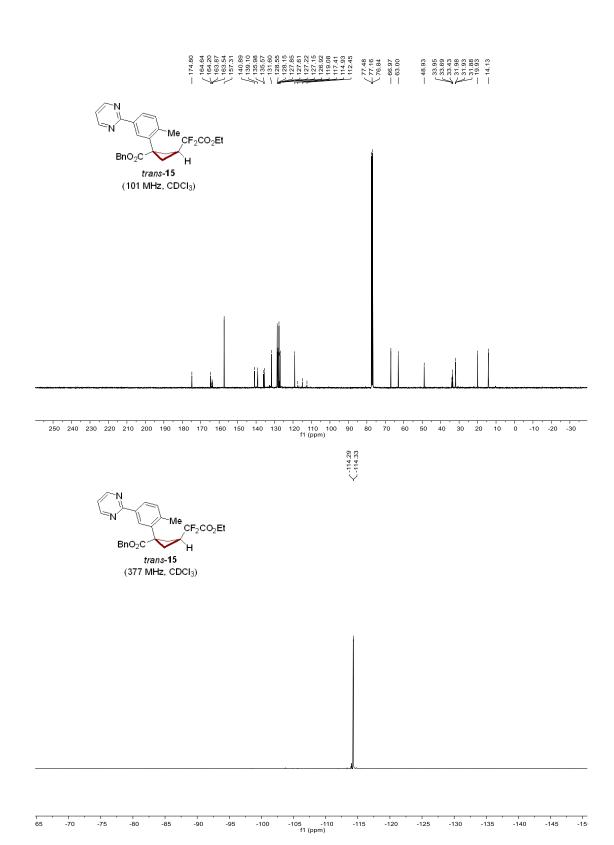

$$\begin{array}{c} \text{MeO}_2\text{C} & \\ \text{N} & \\ \text{EnO}_2\text{C} & \\ \\ \text{trans-14} \\ \text{(500 MHz, CDCI_3)} \end{array}$$

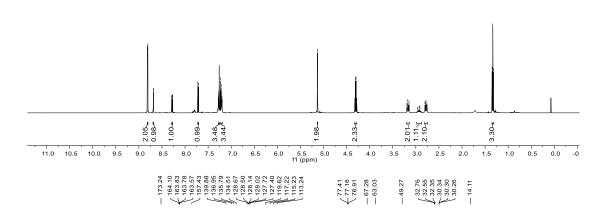


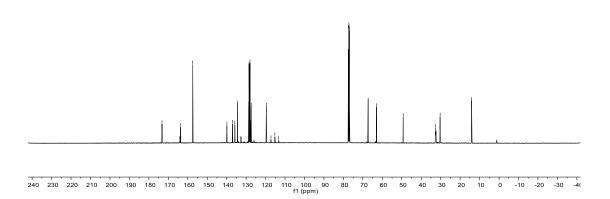


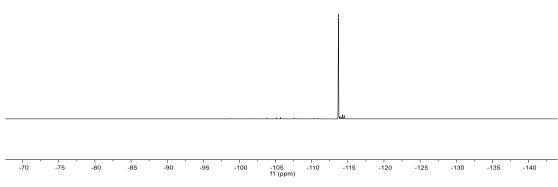


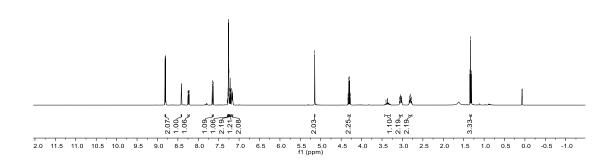


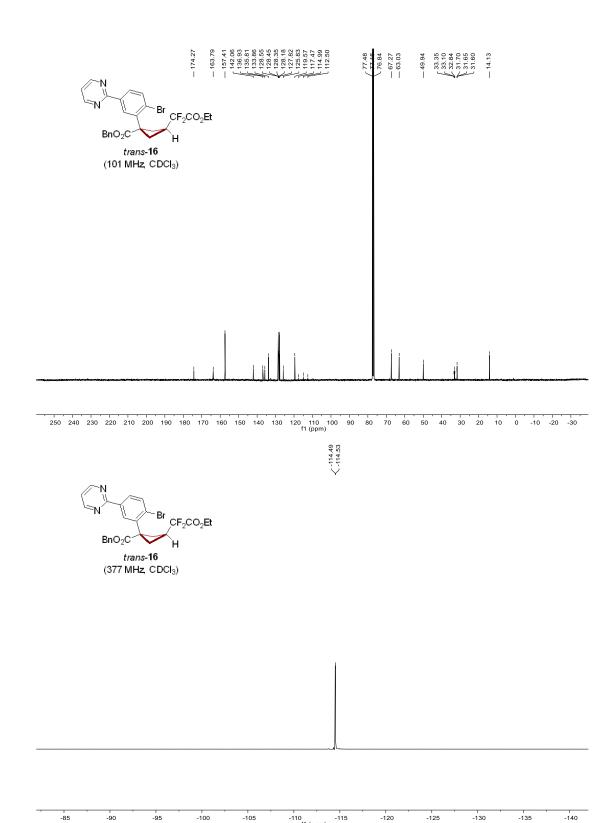




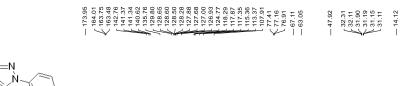


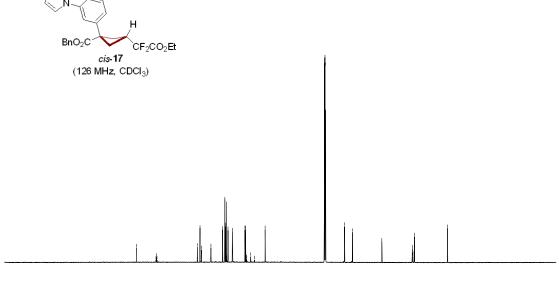


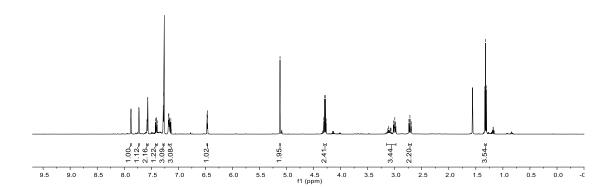


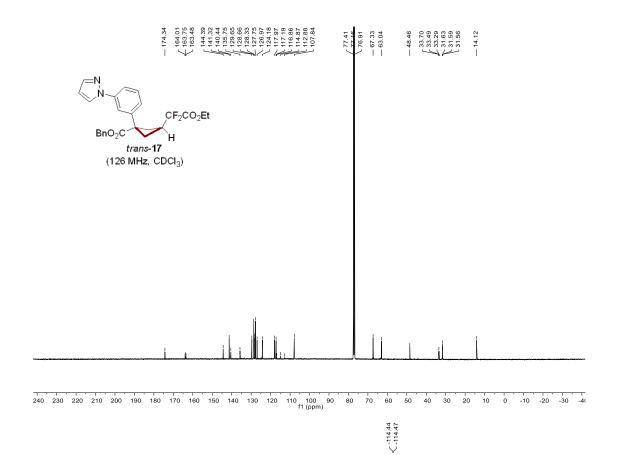


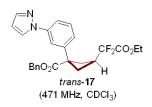




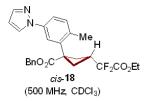


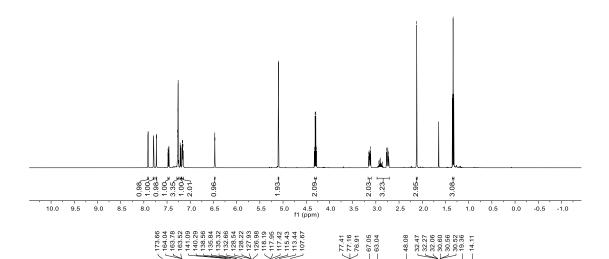


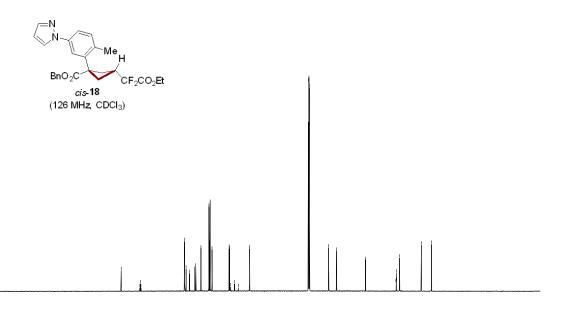

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 ft (ppm)

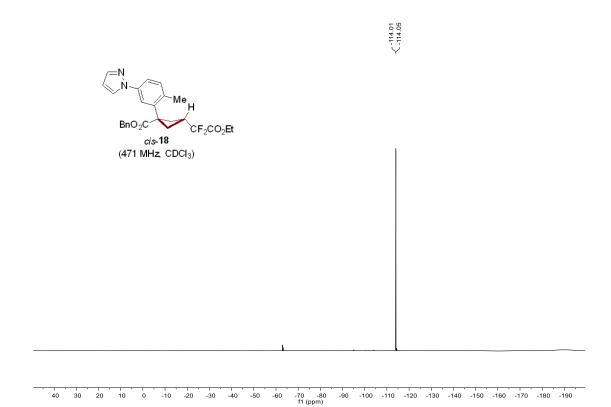

-72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 11 (ppm)

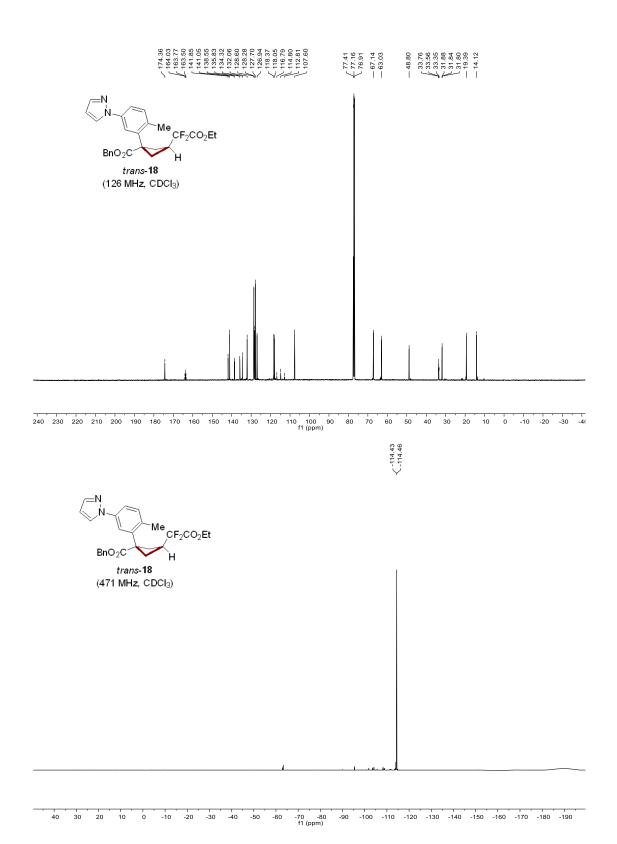
L 2.69

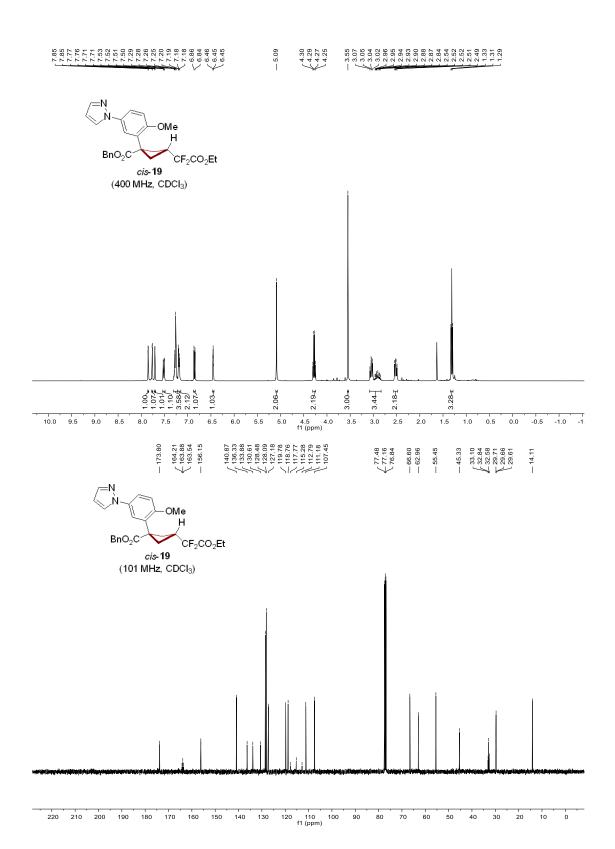

 $\left\{ \begin{array}{c} 1.33 \\ 1.32 \\ 1.31 \end{array} \right.$

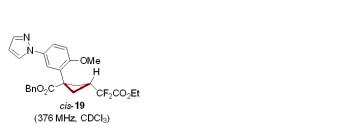


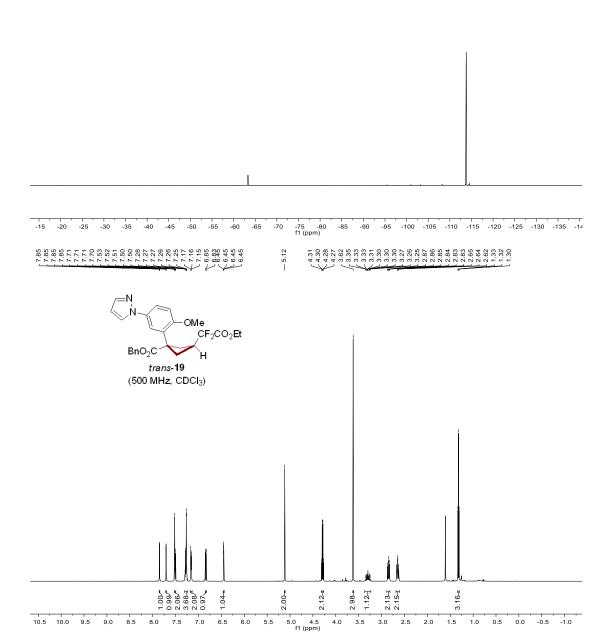


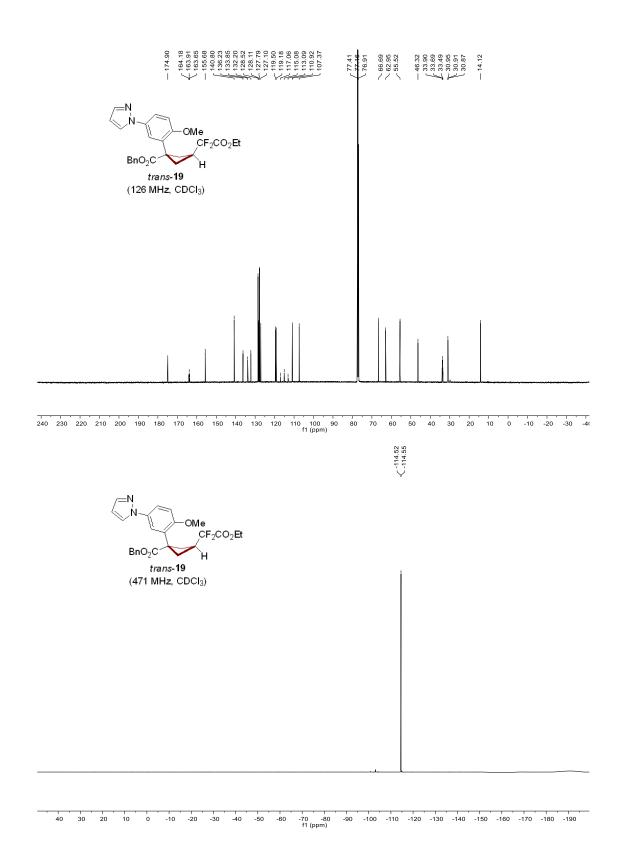


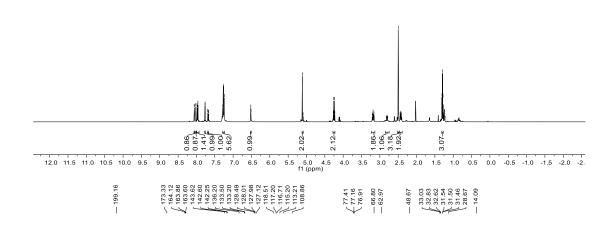


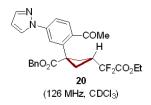

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 ff (ppm)

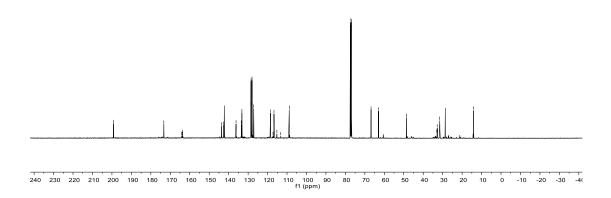


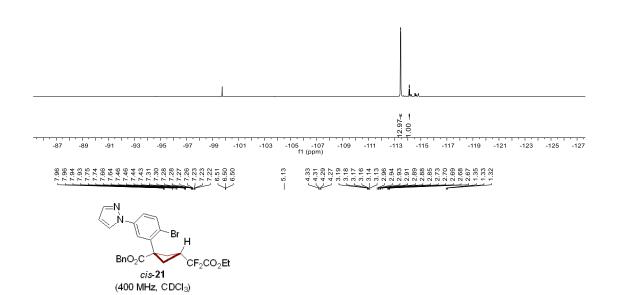

7.390 7.390 7.790 7.720 7.725 7.757 7.757 7.757 7.758

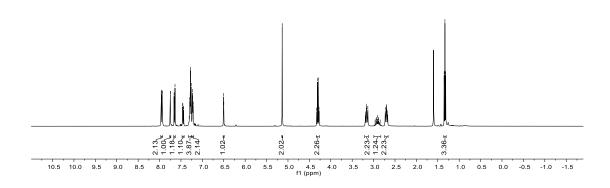


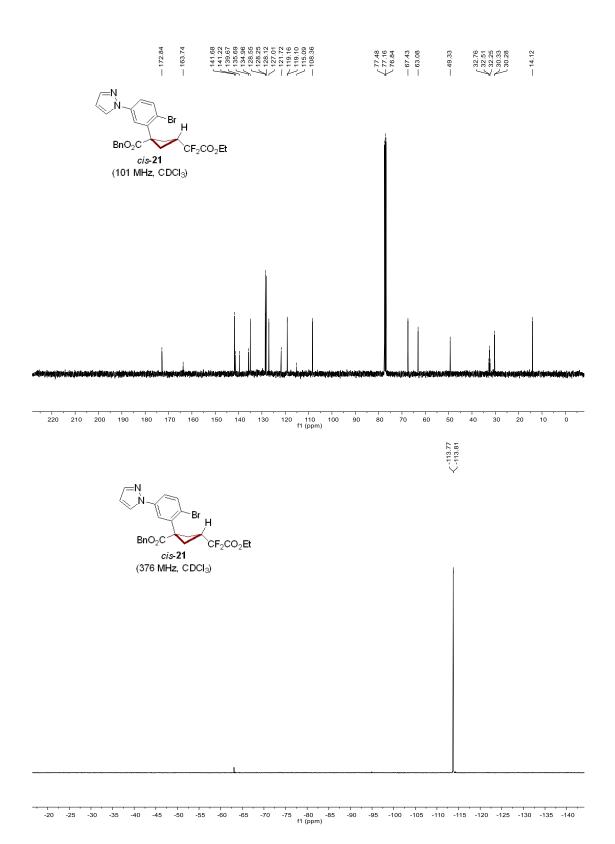


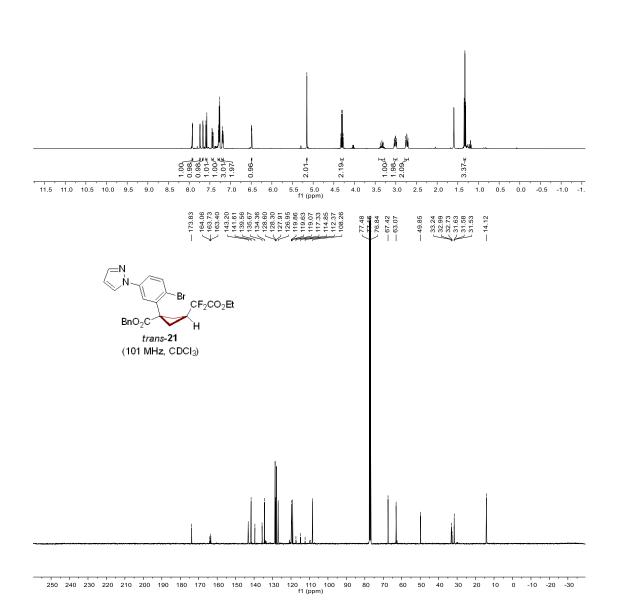


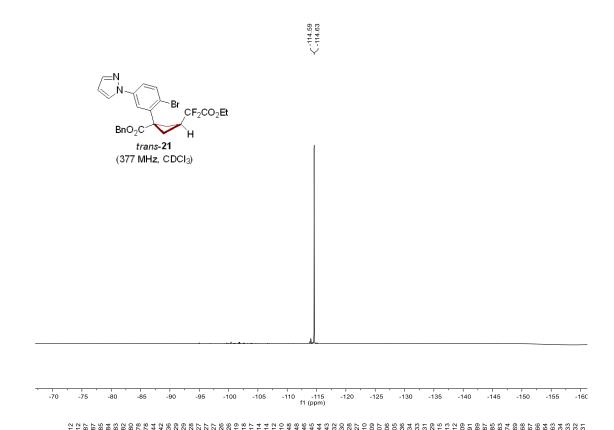


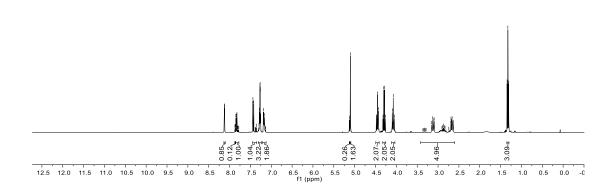


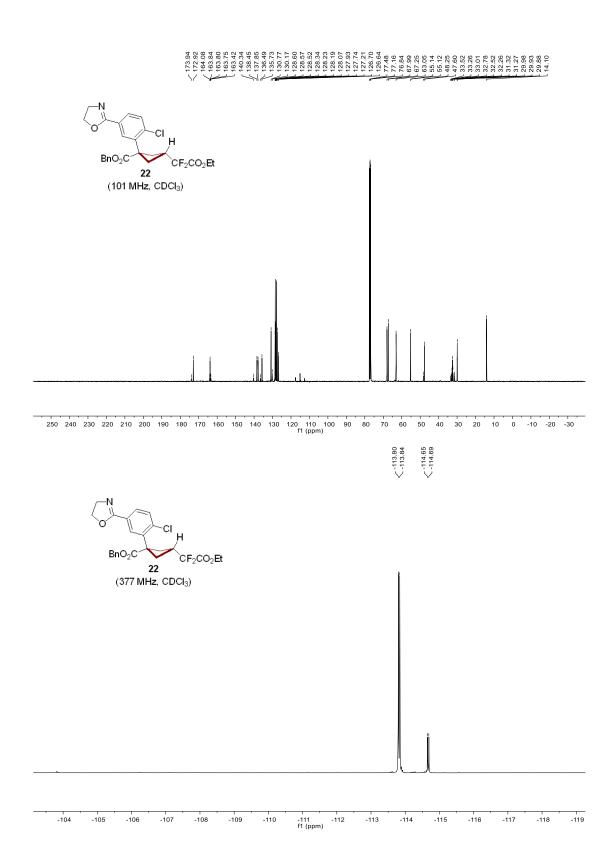

COMe H BnO
$$_2$$
C $_2$ C $_2$ CO $_2$ Et 20 (500 MHz, CDCI $_3$)

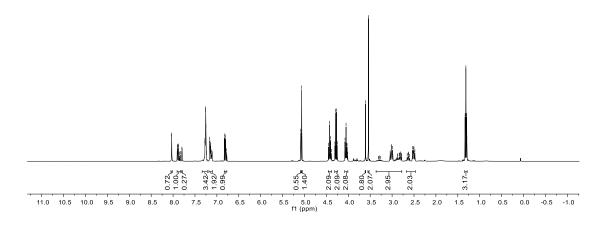


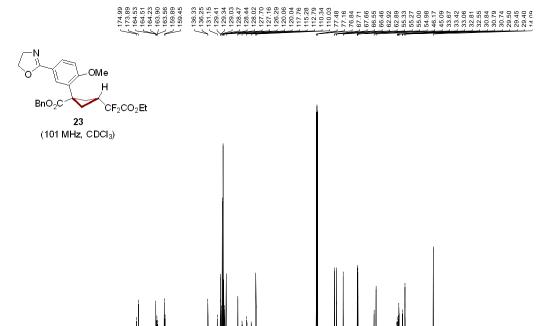


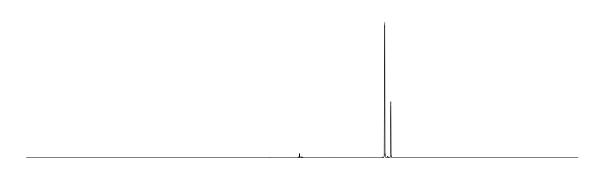


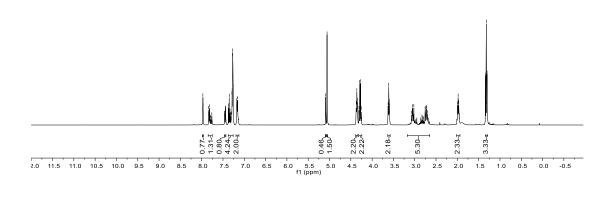


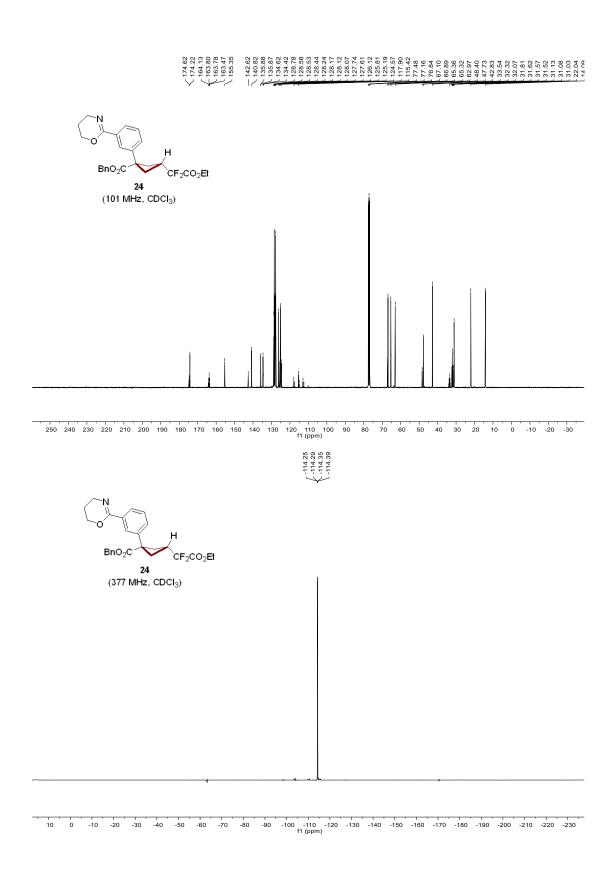


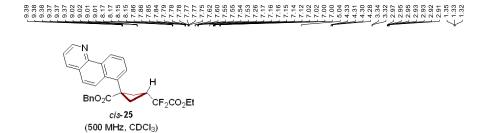


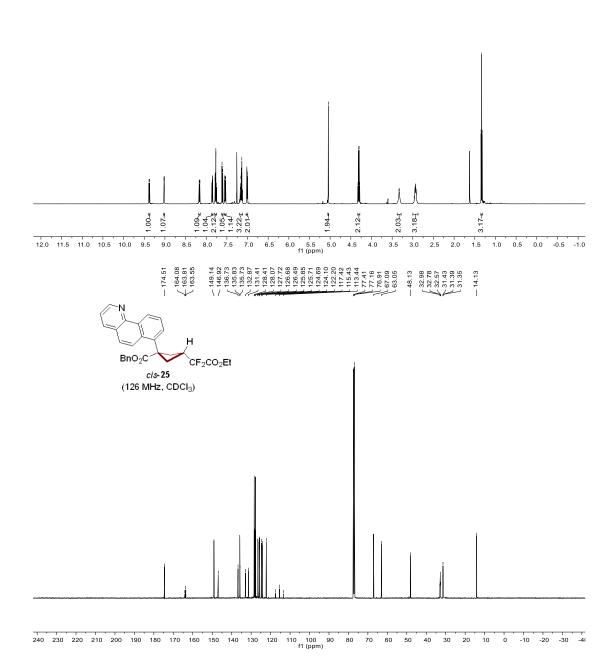




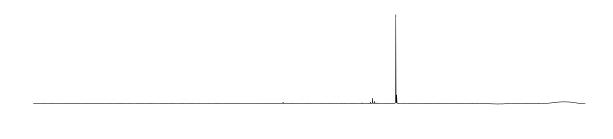


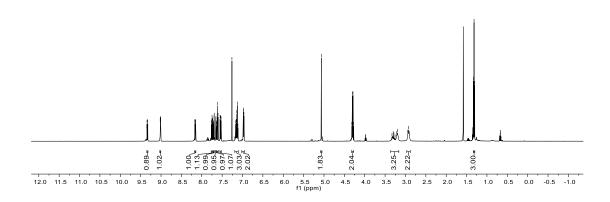


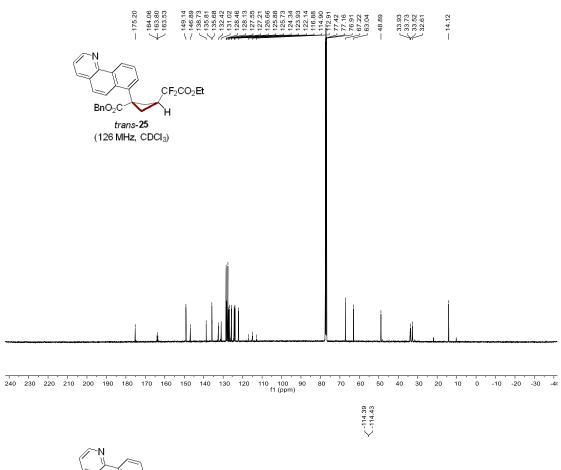


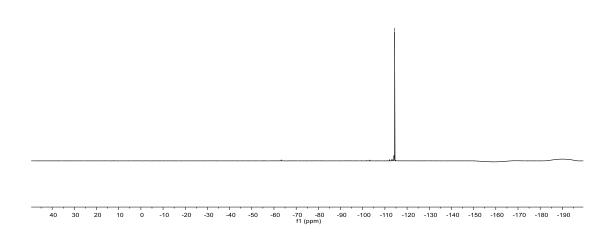

70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 ff (ppm)

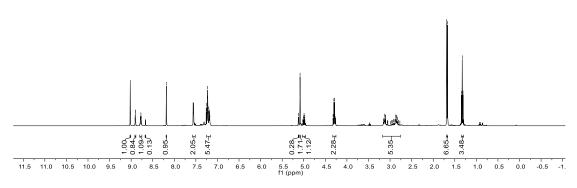
7.89

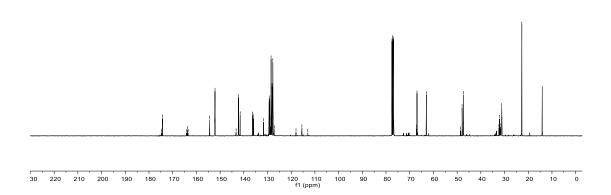


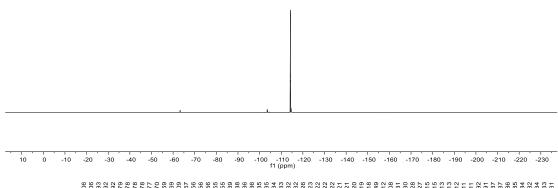


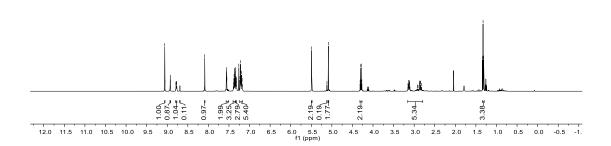


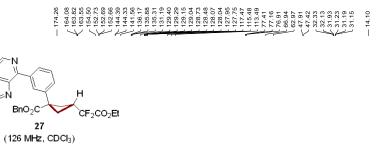


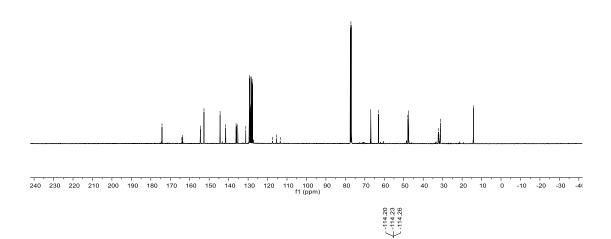


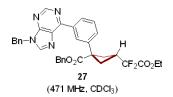


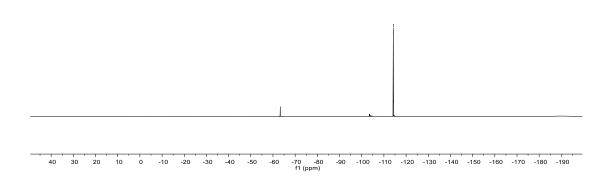


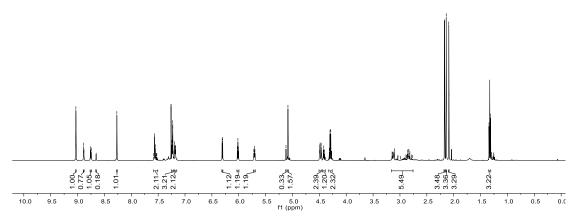


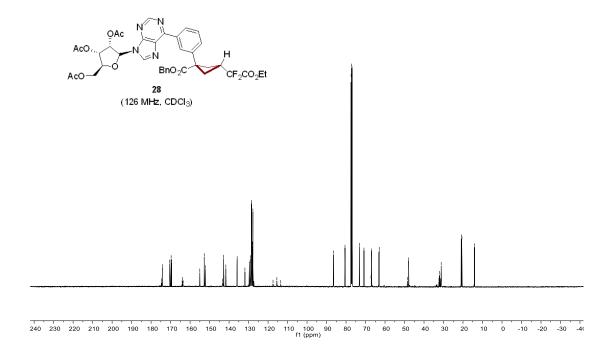


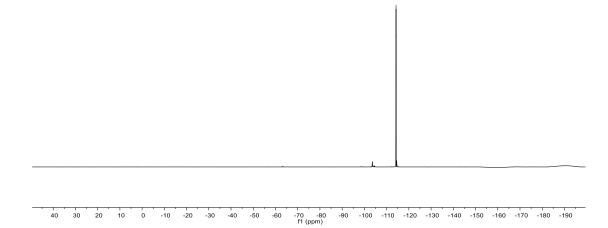


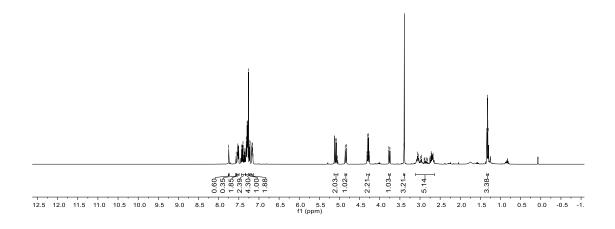


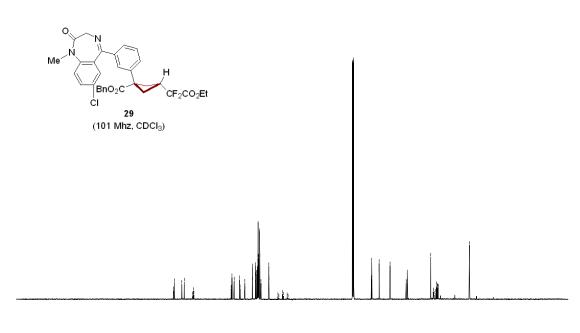




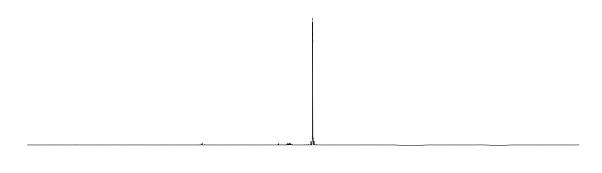


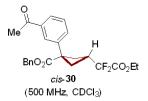


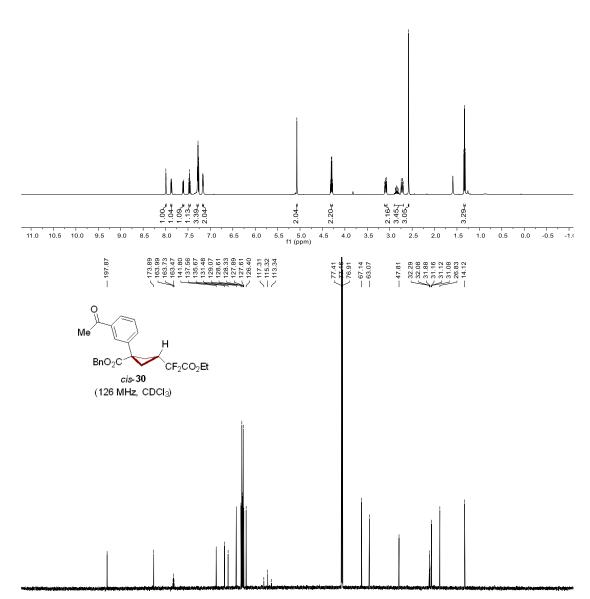




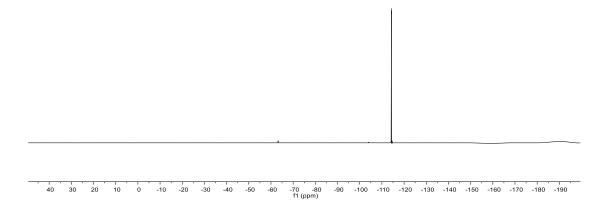
7.55



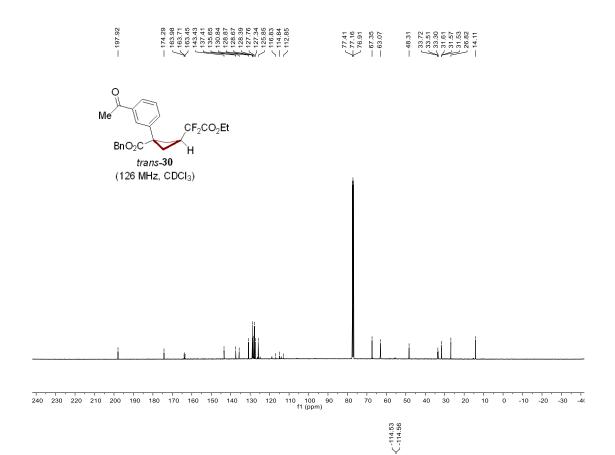

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 fl (ppm)

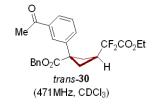

-114.25 -114.31 -114.35 -114.41

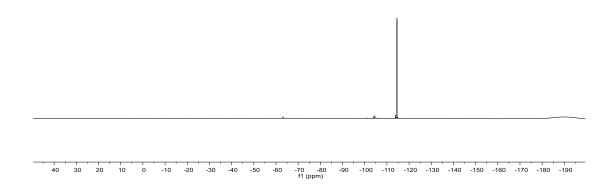
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 fl (ppm)

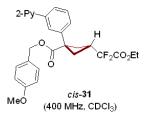


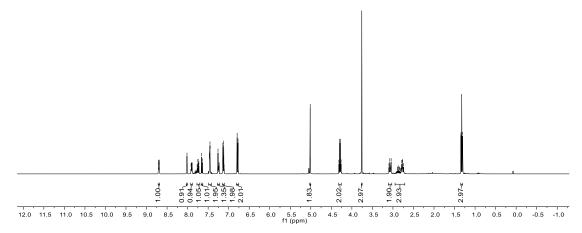


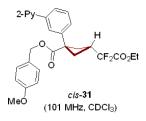


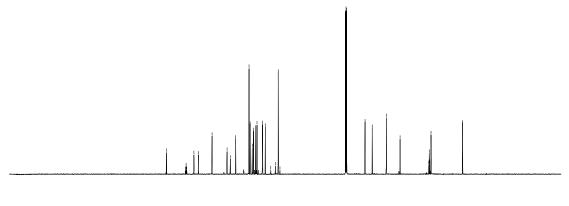

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 ff (ppm)

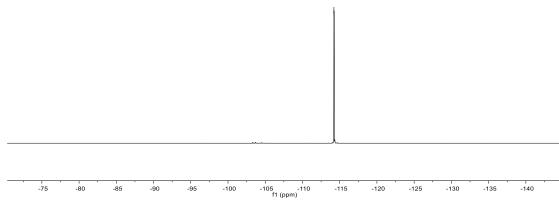


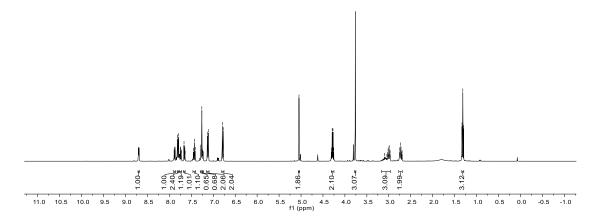


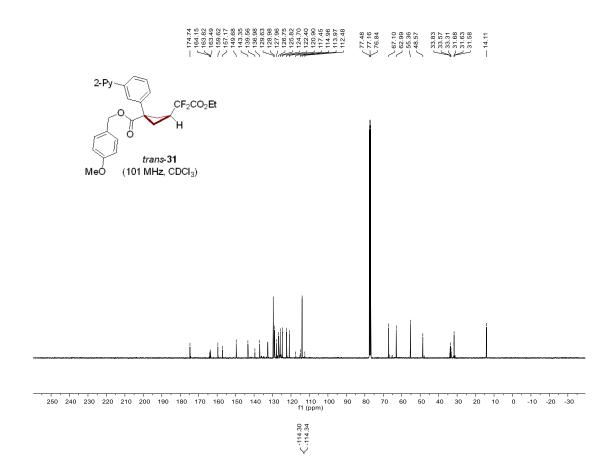


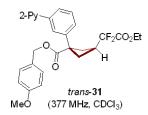


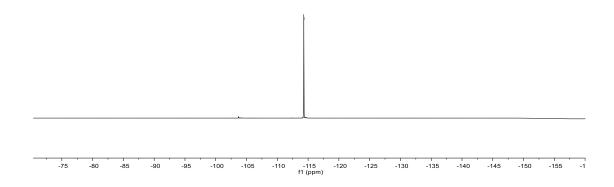


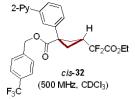


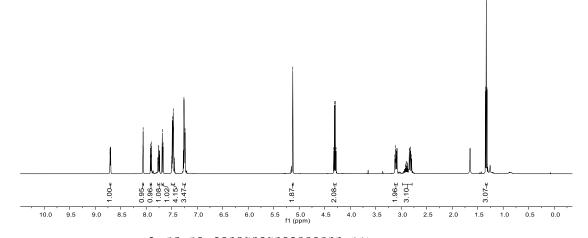




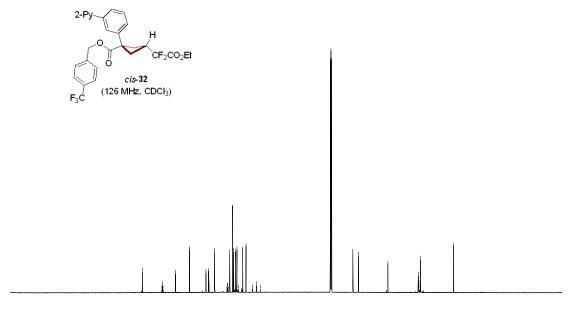


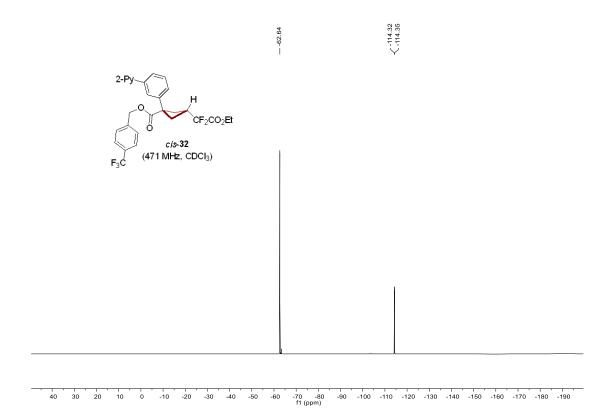

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

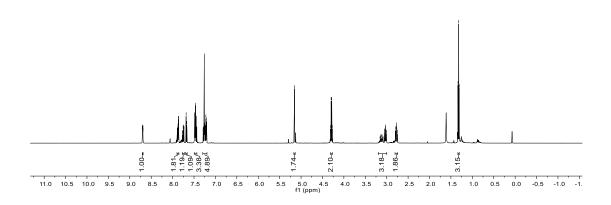


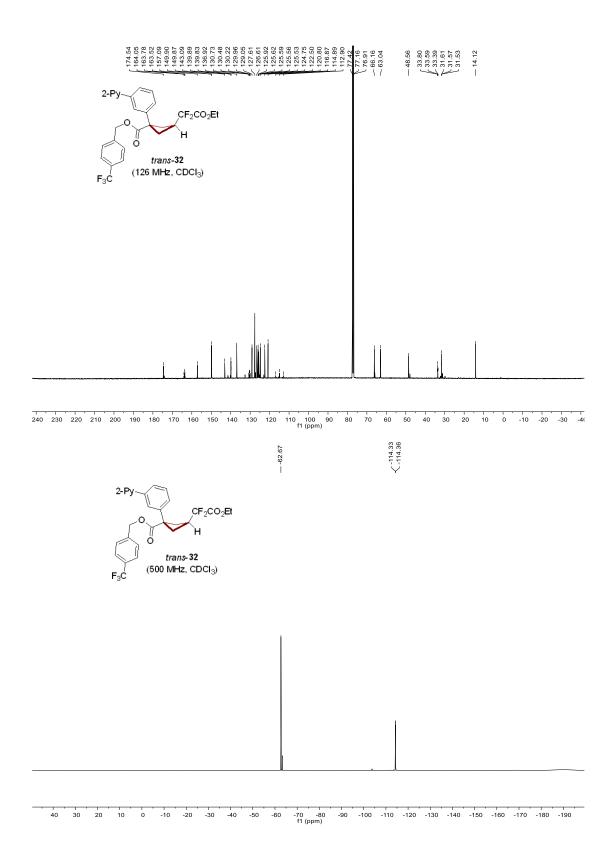


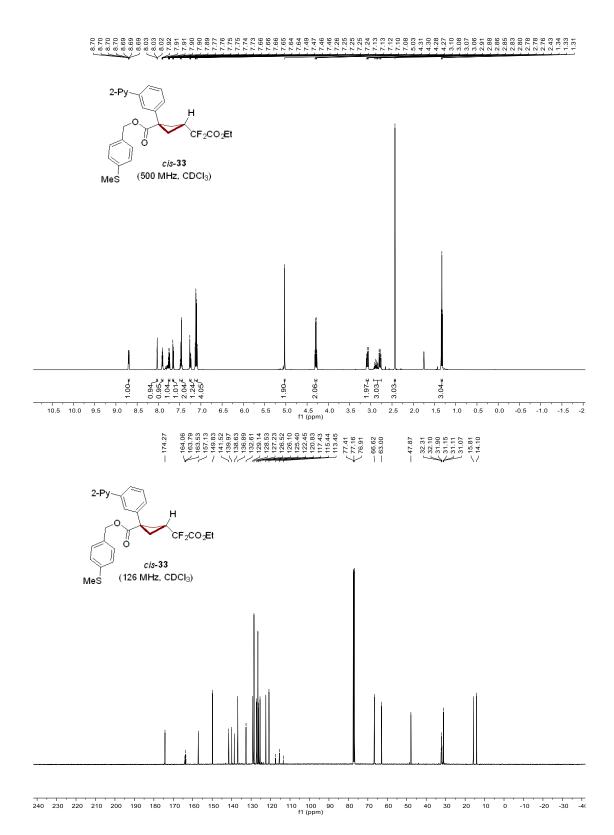




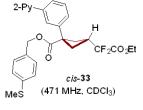


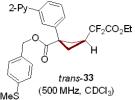


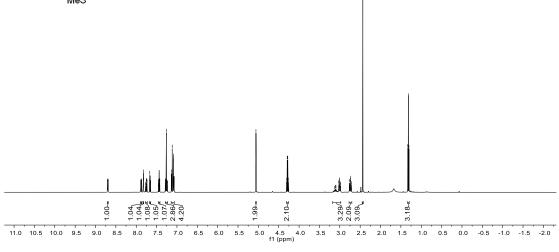


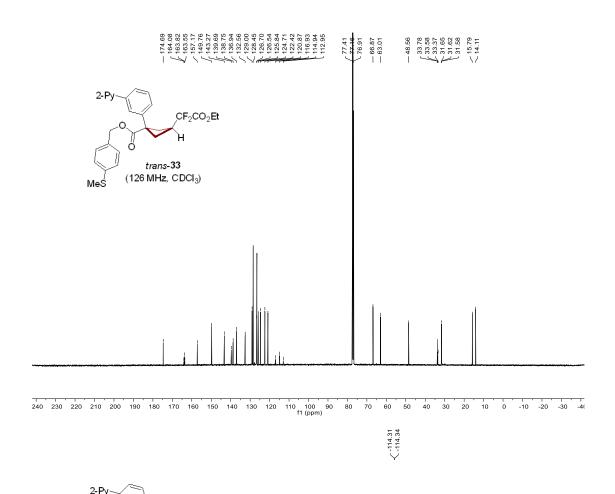


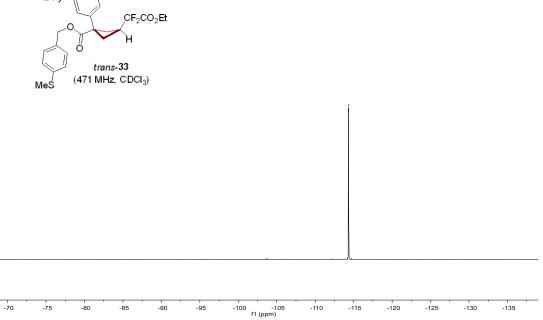
240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 ft (ppm)



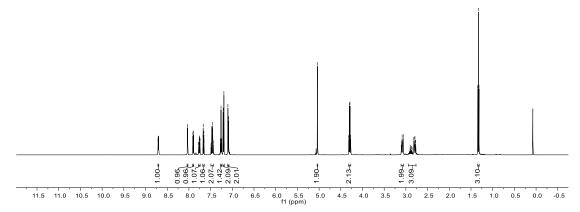


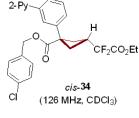


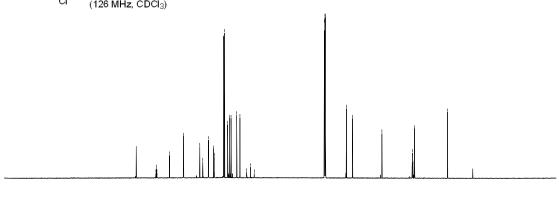


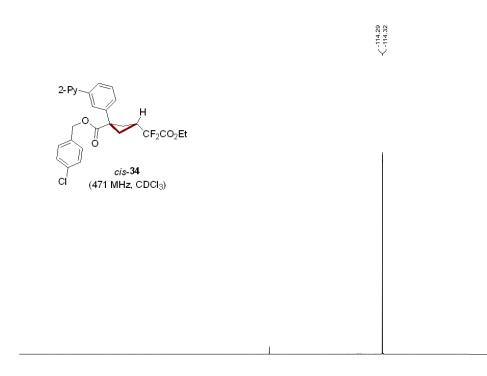


-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -15

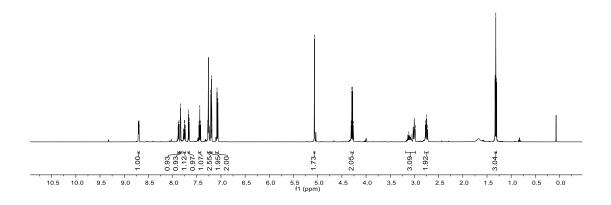


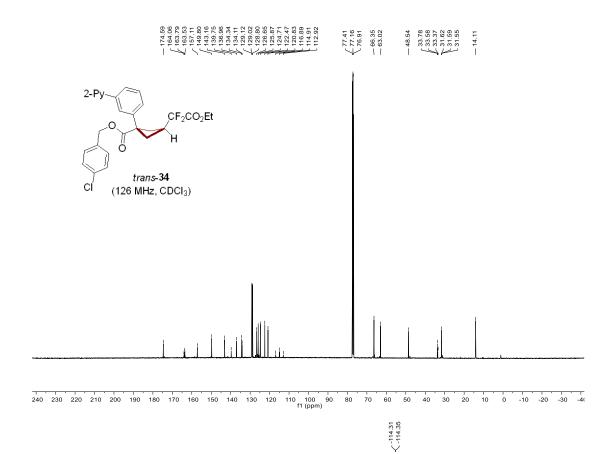


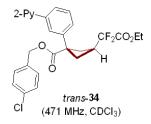


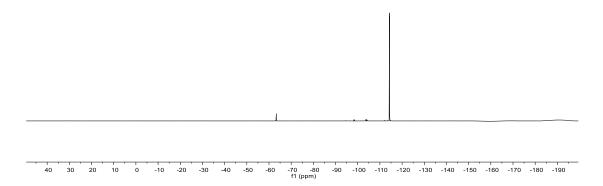


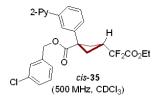
144.04 144.04 146.04 146.04 146.08

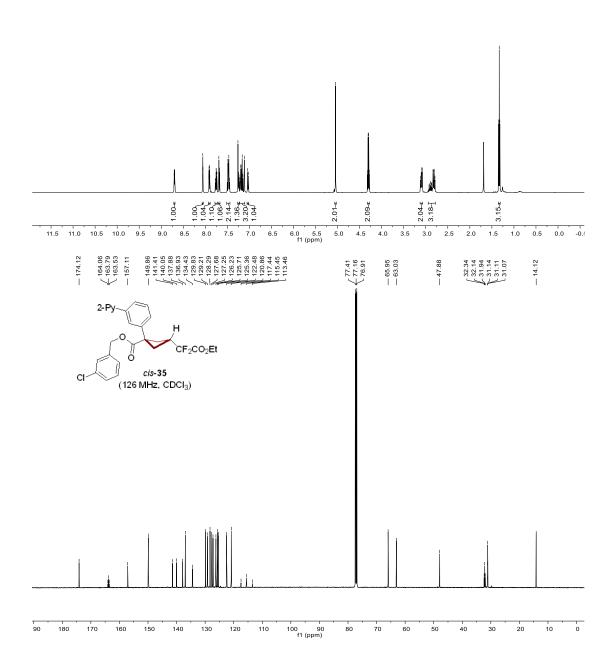


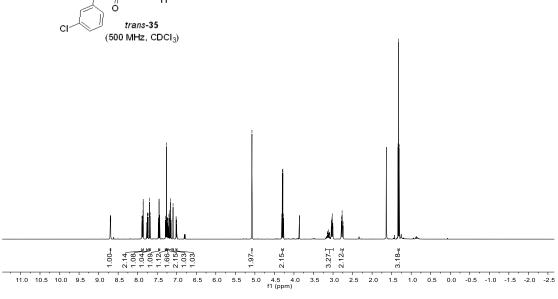


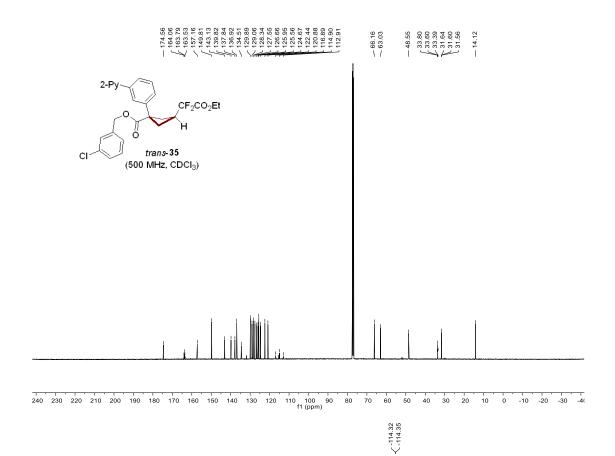

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)



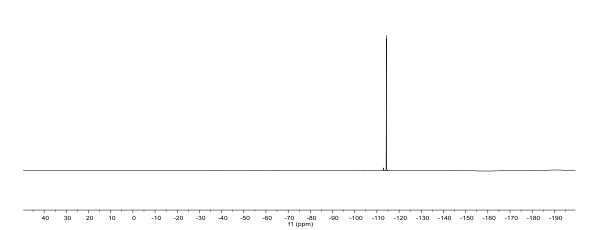

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

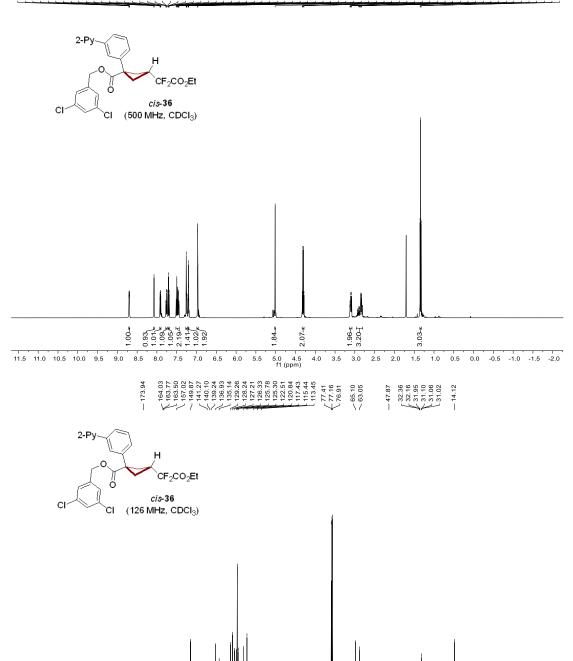


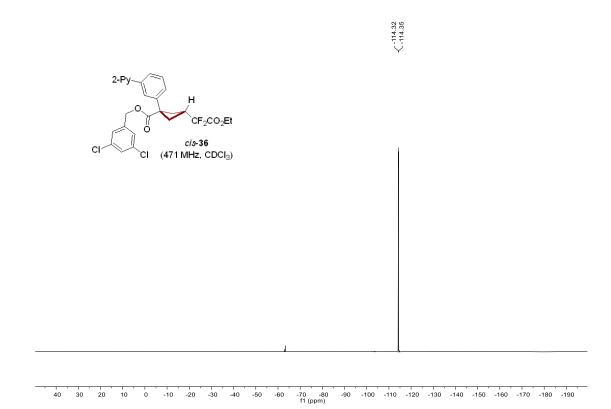


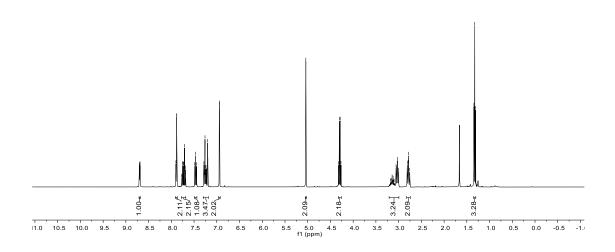


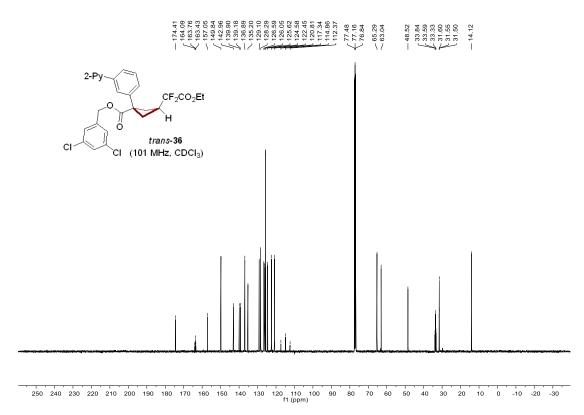


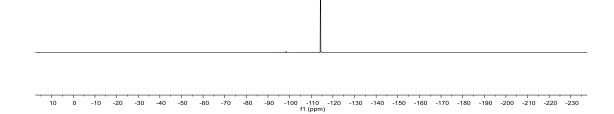


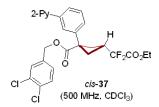

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

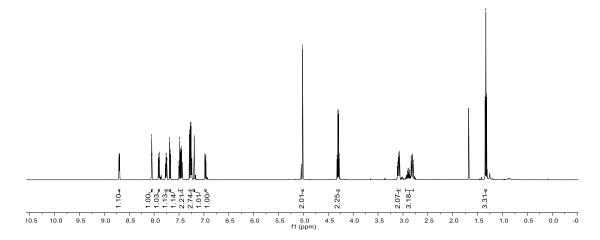


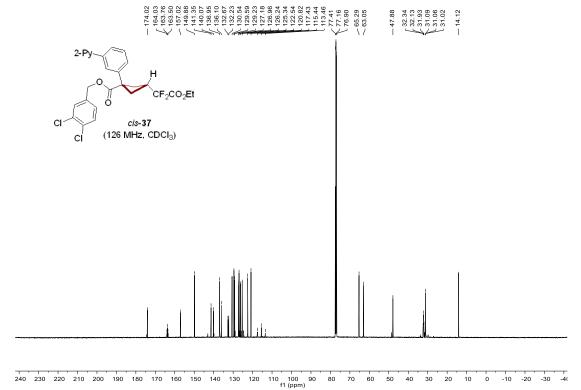




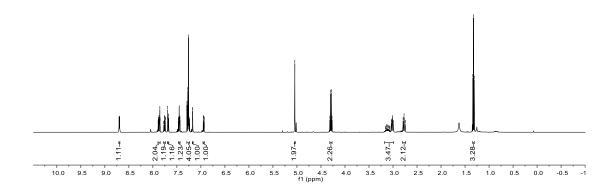

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

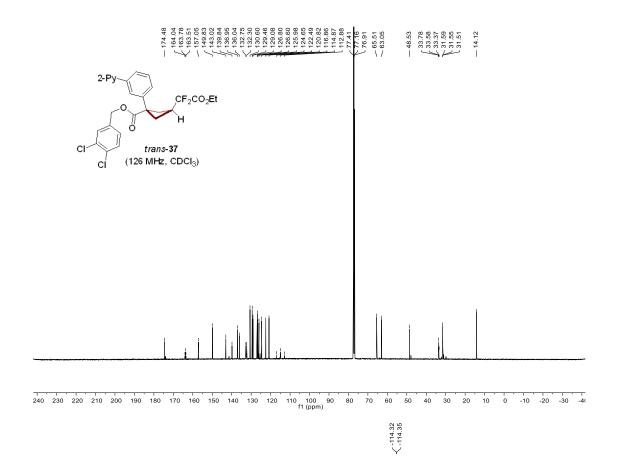


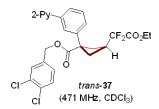


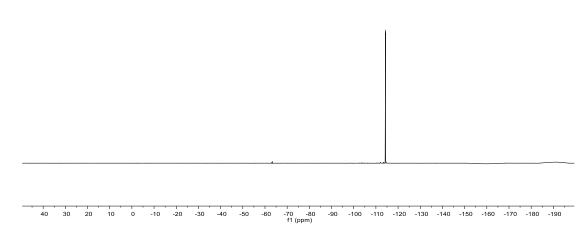


<-114.29 <-114.33

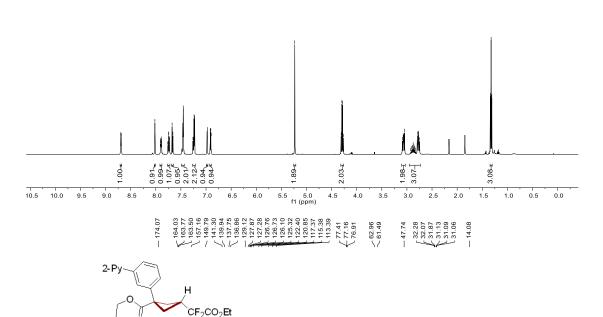


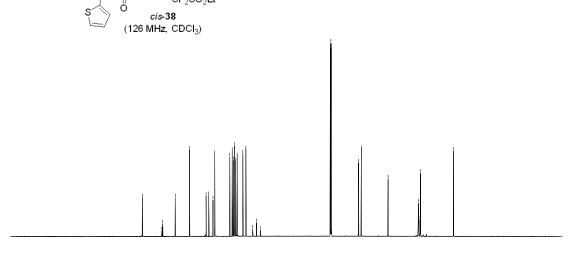


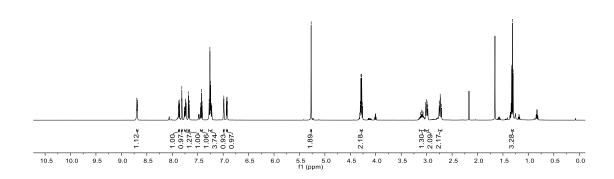


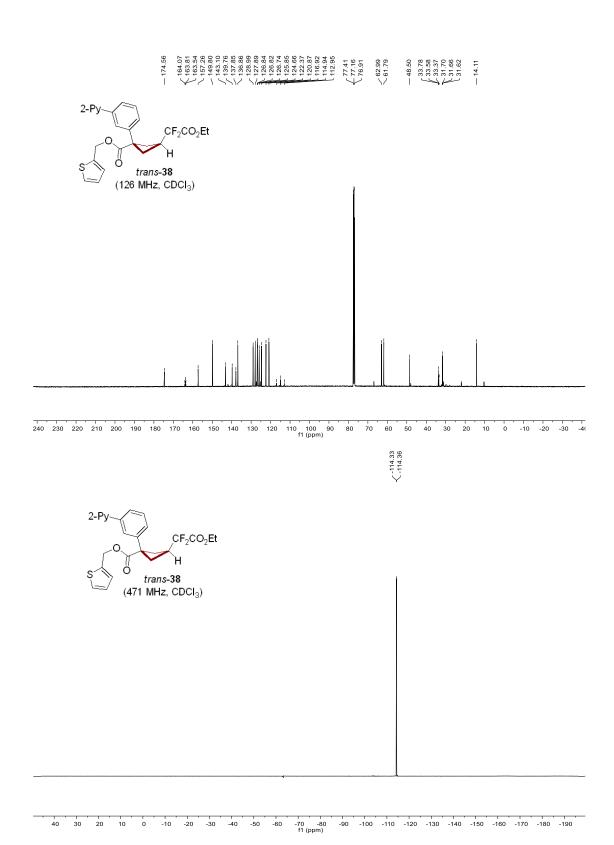


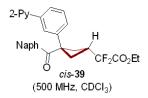
40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

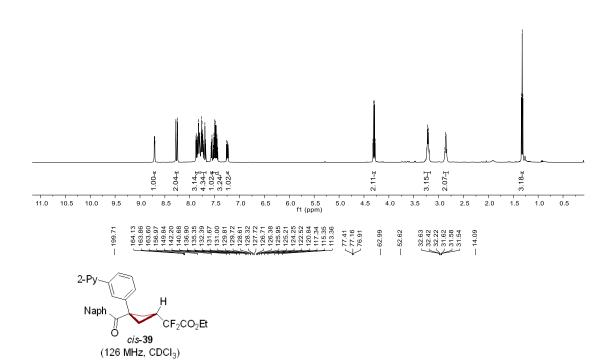


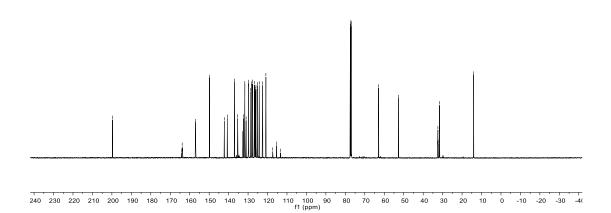


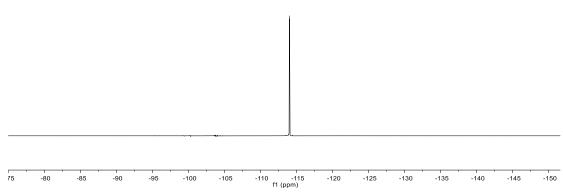

(500 MHz, CDCl₃)

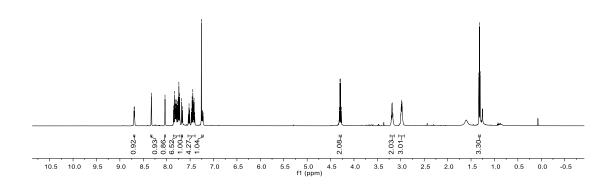


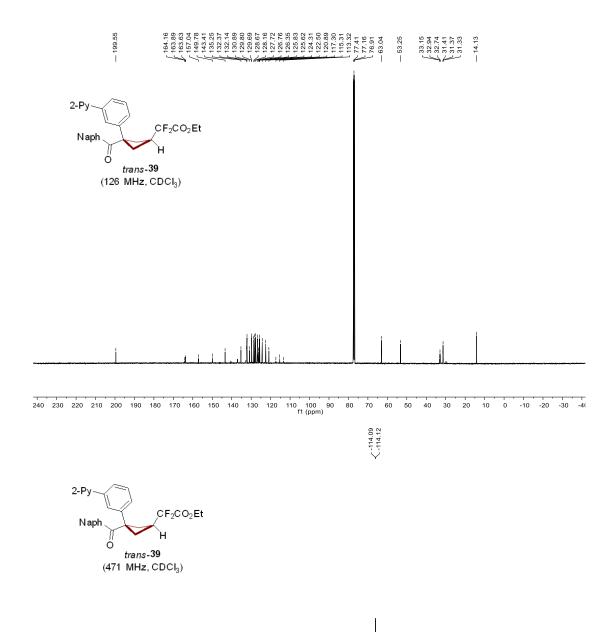


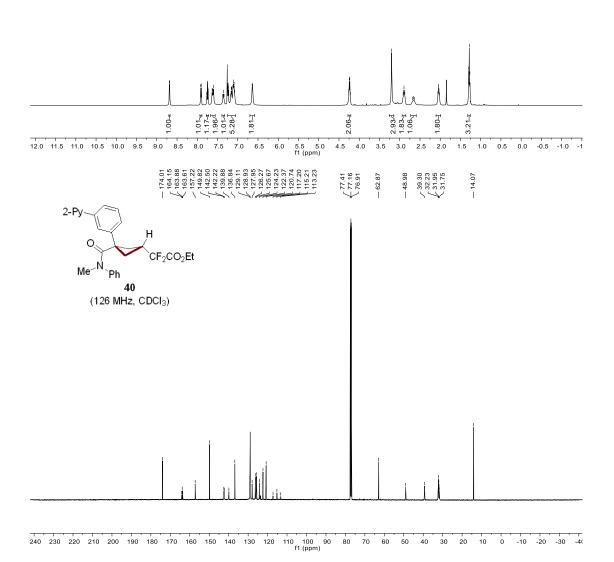


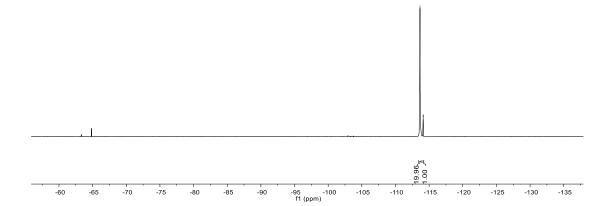

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ft (ppm)

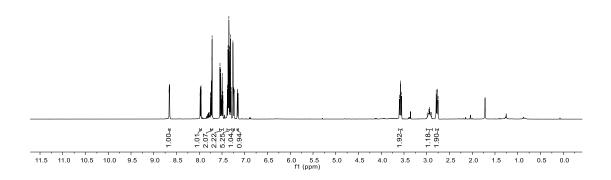


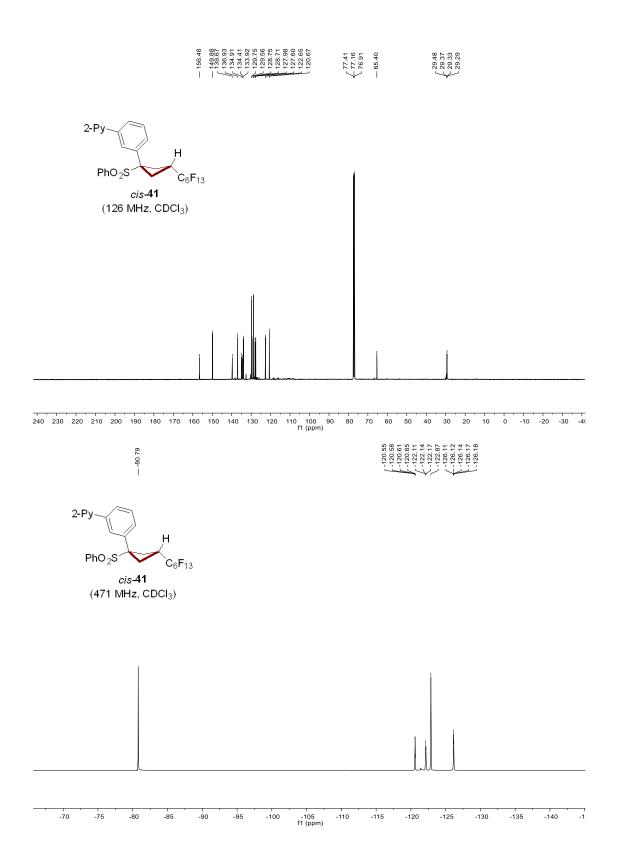


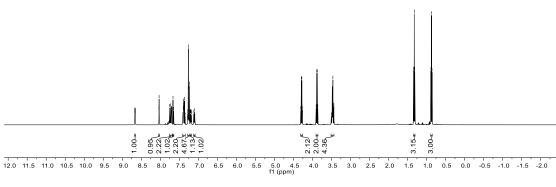


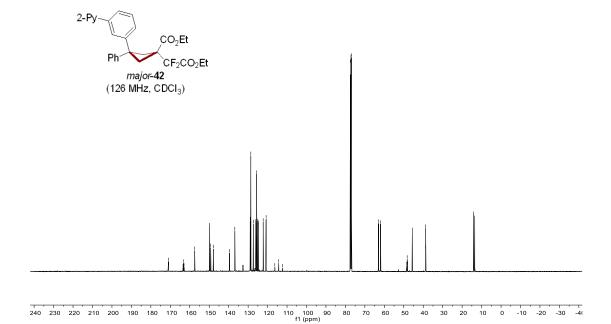


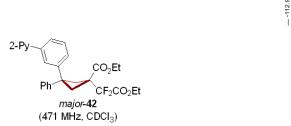


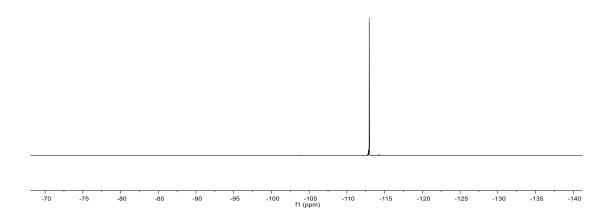

-76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 fl (ppm)

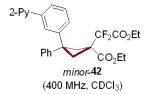

2-Py
$$H$$
 CF_2CO_2Et Me^{-N} Ph 40 $(500 MHz, CDCI_3)$

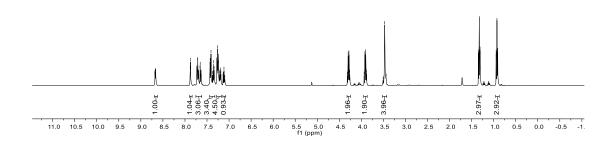


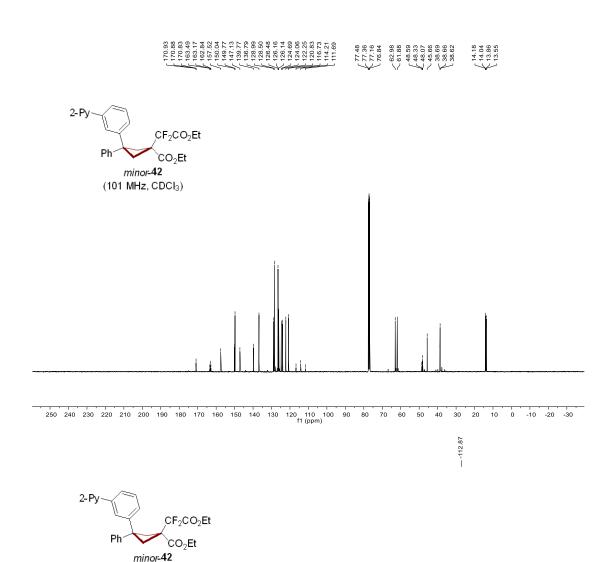


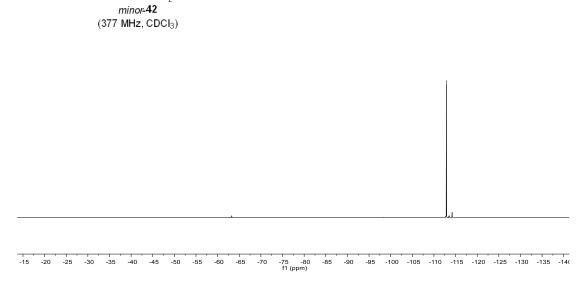


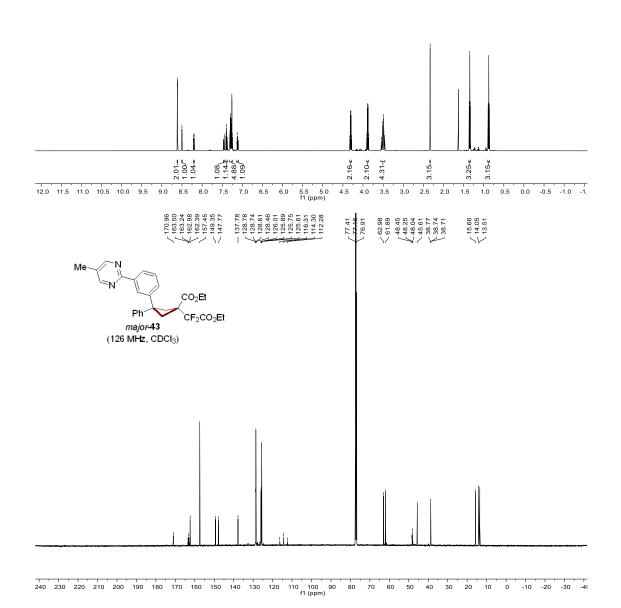


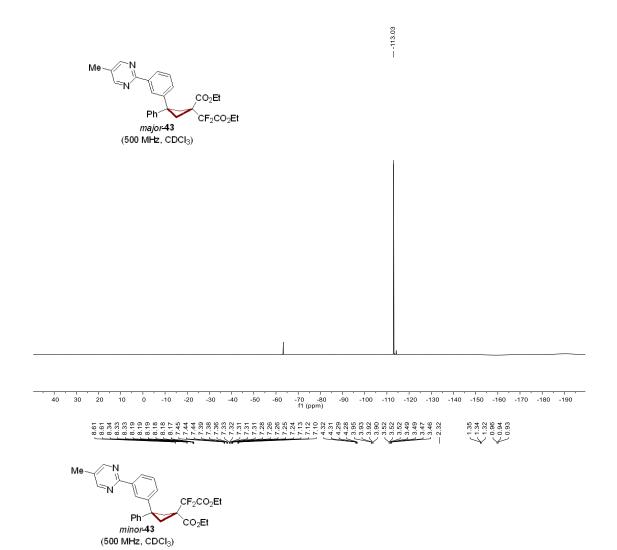


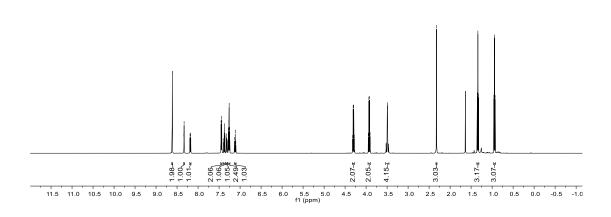


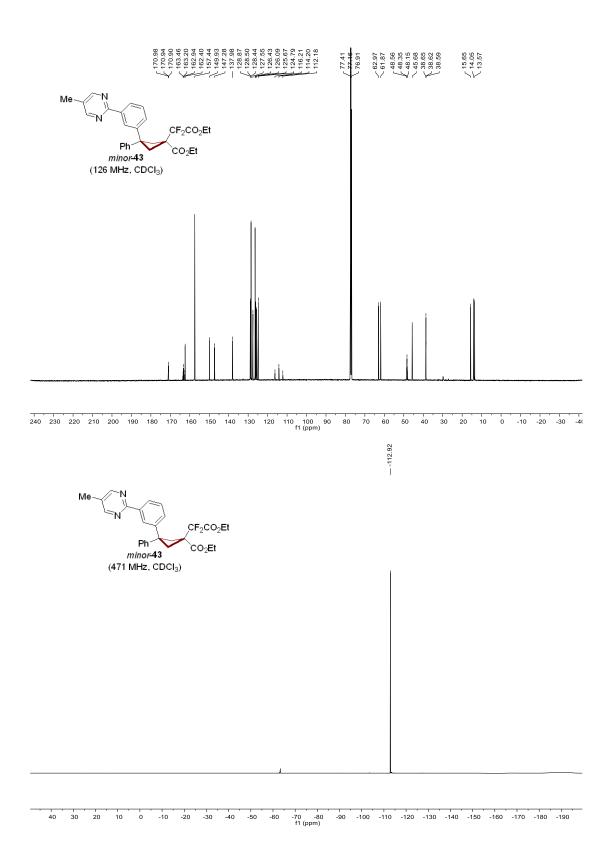


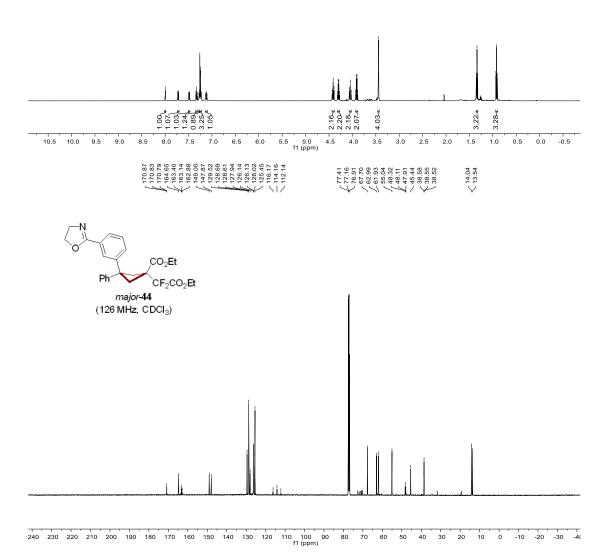


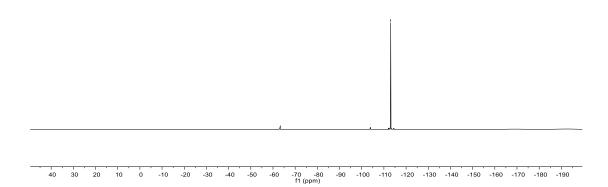


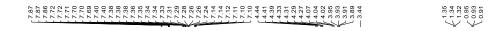


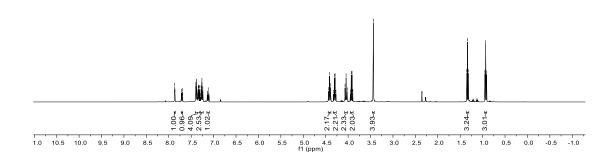


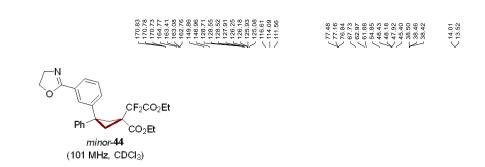


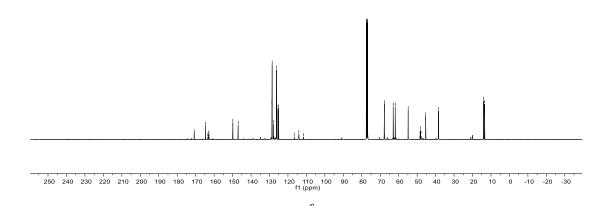


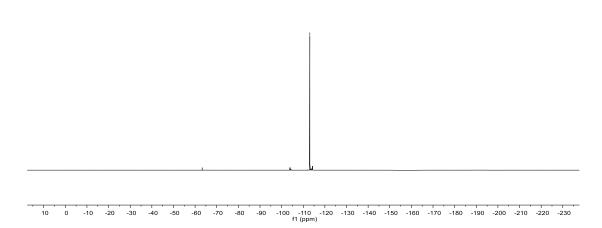


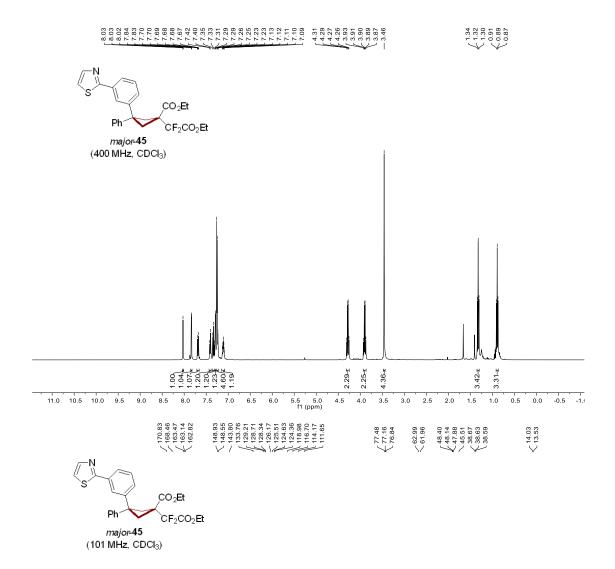


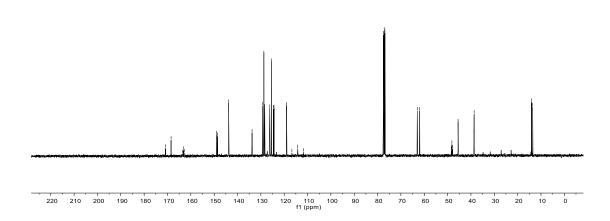




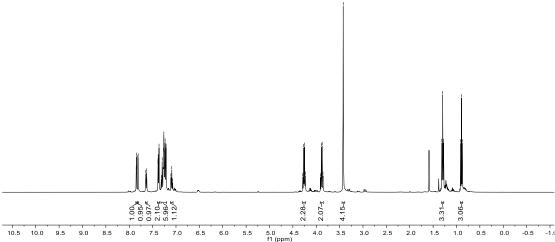


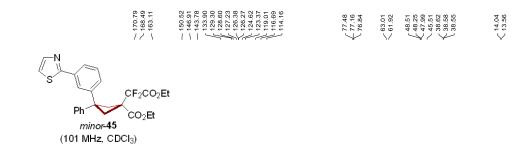


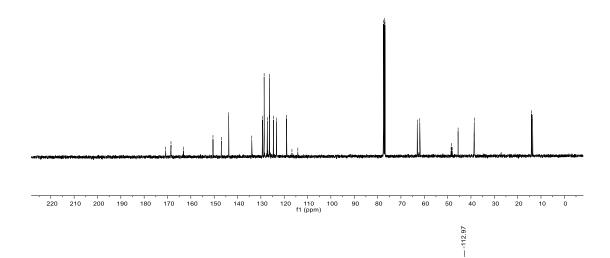


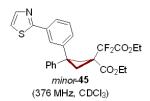


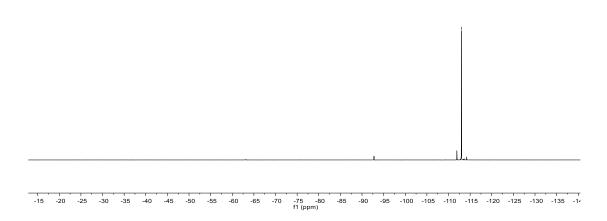
CF₂CO₂Et
Ph CO₂Et
minor 44
(377 MHz, CDCl₃)

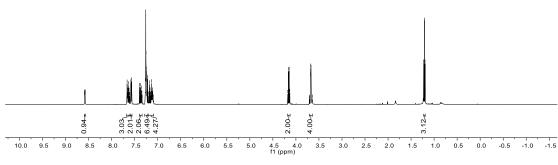


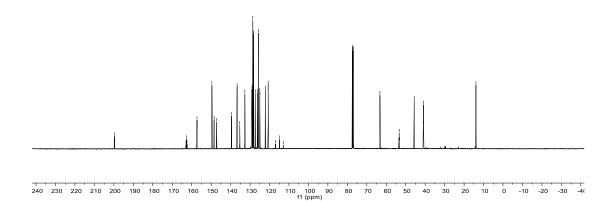


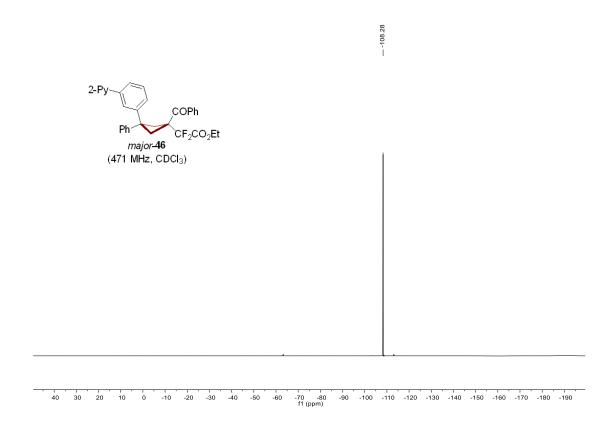

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -110 (ppm)

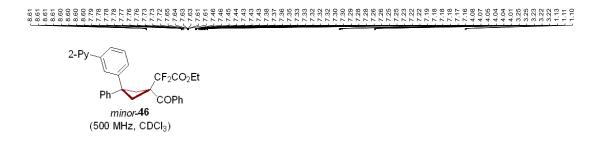

4.29 4.25 4.25 4.24 3.81 3.86 3.86 3.86 3.86 1.31 1.28 1.28 0.91 0.89

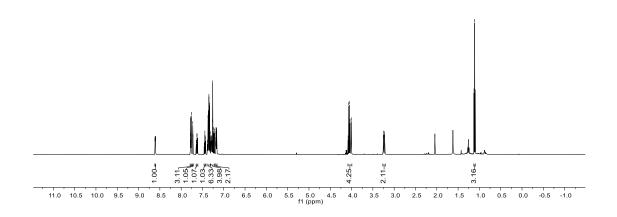


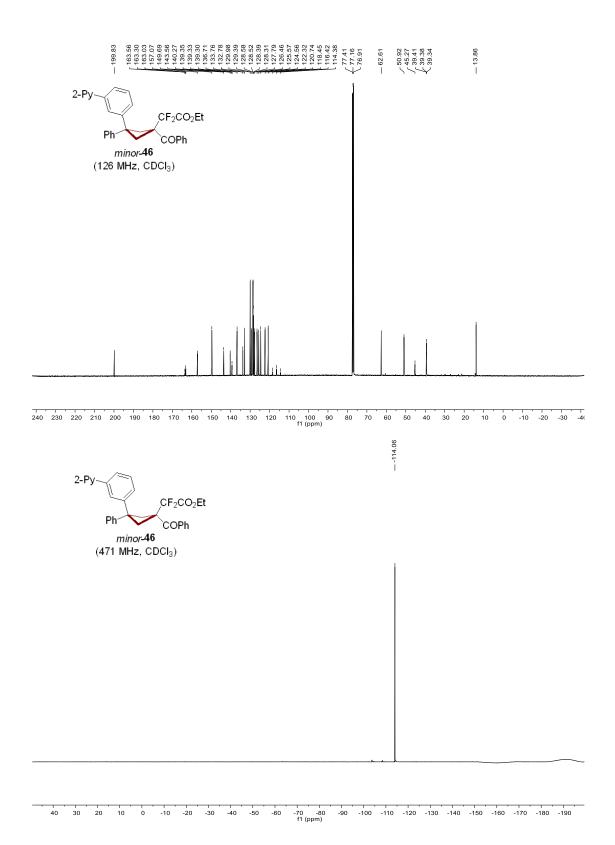


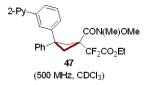


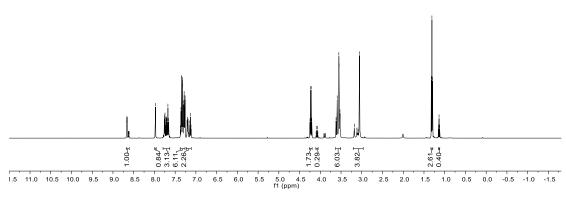

2-Py COPh Ph
$$CF_2CO_2Et$$
 major- $\mathbf{46}$ (500 MHz, CDCl₃)

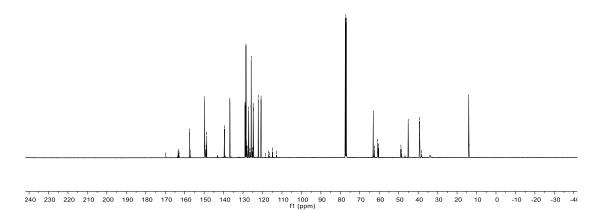


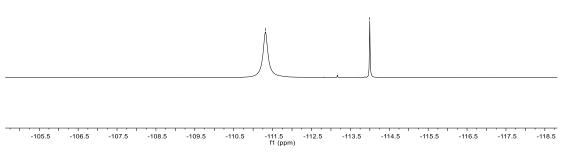

199.67 199.68 162.89 162.89 162.89 162.89 177.27 139.57 129.14



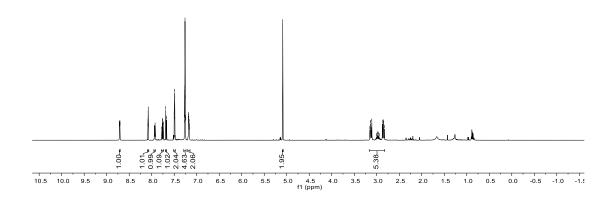


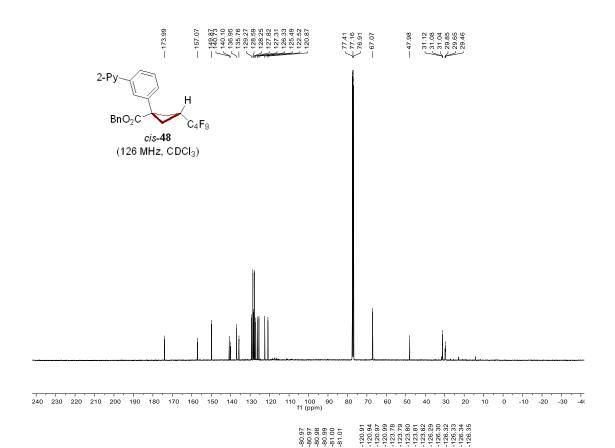


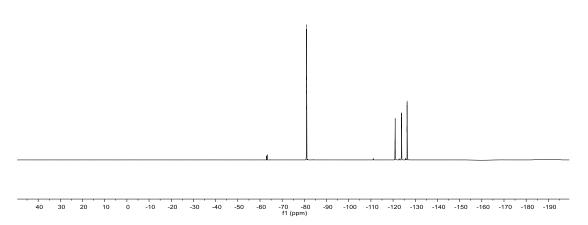


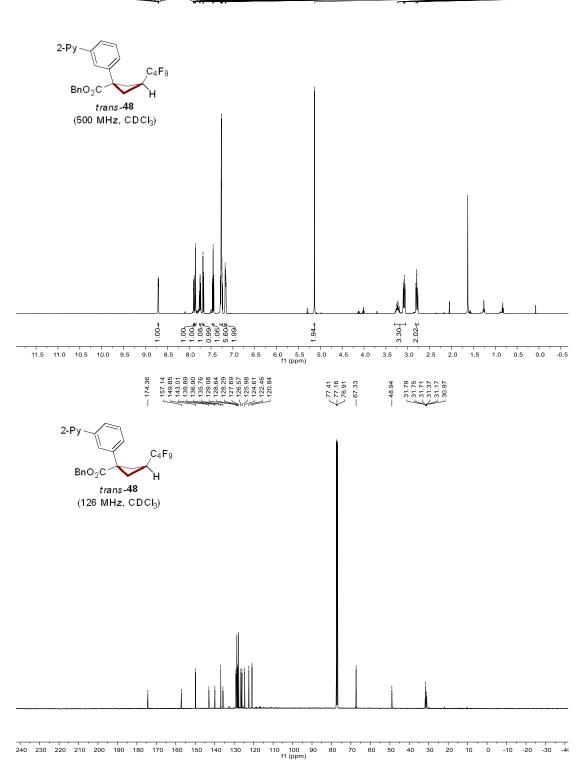


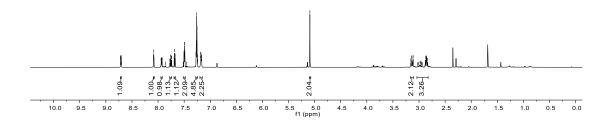
169.74
163.74
169.74
169.66
169.74
169.66
179.67
189.66
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
189.67
18

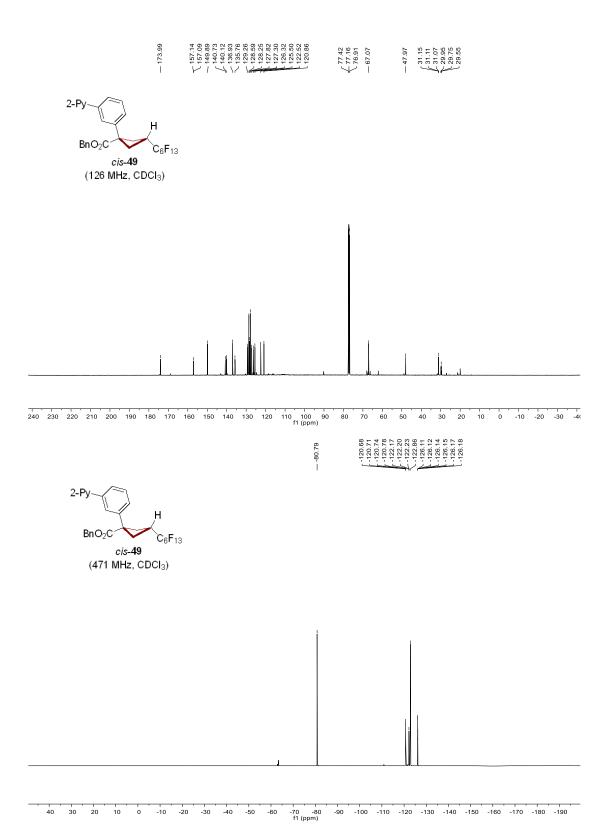


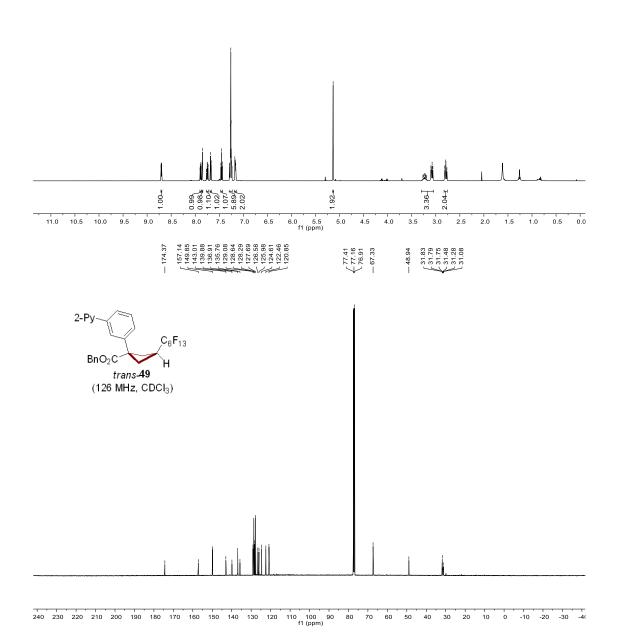




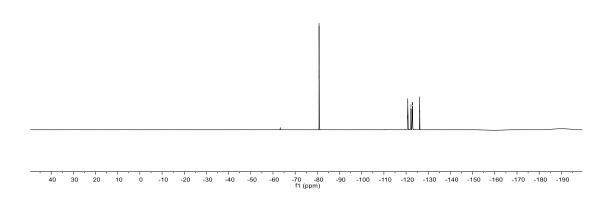

$$\begin{array}{c} \text{2-Py} \\ \text{BnO}_2\text{C} \\ \text{cis-48} \\ \text{(500 MHz, CDCI}_3) \end{array}$$

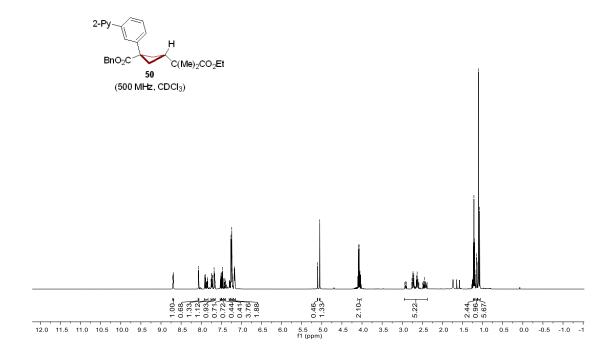


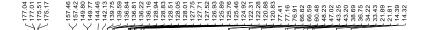


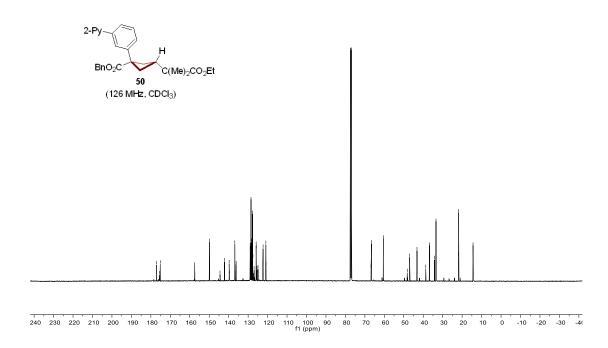

-66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -13 -116 -118 -120 -122 -124 -126 -128 -130 -132 -13

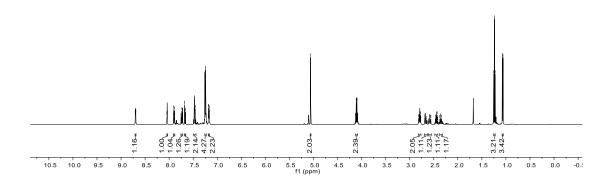
2-Py
$$H$$
 BnO₂C C_6F_{13} cis -49 $(500 \text{ MHz, CDCl}_3)$

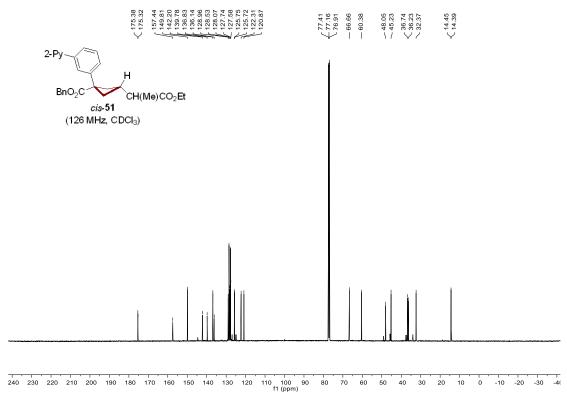


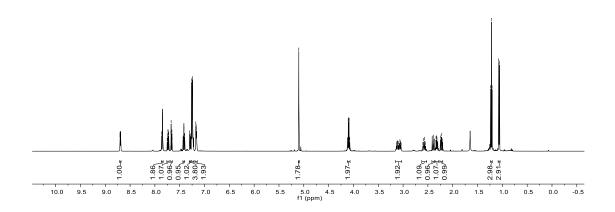


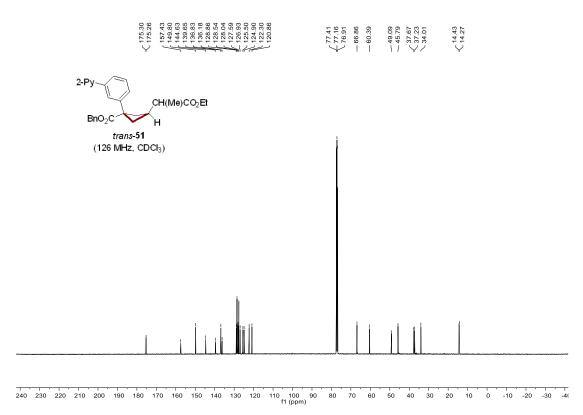


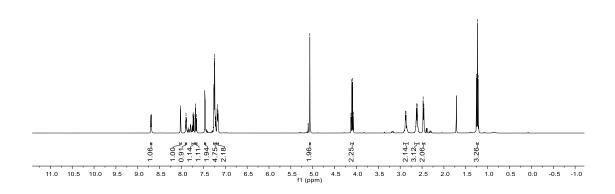


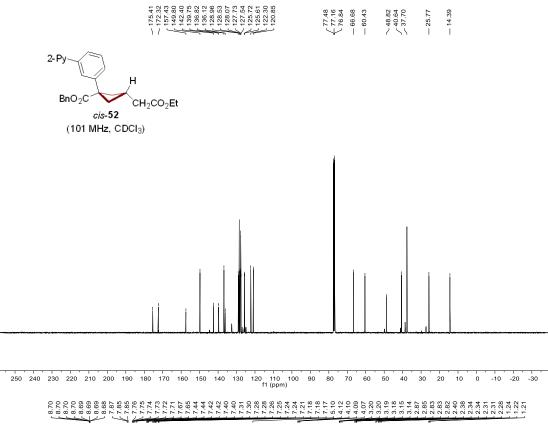


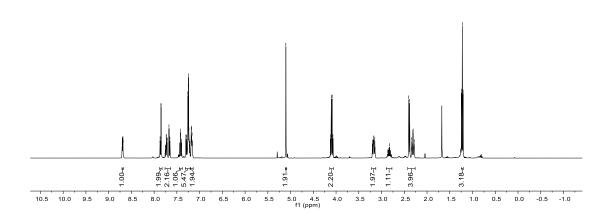


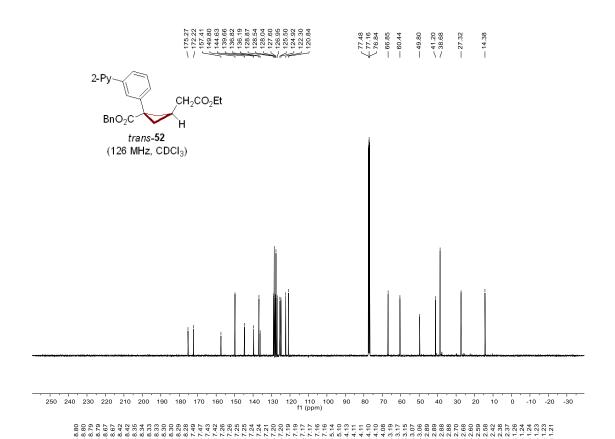

Note: product **51** was obtained from a prochiral radical species, only two isomers were observed in this case, i.e *cis-***51** and *trans-***51**.

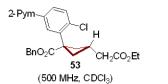

2-Py CH(Me)CO₂Et cis-51 (500 MHz, CDCl₃)

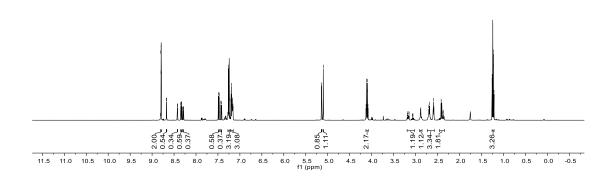


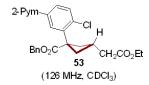




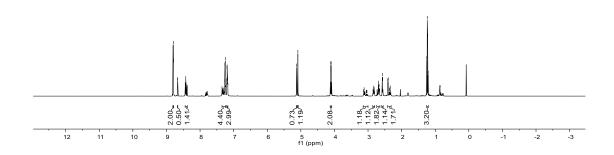


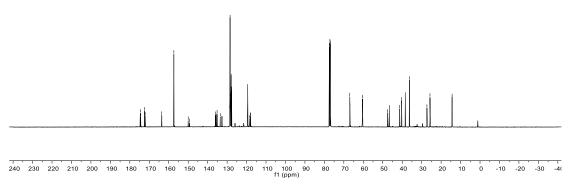


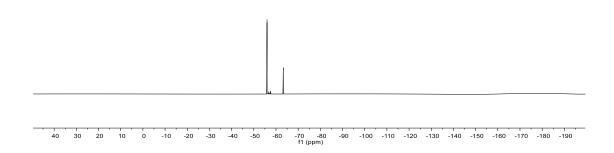


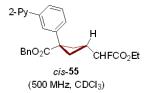


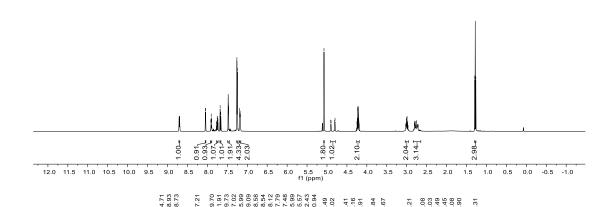


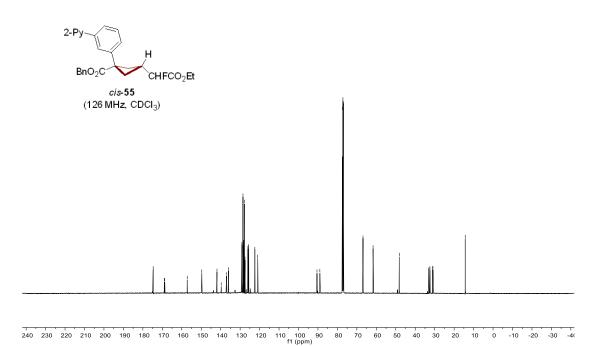


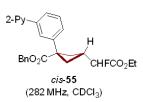




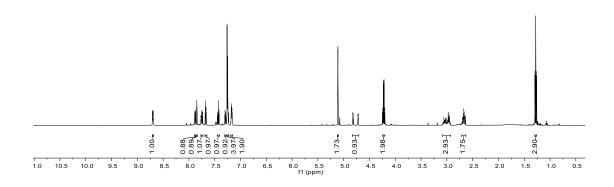


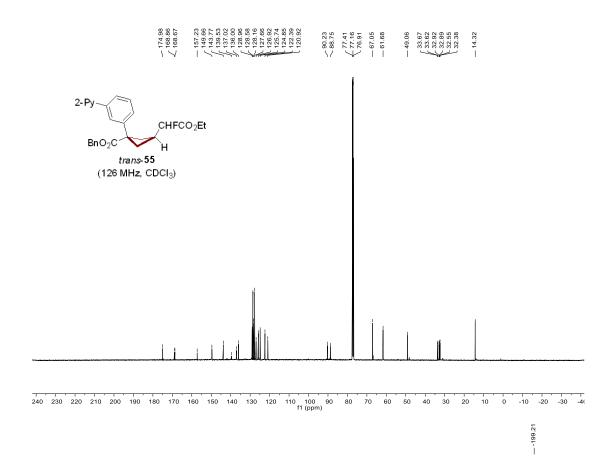

-55.96 -55.97 -55.97 -55.98

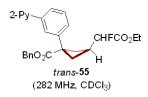

2- Pym
$$OCF_3$$
 H BnO_2C CH_2CO_2Et $\mathbf{54}$ $(471 \text{ MHz, CDCl}_3)$

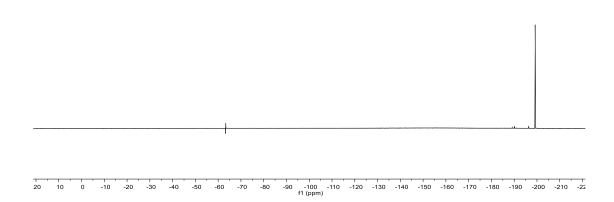


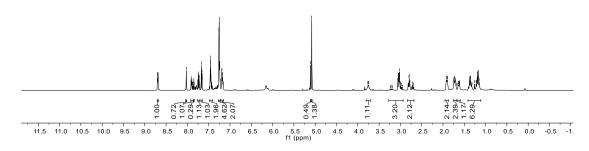
Note: product 55 was obtained from a prochiral radical species, only two isomers were observed in this case, i.e *cis*-55 and *trans*-55.

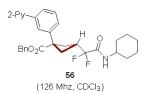


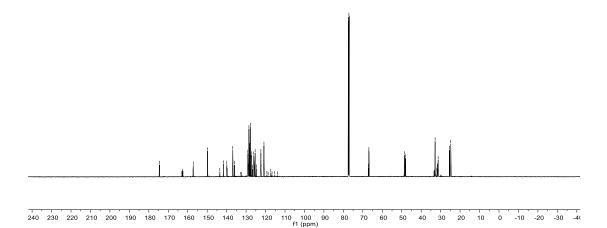


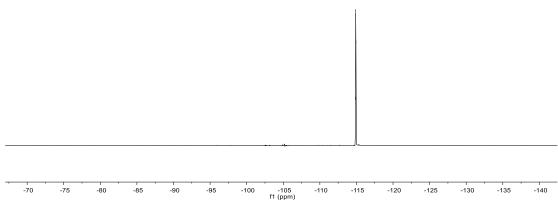


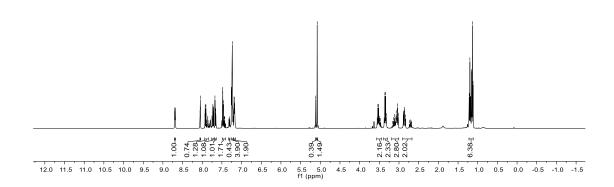


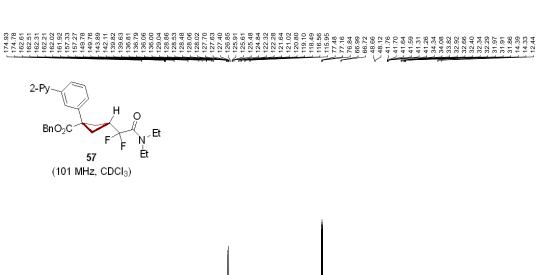


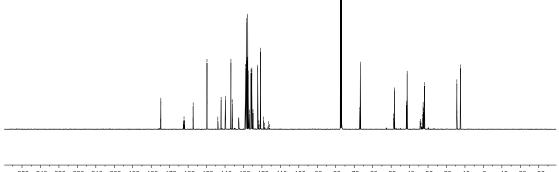




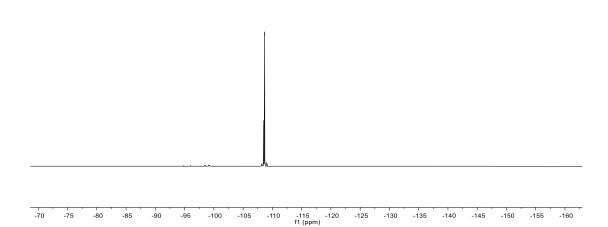


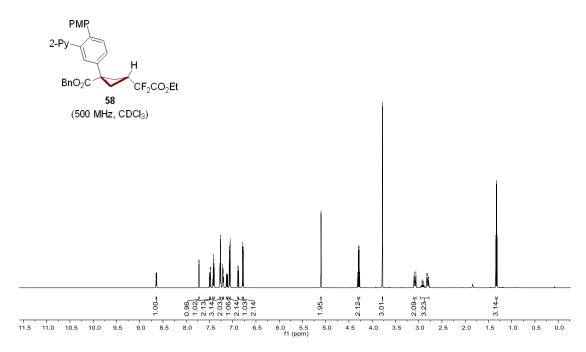




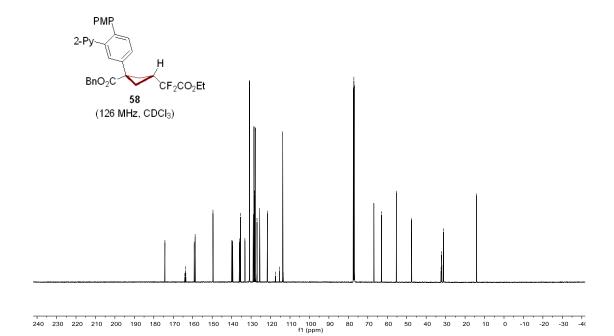


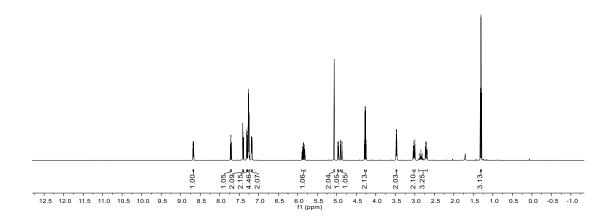
8.00

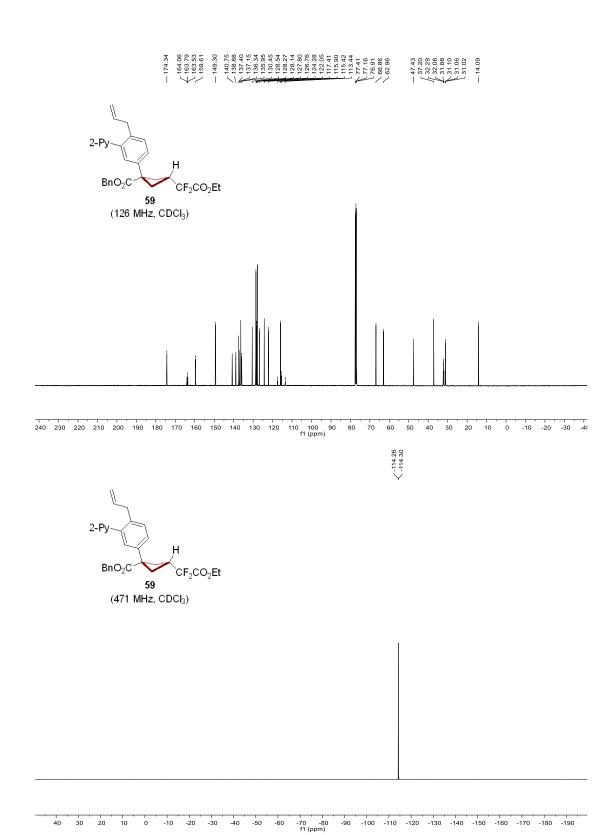


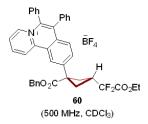


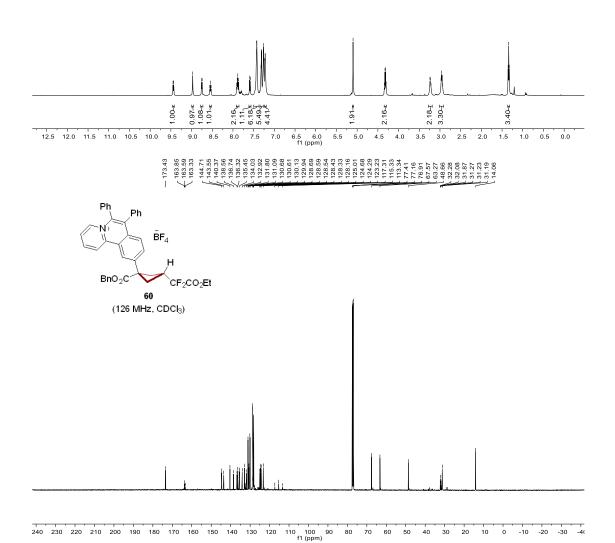
250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)


-108.51 -108.55 -108.69

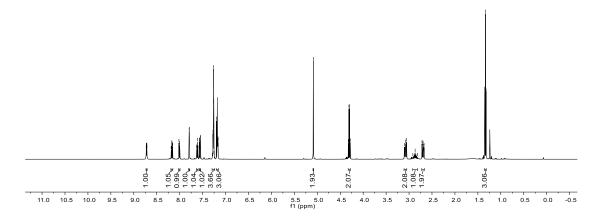


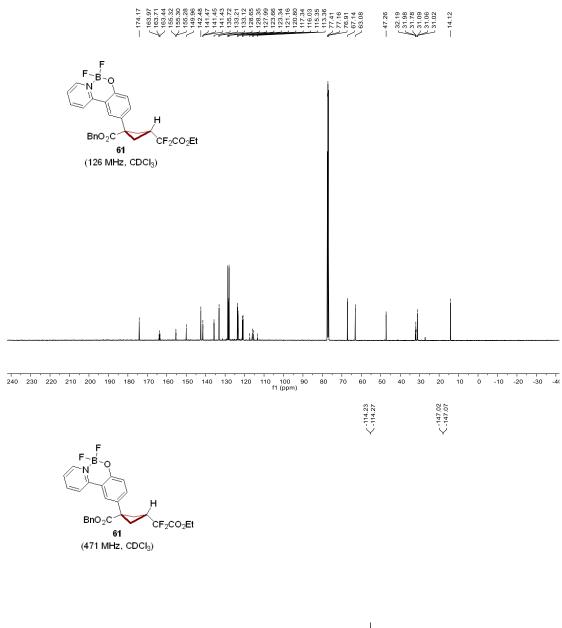


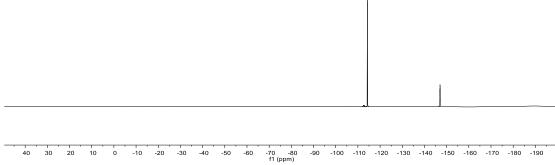




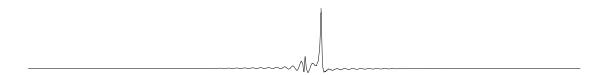

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ff (ppm)

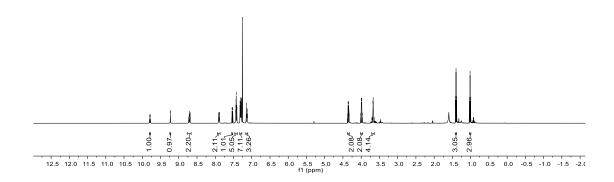


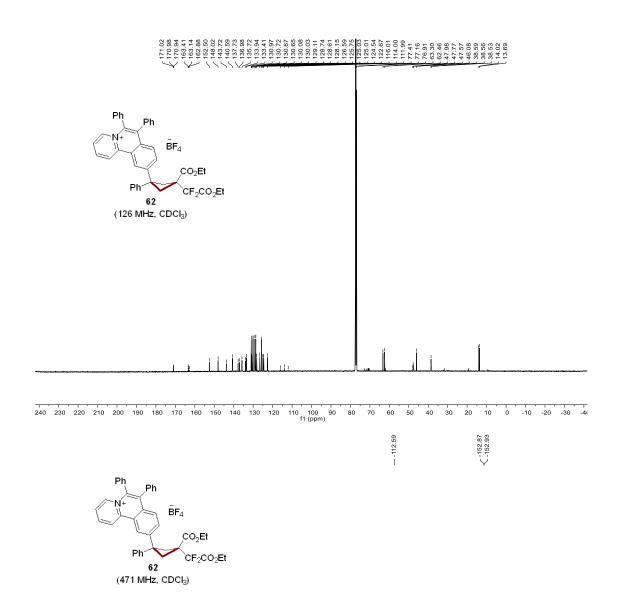


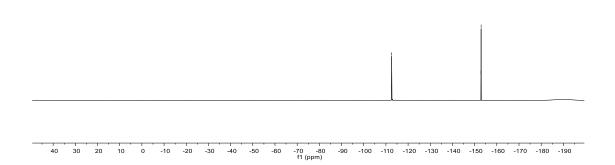


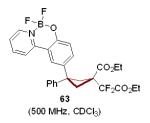
-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 fl (ppm)

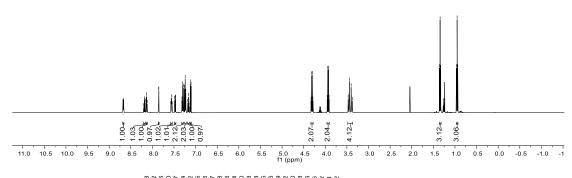


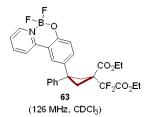


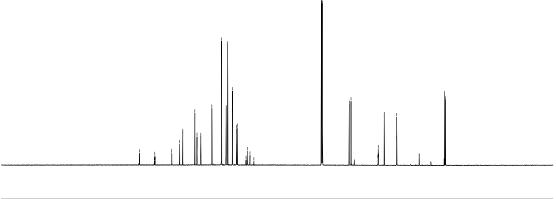


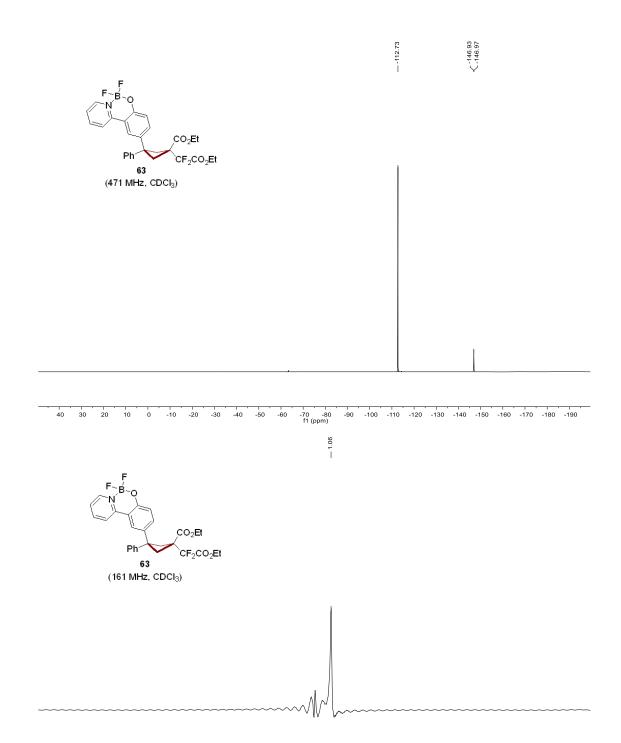


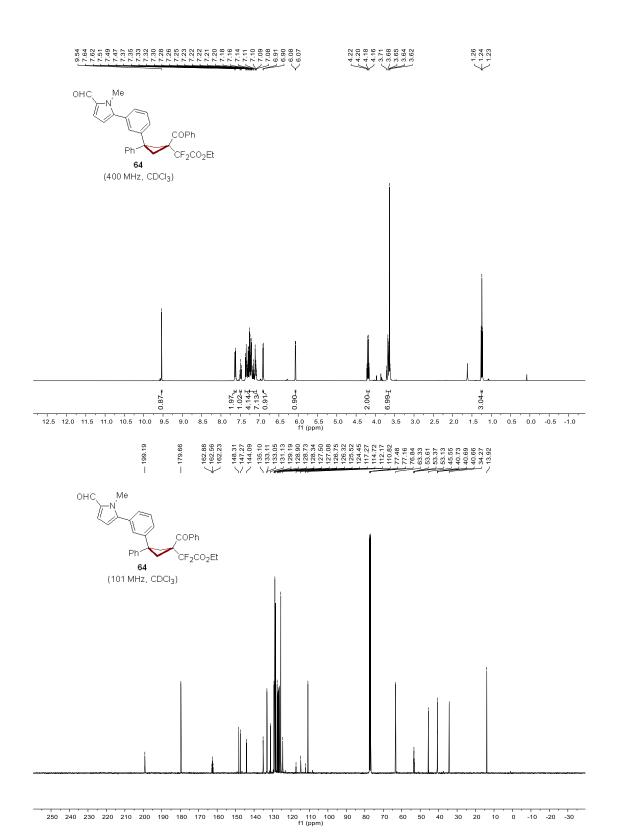


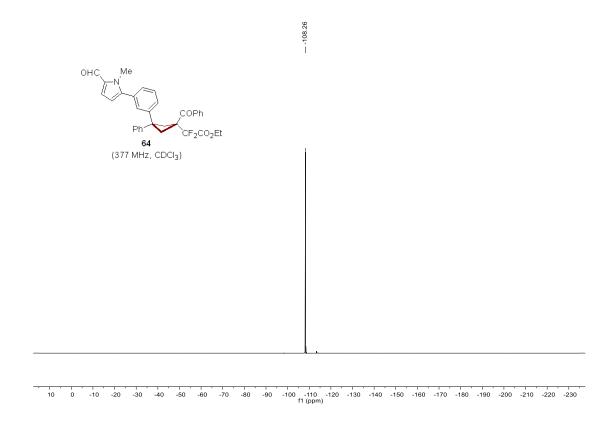

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 f1 (ppm)

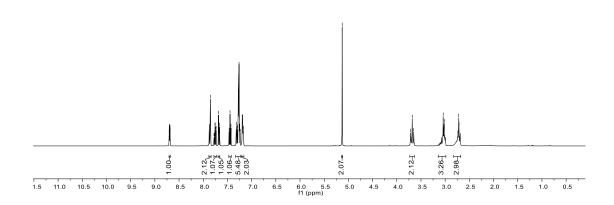


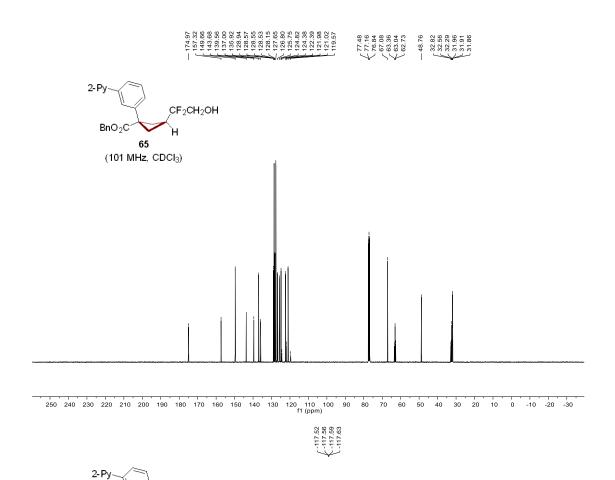


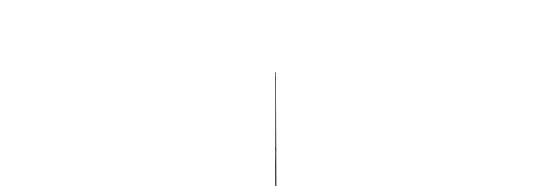







240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)





CF2CH2OH

BnO₂C

65 (377 MHz, CDCl₃)

