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Abstract: (1) Purpose: To assess the main corneal response differences between normal and subclinical
keratoconus (SCKC) with a Corvis® ST device. (2) Material and Methods: We selected 183 eyes of
normal patients, of a mean age of 33 ± 9 years and 16 eyes of patients with SCKC of a similar mean
age. We measured best corrected visual acuity (BCVA) and corneal topography with a Pentacam HD
device to select the SCKC group. Biomechanical measurements were performed using the Corvis®

ST device. We carried out a non-parametric analysis of the data with SPSS software (Wilcoxon signed
rank-test). (3) Results: We found statistically significant differences between the control and SCKC
groups in some corneal biomechanical parameters: first and second applanation time (p = 0.05 and
p = 0.02), maximum deformation amplitude (p = 0.016), highest concavity radius (p = 0.007), and
second applanation length and corneal velocity ((p = 0.039 and p = 0.016). (4) Conclusions: Our
results show that the use of normalised biomechanical parameters provided by noncontact tonometry,
combined with a discriminant function theory, is a useful tool for detecting subclinical keratoconus.

Keywords: intraocular pressure; ocular inflammation; cornea biomechanics; Corvis® ST; subclinical
keratoconus

1. Introduction

Knowledge of corneal biomechanics is essential to understand corneal behaviour in
certain diseases, surgical procedures, intraocular pressure (IOP) measurements, and in the
early detection and treatment of subclinical keratoconus (SCKC).

Keratoconus is a bilateral, inflammatory, asymmetric and progressive corneal ectasia
disorder. Bowman’s layer in keratoconus patients is impaired, associated changes in the
stromal extracellular matrix are brought about [1], and a cycle of thinning and increased
strain occurs [2,3]. The collagen network is mostly unorganised, with decreased fibrillar
interweaving [3–5]. These changes reduce corneal stiffness [2,5].

The most commonly used device for analysing corneal biomechanical parameters is
the Ocular Response Analyzer (ORA®, Reichert Ophthalmic Instruments, Inc., Buffalo, NY,
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USA) [4–8]. Some studies found a good correlation between keratoconus and low corneal
hysteresis (CH) and corneal resistance factor (CRF) in high grade keratoconus [7–11].

The Corvis® ST device (Oculus Optikgeräte GmbH; Wetzlar, Germany) is a non-
contact tonometer system with an ultra-high-speed Scheimpflug camera that provides
corneal biomechanical parameters and IOP information [12–26]. It also affords a high
degree of repeatability [13,25–27] and gives a correlation between age, corneal thickness,
IOP, and some Corvis® ST biomechanical parameters [17,24,28].

Some studies show differences in biomechanical Corvis® ST parameters between
keratoconic and healthy corneas [12–23]. More recently, other studies have evaluated
SCKC with this device [12,18,19,29,30].

Early SCKC detection is important since treatment with collagen cross-linking can
slow the progression of keratoconus effectively. If subtle biomechanical changes in early
keratoconus go undetected, advanced keratoconus treatment could be delayed. In addition,
proper patient selection (without SCKC) is essential for the success of refractive surgery.
Clearly, it is difficult to distinguish between SCKC and eyes with healthy corneas when only
using slit-lamp criteria. Topographic values only provide information of static changes
and it must be taken into account that air pressure–corneal deformation is affected in
keratoconus patients [7,12,15,31].

The main purpose of the present study was to identify the most useful parameters
provided by non-contact tonometry for the biomechanical characterization of the cornea
and to determine whether it is possible to define an optimized function for SCKC detection.

2. Materials and Methods

This study adheres to the tenets of the Declaration of Helsinki for Research Involv-
ing Human Subjects and was approved by our Institutional Review Board. This retro-
spective, consecutive, non-randomised study analyses 199 eyes of 196 patients using the
Corvis® ST tonometer. The eyes were divided into two groups: (a) healthy eyes (183 eyes
of 183 patients); and (b) eyes with subclinical keratoconus (16 eyes of 13 patients). The eyes
with subclinical keratoconus fulfilled the most widely accepted definition in the literature
for this condition [30,32,33]. These eyes had no clinical signs of keratoconus (Vogt’s striae,
Fleischer rings or corneal scarring), their topography was normal with no asymmetric
bowtie, and no focal or inferior steepening pattern. However, they were contralateral eyes
of clinically evident keratoconus in the fellow eye [32]. Three of them were considered as
bilateral SCKC.

The inclusion criteria for both groups were the non-use of contact lenses during the
previous four weeks if such contact lenses were rigid, or two weeks if they were soft, and
ages between 18 and 50.

Exclusion criteria were previous ophthalmic surgery, any ocular or systemic disease,
corneal scars and/or opacities, chronic use of topical medication, pregnancy or refusal to
sign the informed consent form.

We measured the corneal topography of all the patients with a Pentacam HD device
(Oculus, Wetzlar, Germany). The corneal status was established by slit-lamp microscopy
and analysed and classified by an experienced ophthalmologist. The control patients had
no clinical keratoconus symptoms and their corneal topography was within normal limits.
Diagnosis of SCKC was made when eyes had no clinical signs of keratoconus (Vogt’s striae,
Fleischer rings or corneal scarring), their topography was normal with no asymmetric
bowtie (with a paracentral inferior–superior dioptric difference less than 1 D), and no focal
or inferior steepening pattern. We included patients with the steepest meridian under
47.2 D who did not present clinical signs [30,32,33].

Best corrected visual acuity (BCVA) was measured with an ETDRS chart. The
Corvis® ST evaluated corneal biomechanics. This device can identify the applanation time
and length and corneal applanation velocity when the air pulse is on (A1time, A1length
and A1V, respectively) and off (A2time, A2length and A2V, respectively). It can also
identify the highest concavity time (HCtime), the deformation amplitude (DAmax), the
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peak distance (PD) and the curvature radius (RHC) at the highest concavity (HC). All
these data are obtained from the dynamic corneal deformation during a defined air pulse.
Central corneal thickness (CCT) is also calculated using the horizontal Scheimpflug image
at the apex. Intraocular pressure is calculated based on the timing of the first applanation
event. The Corvis biomechanical index (CBI) was not evaluated because the updated
version was not available on our Corvis® ST device when the measurements were made.

Statistical analysis was performed using the SPSS 26.0 software for Windows (SPSS,
Chicago, IL, USA) and principal component analysis (PCA) was carried out with Matlab
2020a (The Mathworks, Inc., Natick, MA, USA). For each variable, values came from the
mean of three measurements. The Kolmogorov–Smirnov test was used to check for sample
normality. Distributions for the SCKC group failed the normality test, and therefore a
non-parametric Wilcoxon signed rank-test was used to compare parameters between the
groups. The level of significance used was p < 0.05.

3. Results

Table 1 summarizes the demographic data of the patients. There was no significant
difference in age between the groups.

Table 1. Demographic data of our sample. Age differences between control and SCKC groups were
not significant (p = 0.55).

Data Sex Control Group SCKC Group

Age (years) Men 31 ± 7 26 ± 13
Women 33 ± 8 31 ± 19

p-value 0.67 0.50

Number of eyes Men 83 8
Women 100 5

The control and SCKC group had a BCVA of 0.12 ± 0.20 logMAR and 0.04 ± 0.20
logMAR, respectively (p = 0.002). Mean corneal keratometry were 43.0 ± 1.7 D and
44.2 ± 1.9 D for the flattest meridian, in the control and SCKC group, respectively
(p = 0.328). The steepest meridian was 43.9 ± 1.8 D and 45.0 ± 3.0 D in the control and
SCKC group, respectively (p = 0.006).

Figures 1a, 2a, 3a and 4a show the values obtained for the first and second applanation,
and for the HC. CCT and IOP values were significantly different in the two population
samples (p < 0.05 for both parameters, with 9.6 ± 2.7 mm Hg and 510 ± 49 µm for the
SCKC group and 12.3 ± 2.9 mm Hg and 541 ± 38 µm for the control group). To discount a
possible effect of this difference, in Figures 1b, 2b, 3b and 4b, a new control group (n = 53)
was defined, matching the CCT and IOP values of the SCKC subjects (517 ± 18 µm and
10.4 ± 1.5 mm Hg). Differences in IOP and CCT between the SCKC and the IOP-CCT
matched normals were not significant (p = 0.57 and p = 0.32 for CCT and IOP, respectively).

The whole control group reached the first applanation significantly later than the
SCKC group (p = 0.001, see Figure 1a), A1length was greater than the SCKC group (p = 0.66,
see Figure 2a), and A1V was slower in the control group than in the SCKC group (p = 0.24,
see Figure 3a), but these changes were not significant.

At HC, DAmax (Figure 2a) and the PD (Figure 4a) were smaller in the whole control
group than in the SCKC group (p = 0.0005 and 0.15, respectively) and RHC (Figure 4) was
smaller in the SCKC group than in the whole control group (p < 0.001). The HC time was
similar in both groups (p = 0.85, Figure 1a).

In the second applanation, A2time (Figure 1a) and A2V (Figure 3a) were significantly
higher in the SCKC group than in the total control group (p = 0.02 and 0.001, respectively),
but A2length (Figure 2a) was significantly smaller in the SCKC group than in the control
group (p = 0.01).
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When comparing SCKC with the IOP-CCT matched normals, similar trends are
found, but with changes in the significance of the differences. DAmax (p = 0.006, Figure 2b),
A2length (p = 0.03, Figure 2b), A2V (p = 0.006, Figure 3b), and RHC (p = 0.05, Figure 4b) main-
tained their statistical differences, and differences were also found in A1length (p = 0.02,
Figure 2b). However, statistical differences were not found in A1time (p = 0.34) or A2time
(p = 0.57) (Figure 1b).
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Figure 4. Peak Distance (PD) and radius at highest concavity (RHC) for the SCKC (grey) and
control groups (white). Symbols as in Figure 1. (a) whole control group, (b) IOP and CCT matched
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Receiver operating characteristic (ROC) curves were derived, using both the whole
normal sample and the IOP and CCT matched normal subjects with the four parameters
that yielded significant differences between matched normal and the SCKC group (RHC,
A2length, A2V, and DAmax). Figure 5 shows the results obtained.

The best result, according to the area under the curve (AUC), is yielded by A2V, but
the best sensitivity to specificity ratio is only 25–75%, approximately. To determine whether
a combination of these four parameters would improve these results, we performed a
principal component analysis (PCA). None of the four principal components achieved a
total separation of the normal and SCKC samples, but the first component, explaining 65%
of the variance when the total normal sample is used and 59% with the reduced normal
sample, yielded a ROC curve that slightly improves the result of the individual variables
(see Table 2). The improvement is noticeable only in the specificity at high sensitivity (80%
or higher).
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Figure 5. Receiver Operating Characteristic (ROC) curves for High Concavity Radius (red), second
applanation length (purple), velocity (green) and maximum amplitude (blue). In black, the curve
obtained with the first principal component score of the principal component analysis carried out
with these four variables. The dashed line represents the x = y reference line. (a) curves obtained
with the whole normal sample. (b) curves obtained with the IOP and CCP matched normal sample.

Table 2. Area under de ROC curve (AUC) and upper and lower limits of the AUC 95% confidence
interval for the different diagnosis parameters computed both with the entire normal sample and
the IOP and CCP matched normal sample. DAmax, maximum displacement amplitude, second
applanation length (A2length) and corneal velocity (A2V), radius at high concavity (Radius) and
the first principal component scores of the principal component analysis (1st PCS). ‘*’ marks AUCs
significantly different from 0.5 (no discrimination).

Total Normal Sample IOP and CCP Matched Normal Sample

Variable AUC Lower ICL Upper ICL AUC Lower ICL Upper ICL
1st PCS 0.8695 * 0.7452 0.9269 0.7800 * 0.6073 0.8906

A2V 0.8343 * 0.6948 0.9176 0.7524 * 0.5815 0.8814
Radius 0.8203 * 0.6572 0.9142 0.7230 * 0.5662 0.8506
DAmax 0.8047 * 0.7052 0.8869 0.6629 0.4710 0.7929

A2length 0.6987 * 0.5244 0.8496 0.6767 0.4970 0.8266

4. Discussion

Detection of corneal ectatic disorders as early on as possible is necessary to prevent, or
delay, the progression of keratoconus. Some studies claim to distinguish SCKC from normal
eyes using topographic parameters [34–36] and others state that there is an overlap between
topographic data obtained from a SCKC group and a normal group [37,38]. As a result,
biomechanical data could improve the detection and severity prediction of keratoconus.

There are studies on corneal biomechanics using the ORA device that conclude that
the four parameters measured with this device are not enough to detect keratoconus [21,39].
Alternative ORA parameters related to the area under the curve are better for distinguish-
ing SCKC from normal corneas, and when all the parameters are combined, accuracy
increases [34,39]. The ORA device has limitations, because it can confuse corneal tissue re-
sponse with surface response since a specular reflection is required to measure applanation
pressure. Central corneal surface irregularities could interfere with the infrared specular
reflection beam of the ORA. The Corvis® ST device avoids some of these drawbacks, be-
cause a frontal view camera is mounted with a keratometric-type projection system for
focusing and aligning the corneal apex to be measured. Moreover, the recording of corneal
deformation prevents the specular reflection beam from obtaining reliable corneal response
parameters.
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If one simply addresses statistical data, our data are consistent with biomechanical
corneal properties. The A1time is shorter in the SCKC group than in the control group, and
DAmax is greater in the SCKC group than in the control group. This agrees with previous
studies, in which very similar values of DAmax were obtained in the SCKC and control
groups [15,16,30,40]. During corneal recovery, A2time and A2V were higher in the SCKC
group, and RHC and A2length were higher in controls, in agreement with several studies
in the literature [30,40]. Except for A2length, these parameters could be correlated with
a decrease in the viscoelastic structure, and abnormal elastic distensibility increased in
keratoconic corneas, which is consistent with reduced corneal stiffness [4,41].

Due to the decrease in corneal stiffness, a shorter A1time, a higher DAmax, and
a lower RHC could be expected in the SCKC group, as well as a longer A2time and
A2V, as keratokonic corneas recover more slowly than normal ones, due to higher initial
deformation. Although the differences are not significant, the higher PD, A2time, and A1V
values in the SCKC group also confirm this hypothesis.

In principle, we could expect greater A2length values in the SCKC group than in the
control group as a result of reduced corneal stiffness. It is possible that increased kerato-
conus cornea distensibility may produce a non-perfect applanation surface, and Corvis® ST
only detects a small portion of plane surface. Therefore, it must be taken into account that
our study yielded similar results to those obtained in previous studies [16,30,40].

Although we selected patients without clinical signs, BCVA was statistically worse in
the SCKC group. This loss of visual acuity may have been due to the wavefront aberrations
that can distort visual quality, even at the beginning of the pathology [42].

When the effect of the IOP and CCT parameters are eliminated, Corvis® ST results
change. There are parameters that demonstrate their independence of IOP and CCT mea-
surements, such as DAmax, A2V, and RHC, so they can be considered as robust parameters.
These three parameters can identify SCKC correctly, but parameters determining time to
deformation and recovery are greatly dependent on IOP and CCT. This is no surprise,
since it is known that higher CCT corneas have more resistance to deformation, and the
same result could be expected with higher IOP eyes. In addition, we obtained significant
differences in length applanation values by eliminating CCT and IOP effects. This confirms
that these parameters also have a great dependence on IOP and CCT values, since higher
values in these parameters could lead to smaller applanation length due to the resistance
to deformation that the cornea can present.

When we analyse ROC curves with the four parameters that yielded significant dif-
ferences with the SCKC group, that is, RHC, A2length, A2V and DAmax, we can conclude
that A2V was the best parameter to diagnose SCKC patients. In this small sample, how-
ever, a combination of these four parameters, found by principal component analysis,
though improving the AUC under the ROC curve would only improve specificity at high
sensitivity.

This study has some limitations. Our SCKC sample was small, and we are aware that
a greater number of patients with SCKC would be necessary to obtain more reliable values.
To calculate ROC curves with a small SCKC sample could lead to inexact conclusions about
the best parameters to detect it. However, a similar number of SCKC eyes (between 12 and
23) were evaluated in previously published studies [12,18,21,22,30], because it is difficult
to obtain this sample.

5. Conclusions

We were able to detect biomechanical impairment in SCKC eyes in clinical exam-
inations by using Corvis® ST parameters. Some of them have demonstrated a great
dependence on IOP and CCT, so to make a correct diagnosis of these patients, only param-
eters without IOP and CCT dependence should probably be compared. However, further
measurements in SCKC patients are necessary, and the effect of IOP and CCT must be
studied in more detail, to confirm the findings of our study and to improve current SCKC
screening.



J. Clin. Med. 2021, 10, 1905 8 of 9

Author Contributions: Conceptualization, M.A.D.-A., M.C.G.-D., M.J.L.-C. and C.P.-M.; methodol-
ogy, M.C.G.-D., S.O.-N. and M.A.D.-A.; formal analysis, M.C.G.-D., S.O.-N., M.J.L.-C., M.D.P.-D. and
M.A.D.-A.; writing—original draft preparation, C.P.-M., S.O.-N. and M.A.D.-A.; writing—review
and editing, C.P.-M., M.C.G.-D., S.O.-N. and M.A.D.-A.; supervision, M.J.L.-C., C.P.-M., M.Á.d.B.-S.
and M.A.D.-A. All authors have read and agreed to the published version of the manuscript.

Funding: Cátedra FISABIO-Alcon-Universidad de Valencia.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
FISABIO Oftalmología Médica (Protocol number PI_89, principal investigator Cristina Peris-Martínez,
and date of approval: 26 July 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available on request due to restrictions of privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brookes, N.; Loh, I.-P.; Clover, G.; Poole, C.; Sherwin, T. Involvement of corneal nerves in the progression of keratoconus. Exp. Eye

Res. 2003, 77, 515–524. [CrossRef]
2. Erie, J.C.; Patel, S.V.; McLaren, J.W.; Nau, C.B.; Hodge, D.O.; Bourne, W.M. Keratocyte density in keratoconus. A confocal

microscopy study. Am. J. Ophthalmol. 2002, 134, 689–695. [CrossRef]
3. Meek, K.M.; Tuft, S.J.; Huang, Y.; Gill, P.S.; Hayes, S.; Newton, R.H.; Bron, A.J. Changes in Collagen Orientation and Distribution

in Keratoconus Corneas. Investig. Opthalmol. Vis. Sci. 2005, 46, 1948–1956. [CrossRef] [PubMed]
4. Esporcatte, L.P.G.; Salomão, M.Q.; Lopes, B.T.; Vinciguerra, P.; Vinciguerra, R.; Roberts, C.; Elsheikh, A.; Dawson, D.G.; Ambrósio,

R. Biomechanical Diagnostics of the Cornea. Int. Ophthalmol. Clin. Summer 2017, 57, 75–86. [CrossRef] [PubMed]
5. Vellara, H.R.; Patel, D.V. Biomechanical properties of the keratoconic cornea: A review. Clin. Exp. Optom. 2015, 98, 31–38.

[CrossRef] [PubMed]
6. Zimmermann, D.R.; Fischer, R.W.; Winterhalter, K.H.; Witmer, R.; Vaughan, L. Comparative studies of collagens in normal and

keratoconus corneas. Exp. Eye Res. 1988, 46, 431–442. [CrossRef]
7. Herber, R.; Ramm, L.; Spoerl, E.; Raiskup, F.; Pillunat, L.E.; Terai, N. Assessment of corneal biomechanical parameters in healthy

and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. J. Cataract. Refract.
Surg. 2019, 45, 778–788. [CrossRef]

8. Luce, D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract. Refract. Surg.
2005, 31, 156–162. [CrossRef]

9. Shah, S.; Laiquzzaman, M.; Bhojwani, R.; Mantry, S.; Cunliffe, I. Assessment of the biomechanical properties of the cornea with
the ocular re-sponse analyzer in normal and keratoconic eyes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3026–3031. [CrossRef]

10. Galletti, J.G.; Pförtner, T.; Bonthoux, F.F. Improved keratoconus detection by ocular response analyzer testing after considera-tion
of corneal thickness as a confounding factor. J. Refract. Surg. 2012, 28, 202–208. [CrossRef]

11. Kara, N.; Altinkaynak, H.; Baz, O.; Goker, Y. Biomechanical Evaluation of Cornea in Topographically Normal Relatives of Patients
with Keratoconus. Cornea 2013, 32, 262–266. [CrossRef]

12. Wu, Y.; Li, X.L.; Yang, S.L.; Yan, X.M.; Li, H.L. Examination and discriminant analysis of corneal biomechanics with Corvis® ST in
keratoconus and subclinical keratoconus. Beijing Da Xue Xue Bao Yi Xue Ban 2019, 51, 881–886.

13. Yang, K.; Xu, L.; Fan, Q.; Zhao, D.; Ren, S. Repeatability and comparison of new Corvis® ST parameters in normal and keratoconus
eyes. Sci. Rep. 2019, 9, 15379. [CrossRef]

14. Yang, K.; Xu, L.; Fan, Q.; Gu, Y.; Song, P.; Zhang, B.; Zhao, D.; Pang, C.; Ren, S. Evaluation of new Corvis® ST parameters in
normal, Post-LASIK, Post-LASIK keratectasia and keratoconus eyes. Sci. Rep. 2020, 10, 5676. [CrossRef]

15. Elham, R.; Jafarzadehpur, E.; Hashemi, H.; Amanzadeh, K.; Shokrollahzadeh, F.; Yekta, A.A.; Khabazkhoob, M. Keratoconus
diagnosis using Corvis® ST measured biomechanical parameters. J. Curr. Ophthalmol. 2017, 29, 175–181. [CrossRef]

16. Zhao, Y.; Shen, Y.; Yan, Z.; Tian, M.; Zhao, J.; Zhou, X. Relationship Among Corneal Stiffness, Thickness, and Biomechanical
Parameters Measured by Corvis® ST, Pentacam and ORA in Keratoconus. Front. Physiol. 2019, 10, 740. [CrossRef]

17. Zhang, M.; Zhang, F.; Li, Y.; Song, Y.; Wang, Z. Early Diagnosis of Keratoconus in Chinese Myopic Eyes by Combining Corvis® ST
with Pen-tacam. Curr. Eye Res. 2020, 45, 118–123. [CrossRef] [PubMed]

18. Koc, M.; Aydemir, E.; Tekin, K.; Inanc, M.; Kosekahya, P.; Kiziltoprak, H. Biomechanical Analysis of Subclinical Keratoconus With
Normal Topographic, Topometric, and Tomographic Findings. J. Refract. Surg. 2019, 35, 247–252. [CrossRef] [PubMed]

19. Chan, T.C.; Wang, Y.M.; Yu, M.; Jhanji, V. Comparison of Corneal Tomography and a New Combined Tomographic Biomechanical
Index in Subclinical Keratoconus. J. Refract. Surg. 2018, 34, 616–621. [CrossRef] [PubMed]

http://doi.org/10.1016/S0014-4835(03)00148-9
http://doi.org/10.1016/S0002-9394(02)01698-7
http://doi.org/10.1167/iovs.04-1253
http://www.ncbi.nlm.nih.gov/pubmed/15914608
http://doi.org/10.1186/s40662-020-0174-x
http://www.ncbi.nlm.nih.gov/pubmed/32042837
http://doi.org/10.1111/cxo.12211
http://www.ncbi.nlm.nih.gov/pubmed/25545947
http://doi.org/10.1016/S0014-4835(88)80031-9
http://doi.org/10.1016/j.jcrs.2018.12.015
http://doi.org/10.1016/j.jcrs.2004.10.044
http://doi.org/10.1167/iovs.04-0694
http://doi.org/10.3928/1081597X-20120103-03
http://doi.org/10.1097/ICO.0b013e3182490924
http://doi.org/10.1038/s41598-019-51502-4
http://doi.org/10.1038/s41598-020-62825-y
http://doi.org/10.1016/j.joco.2017.05.002
http://doi.org/10.3389/fphys.2019.00740
http://doi.org/10.1080/02713683.2019.1658787
http://www.ncbi.nlm.nih.gov/pubmed/31466466
http://doi.org/10.3928/1081597X-20190226-01
http://www.ncbi.nlm.nih.gov/pubmed/30984982
http://doi.org/10.3928/1081597X-20180705-02
http://www.ncbi.nlm.nih.gov/pubmed/30199566


J. Clin. Med. 2021, 10, 1905 9 of 9

20. Steinberg, J.; Siebert, M.; Katz, T.; Frings, A.; Mehlan, J.; Druchkiv, V.; Bühren, J.; Linke, S.J. Tomographic and Biomechanical
Scheimpflug Imaging for Keratoconus Characterization: A Validation of Current Indices. J. Refract. Surg. 2018, 34, 840–847.
[CrossRef]

21. Koh, S.; Ambrósio, R.; Inoue, R.; Maeda, N.; Miki, A.; Nishida, K. Detection of Subclinical Corneal Ectasia Using Corneal
Tomographic and Biomechanical Assessments in a Japanese Population. J. Refract. Surg. 2019, 35, 383–390. [CrossRef]

22. Catalán-López, S.; Cadarso-Suárez, L.; López-Ratón, M.; Cadarso-Suárez, C. Corneal Biomechanics in Unilateral Keratoconus and
Fellow Eyes with a Scheimpflug-based Tonometer. Optom. Vis. Sci. 2018, 95, 608–615. [CrossRef] [PubMed]

23. Song, P.; Yang, K.; Li, P.; Liu, Y.; Liang, D.; Ren, S.; Zeng, Q. Assessment of Corneal Pachymetry Distribution and Morphologic
Changes in Subclinical Kerato-conus with Normal Biomechanics. Biomed. Res. Int. 2019, 2019, 1748579. [CrossRef]

24. Valbon, B.F.; Ambrósio, R., Jr.; Fontes, B.M.; Alves, M.R. Effects of age on corneal deformation by non-contact tonometry
integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq. Bras. Oftalmol. 2013, 76, 229–232. [CrossRef] [PubMed]

25. Nemeth, G.; Hassan, Z.; Csutak, A.; Szalai, E.; Berta, A.; Modis, J.L. Repeatability of Ocular Biomechanical Data Measurements
with a Scheimpflug-Based Noncontact Device on Normal Corneas. J. Refract. Surg. 2013, 29, 558–563. [CrossRef]

26. Hong, J.; Xu, J.; Wei, A.; Deng, S.X.; Cui, X.; Yu, X.; Sun, X. A New Tonometer—The Corvis® ST Tonometer: Clinical Comparison
with Noncontact and Goldmann Applanation Tonometers. Investig. Opthalmol. Vis. Sci. 2013, 54, 659–665. [CrossRef]

27. Hon, Y.; Lam, A.K. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom. Vis. Sci. 2013, 90, e1–e8.
[CrossRef]

28. Zhang, Y.; Wang, Y.; Li, L.; Dou, R.; Wu, W.; Wu, D.; Jhanji, V. Corneal Stiffness and Its Relationship with Other Corneal
Biomechanical and Nonbiomechan-ical Parameters in Myopic Eyes of Chinese Patients. Cornea 2018, 37, 881–885. [CrossRef]

29. Vinciguerra, R.; Ambrósio, R., Jr.; Roberts, C.J.; Azzolini, C.; Vinciguerra, P. Biomechanical Characterization of Subclinical
Keratoconus Without Topo-graphic or Tomographic Abnormalities. J. Refract. Surg. 2017, 33, 399–407. [CrossRef]

30. Peña-García, P.; Peris-Martínez, C.; Abbouda, A.; Ruiz-Moreno, J.M. Detection of subclinical keratoconus through non-
contacttonometry and the use of discriminant biomechanical functions. J. Biomech. 2016, 49, 353–363. [CrossRef]

31. Wolffsohn, J.S.; Safeen, S.; Shah, S.; Laiquzzaman, M. Changes of Corneal Biomechanics with Keratoconus. Cornea 2012, 31,
849–854. [CrossRef]

32. Smadja, D.; Touboul, D.; Cohen, A.; Doveh, E.; Santhiago, M.R.; Mello, G.R.; Krueger, R.R.; Colin, J. Detection of subclinical
kerato-conus using an automated decision tree classification. Am. J. Ophthalmol. 2013, 156, 237–246. [CrossRef]

33. Klyce, S.D. Chasing the suspect: Keratoconus. Br. J. Ophthalmol. 2009, 93, 845–847. [CrossRef] [PubMed]
34. Ambrósio, R., Jr.; Nogueira, L.P.; Caldas, D.L.; Fontes, B.M.; Luz, A.; Cazal, J.O.; Alves, M.R.; Belin, M.W. Evaluation of corneal

shape and biomechanics before LASIK. Int. Ophthalmol. Clin. 2011, 51, 11–38. [CrossRef] [PubMed]
35. Kamiya, K.; Ishii, R.; Shimizu, K.; Igarashi, A. Evaluation of corneal elevation, pachymetry and keratometry in keratoconic eyes

with respect to the stage of Amsler-Krumeich classification. Br. J. Ophthalmol. 2014, 98, 459–463. [CrossRef] [PubMed]
36. Demir, S.; Ortak, H.; Yeter, V.; Alim, S.; Sayn, O.; Tas, U.; Sönmez, B. Mapping corneal thickness using dual-scheimpflug imaging

at different stages of kerato-conus. Cornea 2013, 32, 1470–1474. [CrossRef] [PubMed]
37. Miháltz, K.; Kovács, I.; Takács, Á.; Nagy, Z.Z. Evaluation of keratometric, pachymetric, and elevation parameters of keratoconus

cor-neas with pentacam. Cornea 2009, 28, 976–980. [CrossRef] [PubMed]
38. De Sanctis, U.; Loiacono, C.; Richiardi, L.; Turco, D.; Mutani, B.; Grignolo, F.M. Sensitivity and specificity of posterior corneal

elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology 2008, 115, 1534–1539.
[CrossRef]

39. Ventura, B.V.; Machado, A.P.; Ambrósio, R., Jr.; Ribeiro, G.; Araújo, L.N.; Luz, A.; Lyra, J.M. Analysis of waveform-derived ORA
parameters in early forms of kerato-conus and normal corneas. J. Refract. Surg. 2013, 29, 637–643. [CrossRef]

40. Tian, L.; Huang, Y.-F.; Wang, L.-Q.; Bai, H.; Wang, Q.; Jiang, J.-J.; Wu, Y.; Gao, M. Corneal Biomechanical Assessment Using
Corneal Visualization Scheimpflug Technology in Keratoconic and Normal Eyes. J. Ophthalmol. 2014, 2014, 147516. [CrossRef]

41. Boyce, B.; Jones, R.; Nguyen, T.; Grazier, J. Stress-controlled viscoelastic tensile response of bovine cornea. J. Biomech. 2007, 40,
2367–2376. [CrossRef] [PubMed]

42. Luz, A.; Fontes, B.M.; Lopes, B.; Ramos, I.; Schor, P.; Ambrósio, R., Jr. ORA waveform-derived biomechanical parameters to
distinguish normal from ker-atoconic eyes. Arq. Bras. Oftalmol. 2013, 76, 111–117. [CrossRef] [PubMed]

http://doi.org/10.3928/1081597X-20181012-01
http://doi.org/10.3928/1081597X-20190417-01
http://doi.org/10.1097/OPX.0000000000001241
http://www.ncbi.nlm.nih.gov/pubmed/29957740
http://doi.org/10.1155/2019/1748579
http://doi.org/10.1590/S0004-27492013000400008
http://www.ncbi.nlm.nih.gov/pubmed/24061834
http://doi.org/10.3928/1081597X-20130719-06
http://doi.org/10.1167/iovs.12-10984
http://doi.org/10.1097/OPX.0b013e318279eb87
http://doi.org/10.1097/ICO.0000000000001605
http://doi.org/10.3928/1081597X-20170213-01
http://doi.org/10.1016/j.jbiomech.2015.12.031
http://doi.org/10.1097/ICO.0b013e318243e42d
http://doi.org/10.1016/j.ajo.2013.03.034
http://doi.org/10.1136/bjo.2008.147371
http://www.ncbi.nlm.nih.gov/pubmed/19553507
http://doi.org/10.1097/IIO.0b013e31820f1d2d
http://www.ncbi.nlm.nih.gov/pubmed/21383577
http://doi.org/10.1136/bjophthalmol-2013-304132
http://www.ncbi.nlm.nih.gov/pubmed/24457362
http://doi.org/10.1097/ICO.0b013e3182a7387f
http://www.ncbi.nlm.nih.gov/pubmed/24071809
http://doi.org/10.1097/ICO.0b013e31819e34de
http://www.ncbi.nlm.nih.gov/pubmed/19724217
http://doi.org/10.1016/j.ophtha.2008.02.020
http://doi.org/10.3928/1081597X-20130819-05
http://doi.org/10.1155/2014/147516
http://doi.org/10.1016/j.jbiomech.2006.12.001
http://www.ncbi.nlm.nih.gov/pubmed/17240381
http://doi.org/10.1590/S0004-27492013000200011
http://www.ncbi.nlm.nih.gov/pubmed/23828472

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

