High glucose promotes the progression of colorectal cancer by activating the BMP4 signaling and inhibited by glucagon-like peptide-1 receptor agonist

Bingwei Ma¹#, Xingchun Wang^{2,3}#, Hui Ren⁴, Yingying Li⁴, Haijiao Zhang⁵, Muqing Yang⁶ and Jiyu Li⁷*

1 Colorectal Cancer Central, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China

2 Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China

3 Thyroid Research Center of Shanghai, Shanghai Tenth People's Hospital, 301 Middle Yanchang Road, Shanghai, 200072, China

4 School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China

5 Department of Gastrointestinal Surgery, Huadong Hospital affiliated with Fudan University, 221 West Yanan Road, Shanghai, 200040, China

6 Department of General Surgery, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China

7 Geriatric Cancer Center, Huadong Hospital Affiliated to Fudan University, 221 West Yanan Road, Shanghai, 200040, China

#These authors have contributed equally to this work

*Corresponding author. Tel.: +86-21-66302531 Fax: +86-21-66303046

E-mail addresses: lijiyu@fudan.edu.cn

Full-length gels and blots Figure 2B BMP4

Figure 2B GAPDH

Figure 3C BMP4

Figure 3C GAPDH

Figure 3D MC38 BMP4

Figure 3D MC38 GAPDH

Figure 3D SW1116 BMP4

Figure 3D SW1116 GAPDH

Figure 3D SW480 BMP4

Figure 3D SW480 GAPDH

Figure 4A MC38 E-cadherin

Figure 4A MC38 GAPDH

Figure 4A MC38 N-cadherin

Figure 4A MC38 Snail

Figure 4A MC38 Vimentin

Figure 4A SW1116 E-cadherin

Figure 4A SW1116 GAPDH

Figure 4A SW1116 N-cadherin

Figure 4A SW1116 Snail

Figure 4A SW1116 Vimentin

Figure 4B MC38 GAPDH

Figure 4B MC38 pSmad1/5/8

Figure 4B MC38 Smad1/5/8

Figure 4B SW1116 GAPDH

Figure 4B SW1116 pSmad1/5/8

Figure 4B SW1116 Smad1/5/8

Figure 4C BMP4

Figure 4C GAPDH

Figure 4D E-cadherin

Figure 4D GAPDH

Figure 4D pSmad1/5/8

Figure 4D Vimentin

Figure 4D BMP4

Figure 5A MC38 GAPDH

Figure 5A MC38 GLP-1R

Figure 5A SW1116 GAPDH

Figure 5A SW1116 GLP-1R

Figure 5B MC38 BMP4

Figure 5B MC38 GAPDH

Figure 5B SW1116 BMP4

Figure 5B SW1116 GAPDH

Figure 6C MC38 BCL2

Figure 6C MC38 Caspase3

Figure 6C MC38 cleave-Caspase3

Figure 6C MC38 β-Tublin

Figure 6C SW1116 BCL-2

Figure 6C SW1116 Caspase3

Figure 6C SW1116 cleave-Caspase3

Figure 6C SW1116 β-Tublin

