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A Corrigendum on

A Student’s Guide to Neural Circuit Tracing

by Saleeba, C., Dempsey, B., Le, S., Goodchild, A., and McMullan, S. (2019). Front. Neurosci. 13:897.
doi: 10.3389/fnins.2019.00897

In the original article, there was an error: one section of our review considers reagents traditionally
considered to be anterograde tracers (i.e., fluorescent or antigenic substances that are taken up
by neuronal cell bodies at the site of application and transported to the synaptic terminals). The
original text read:

Emerging in the mid-1980s, dextran-based tracers, particularly biotinylated dextran amine
(BDA), were rapidly adopted and remain one of the most widely used conventional anterograde
tracers (Glover et al., 1986; Brandt and Apkarian, 1992; Veenman et al., 1992; Wouterlood et al.,
2014). BDA enters injured neurons at the injection site, undergoes rapid anterograde transport
and spreads evenly throughout the entire neuron, resulting in a Golgi-like level of staining detail
(Köbbert et al., 2000; Lanciego andWouterlood, 2011;Wouterlood et al., 2014). Interestingly, while
10 kDa BDA travels mostly anterogradely, the 3 kDa form is a retrograde tracer (Reiner et al., 2000;
Lanciego and Wouterlood, 2011). Like CTb, fluorophore-labeled dextran amine variants are now
widely used instead of biotinylated versions that require histological processing for visualization,
and a number of authors have used tetramethylrhodamine-conjugated dextran for juxtacellular
labeling during electrophysiological recordings (Noseda et al., 2010; Dempsey et al., 2015).

Limitations of Conventional Tracers

Despite their ongoing popularity, the major limitations of conventional tracers are worthy
of consideration:

(1) Conventional tracers are taken up by fibers of passage (Dado et al., 1990; Chen and Aston-
Jones, 1995; Conte et al., 2009), which can lead to incorrect identification of projections.
[Notably, canine adenovirus (CAV) can also be taken up by fibers of passage (Schwarz et al.,
2015)].

(2) The spread of many conventional tracers around the injection site results in intense and
diffuse labeling that may reflect deposition in the extracellular matrix or take-up by neurons
or glia. Such non-specific labeling makes it difficult to reliably identify labeled neurons
within ∼1mm of the injection site. Thus the historical use of conventional tracers has
probably overemphasized the relative significance of distant inputs/outputs compared to those
originating from local interneurons; contemporary connectomic studies indicate that long-
distance projections are relatively rare compared to short-distance connections (Oh et al., 2014;
Henriksen et al., 2016; van den Heuvel et al., 2016; Dempsey et al., 2017).
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(3) Tracer uptake relies predominantly on sugars that are located
on the glycocalyx of most, if not all neurons, or on common
mechanisms such as endocytosis. Consequently, restricted
uptake by functionally or neurochemically/genetically
homogeneous neuronal populations is not possible.

(4) The direction of axonal transport is often not exclusive,
which complicates circuit analysis; for example, CTb,
perhaps the mostly widely used “retrograde” tracer, is also
an efficient anterograde tracer (Luppi et al., 1987; Angelucci
et al., 1996; Noseda et al., 2010).

The authors were contacted by Professor Joel Glover, who first
described the use of dextran amines as neuronal tracers in
the 1980s and expressed concern that we had inadvertently
perpetuated a myth regarding the directional sensitivity of
these tracers.

The amendment to the article clarifies the bidirectional nature
of dextran amine transport.

A correction has been made to the Anterograde and
Retrograde Tracers section, subsection Conventional (Mainly)
Anterograde Tracers;

“Emerging in the mid-1980s, dextran-amines (DAs) were
rapidly adopted and remain widely used as conventional
axonal tracers (Gimlich and Braun, 1985; Glover et al., 1986;
Brandt and Apkarian, 1992; Veenman et al., 1992; Wouterlood
et al., 2014). DAs enter injured neurons at the injection
site and spread evenly throughout the entire neuron via
diffusion, resulting in a Golgi-like level of staining detail
(Glover et al., 1986; Fritzsch, 1993; Glover, 1995; Köbbert
et al., 2000; Lanciego and Wouterlood, 2011; Wouterlood et al.,
2014).

Despite the common perception that DAs are preferential
anterograde tracers, many studies indicate bidirectional travel
(Schmued et al., 1990; Fritzsch, 1993; Glover, 1995; Zhang et al.,
2017), including the original description of their axonal transport
by Glover et al. (1986). Their retrograde capabilities have been
exploited both for conventional tracing (Sivertsen et al., 2014,
2016; Lunde et al., 2019) and for delivery of calcium-sensitive
indicators for optical recording of neurons selected by axonal
trajectory (O’Donovan et al., 1993; McPherson et al., 1997).

There is a perception that the molecular weight of DA-
conjugates contributes to their directional selectivity, with
smaller molecules exhibiting superior performance as a
retrograde tracer (Reiner et al., 2000; Lanciego and Wouterlood,
2011). However, the influence, if any, of molecular weight on
directional specificity is probably overstated, and may instead
reflect differences in speed of transport, which is distinctly

faster for smaller compounds (Fritzsch, 1993), combined with
differences in volume of synaptic terminals compared to cell
bodies (Joel C Glover, personal communication).

Like CTb, fluorophore-labeled dextran amine variants are now
widely used instead of or in addition to biotinylated versions
that require histological processing for visualization, and we
and others have used tetramethylrhodamine-conjugated dextran
for juxtacellular labeling during electrophysiological recordings
(Noseda et al., 2010; Dempsey et al., 2015).

Limitations of Conventional Tracers

Despite their ongoing popularity, the major limitations of
conventional tracers are worthy of consideration:

1. Conventional tracers can be taken up by fibers of passage
(Dado et al., 1990; Chen and Aston-Jones, 1995; Conte
et al., 2009), which can lead to incorrect identification of
projections. [Notably, canine adenovirus (CAV) can also be
taken up by fibers of passage (Schwarz et al., 2015)].

2. The spread of many conventional tracers around the
injection site results in intense and diffuse labeling that
may reflect deposition in the extracellular matrix or take-
up by neurons or glia. Such non-specific labeling makes it
difficult to reliably identify labeled neurons within ∼1mm
of the injection site. Thus the historical use of conventional
tracers has probably overemphasized the relative significance
of distant inputs/outputs compared to those originating
from local interneurons; contemporary connectomic studies
indicate that long-distance projections are relatively rare
compared to short-distance connections (Oh et al., 2014;
Henriksen et al., 2016; van den Heuvel et al., 2016;
Dempsey et al., 2017).

3. Tracer uptake relies predominantly on sugars that are located
on the glycocalyx of most, if not all neurons, or on common
mechanisms such as endocytosis. Consequently, restricted
uptake by functionally or neurochemically/genetically
homogeneous neuronal populations is not possible.

4. The direction of axonal transport is rarely exclusive, which
complicates circuit analysis; the archetypal retrograde and
anterograde tracers, CTb and BDA respectively, both label
axons traveling in the “wrong” direction (Luppi et al., 1987;
Schmued et al., 1990; Fritzsch, 1993; Glover, 1995; Angelucci
et al., 1996; Noseda et al., 2010; Zhang et al., 2017).”

The authors apologize for this error and state that this does not
change the scientific conclusions of the article in any way. The
original article has been updated.
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