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Abstract

Background: Streptococcus pneumonia (pneumococcus) is a human bacterial pathogen causing a range of mild to
severe infections. The complicated transcriptome patterns of pneumococci during the colonization to infection
process in the human body are usually determined by measuring the expression of essential virulence genes and
the comparison of pathogenic with non-pathogenic bacteria through microarray analyses. As systems biology
studies have demonstrated, critical co-expressing modules and genes may serve as key players in biological
processes. Generally, Sample Progression Discovery (SPD) is a computational approach traditionally used to
decipher biological progression trends and their corresponding gene modules (clusters) in different clinical samples
underlying a microarray dataset. The present study aimed to investigate the bacterial gene expression pattern from
colonization to severe infection periods (specimens isolated from the nasopharynx, lung, blood, and brain) to find
new genes/gene modules associated with the infection progression. This strategy may lead to finding novel gene
candidates for vaccines or drug design.

Results: The results included essential genes whose expression patterns varied in different bacterial conditions and
have not been investigated in similar studies.

Conclusions: In conclusion, the SPD algorithm, along with differentially expressed genes detection, can offer new
ways of discovering new therapeutic or vaccine targeted gene products.
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Background
Streptococcus pneumonia (pneumococci) is a common
bacterial pathogen in children, immunocompromised in-
dividuals, and the elderly. It infects the upper respiratory
tract (especially nasopharynx) of 27–65% of children and
10% of adults. Pneumococci can cause severe infections
in susceptible hosts through a highly flexible gene ex-
pression capacity, allowing it to move from the naso-
pharynx and adapt to highly sterile body sites, including
lung, blood, and brain. It causes a wide range of disor-
ders, from otitis media and sinusitis to severe infections,
such as bacteremia, pneumonia, and meningitis [1].
Hence, despite available pneumococcal treatments and
effective vaccines, pneumococci is one of the 12 highly
invasive pathogens causing more deaths than any other
infectious diseases in the world [2]. A small pneumococ-
cal genome size (3000–5000 genes) confirms that tran-
scriptional events play a critical role in an adaptive and
smart behavior [3]. Accordingly, many studies have in-
vestigated the pathogenicity behavior of the pathogen by
measuring, through microarray experiments, the expres-
sion of essential virulence genes and comparing it with
that of non-pathogenic bacteria in different niches dur-
ing colonization and invasion [4]. As systems biology
studies have demonstrated, critical co-expressing mod-
ules and genes may serve as the key player in biological
processes. Generally, Sample Progression Discovery
(SPD) is a computational approach traditionally used to
decipher biological progression trends and their corre-
sponding gene module clusters in different clinical sam-
ples underlying a microarray dataset. This approach is
used in progression-based diseases, including cancer,
chronic pulmonary obstructive disease (COPD), and
basic cellular processes, including cell differentiation [5].
The SPD framework tries to cluster genes into modules
of co-expressed genes, construct modules’ minimum
spanning tree (MST), select modules corresponding to
common MSTs, and, according to all genes of all se-
lected modules, reconstruct a general MST [6]. Because
some essential virulence genes may not necessarily be
differentially expressed genes (DEGs), we aimed to use
SPD to define if some critical niche dependent-, co-
expressed modules, and genes are necessary for bacterial
translocation through different host niches during the
pathogenicity adventure of the pathogen. In the present
study, we wonder if some genes are ignored during the
DEGs detection approach while they may potentiate to
serve as key candidate regulators in the pathology trend
of pneumococcal diseases. We aimed to analyze pneu-
mococcal’s gene expression behavior in both
colonization and invasion states by focusing on two
microarray datasets of pneumococcus derived from the
nasopharynx, lung, blood, and brain of mice. The data
were analyzed through a machine-learning algorithm to

detect those genes related to the infection progression
from the nasopharynx to the lung, blood, and brain. We
finally found some key expression modules and genes
that could distinguish precisely between different clinical
samples.

Results
Co-expressed modules detected by SPD
According to the aim of the present study, the two ex-
tracted datasets were pooled to analyze with limma.
Each spot file contained 3297 unique probes, of which
943 included control probes that were filtered out in the
pre-processing step. Then, the gene expression matrix
was reconstructed as the input of SPD. As a result of the
SPD algorithm, many co-expressed modules were ob-
tained based on time series data in each group. After in-
vestigating all modules and their MST, modules that
significantly separated the samples based on their gene
expression patterns and source tissues (including naso-
pharynx, lung, blood, and brain) were selected to further
analysis (Table 1, S1 File). Although the enrichment ana-
lysis and literature mining could not find any meaningful
information about many of the modules due to limited
genetic annotations and enrichment tools on Streptococ-
cus pneumonia, some critical modules were identified in
each group, including genes involved in essential cellular
processes. Among these, top modules are analyzed in
the following section (S1 Table).

Nasopharynx-lung progression
Regarding the nasopharynx-lung expression data, a total
of 182 modules were detected by SPD, two of which
(modules 14 and 71) were selected as the best results
based on their MST, representing the invasion of bac-
teria from the nasopharynx to the lung (Fig. 1). As
shown in Fig. 1, based on MST and hierarchical cluster-
ing, results showed that these modules’ gene expression
pattern is significantly different between lung and naso-
pharynx. The genes involved in module 14 are mostly
enriched to the “purine metabolism” pathway and “‘de
novo’ inosine monophosphate (IMP) biosynthetic”
process (S2 Table). These pathways and processes are re-
lated to biofilm formation [7, 8]. In module 71, three genes
(SP_2173, SP_2175, and SP_2176) are involved in host im-
mune system defensive mechanisms against infections, in-
cluding the “Cationic antimicrobial peptide (CAMP)
resistance” pathway that contains six genes [9, 10]. Another
pathway in module 71 is the “Two-component regulatory
system,” a pathway that regulates the expression of pneumo-
coccal surface antigen A protein and consequently controls
the virulence of bacteria and its resistance oxidative stress
[11, 12]. The two-component system is also related to Cello-
biose Metabolism and the interaction of the bacteria with its
environment [13, 14].

Jamalkandi et al. BMC Microbiology          (2020) 20:376 Page 2 of 13



Literature mining demonstrated that the module 14
genes are very important in pneumococcal infection. For
instance, SP_0050 (purH), SP_0202 (nrdD), SP_0054 (purK)
and SP_0205 (nrdG) are early pneumococcal response
genes in human lung epithelial cells [15]. Iron starvation
condition up-regulates the expression of nrdD, SP_0204,
and SP_0205 genes, whereas it down-regulates purK, SP_
1405, and SP_1460 genes [16]. In addition, SP_1780, SP_
1405 (spxA), and SP_0274 (polC) are reported to be
pneumococcal essential genes for pulmonary infection [17].

Lung-blood progression
Applying the SPD algorithm on lung-blood expression
data detected 160 co-expressed modules, two of which
(modules 22 and 101) were selected for further analysis.
As shown in Fig. 2, these modules’ expression pattern
was significantly different between lung and blood

samples. All proteins in module 22 interact physically
with each other based on bacterial interactome (Fig. 2a).
The genes in this module significantly enriched the
“Ribosome” pathway and some significant processes,
such as “nitrogen compound metabolic process,” “pri-
mary metabolic process,” and “response to stimulus” (S2
Table). The nitrogen compound metabolic process and
primary metabolic process are dysregulated in copper re-
sistance Streptococcus pneumonia [18]. No enrichment
result was found for module 101, though some critical
previously reported genes were present in this module.
For example, Giefing et al. [19] introduced the SP_1923
and SP_1891 genes as vaccine candidates.

Blood-brain progression
In blood-brain data, 138 modules were identified, among
which, based on MST results, modules 130 and 87 are

Table 1 The number of modules extracted from the data by the SPD algorithm

Sample source No. of all modules No. of selected modules No. of top modules (No. of each module’s genes)

Nasopharynx and lung 182 30 2 (13, 10)

Lung and blood 160 10 2 (7, 9)

Blood and brain 138 13 2 (3, 14)

Nasopharynx, lung, and blood 179 15 2 (5, 8)

Lung, blood, and brain 160 12 1 (3)

Nasopharynx, lung, blood, and brain 169 18 2 (4, 3)

Fig. 1 a The co-expressed module 14 represents the infection progression in the nasopharynx to lung (Left: MST, Right: hierarchical clustering
based on gene expression data). b The co-expressed module 71 represents the infection progression in the nasopharynx to lung (Left: MST, Right:
hierarchical clustering based on gene expression data)
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present mostly co-expressed genes in the infection pro-
gression from blood to lung (Fig. 3). Interestingly, al-
though module 130 contained only three genes, the
MST and hierarchical clustering results showed that the
expression pattern was significantly different between
the blood and brain. We could not find any pathway or
process for these genes through enrichment analysis, but
in the STRING database, the gene SP_2146 interacts
with four other genes, including SP_2144, SP_2145, SP_
1654, and SP_0648 (bgaA) (Fig. 3a). In addition, SP_
2146, SP_1654 and SP_0648 are involved in “other gly-
can degradation” pathway (p-value = 3.00e-05). Robb
et al. [20] demonstrate that this pathway is required for
full virulence in Streptococcus pneumonia.
For module 87, no result was obtained from enrich-

ment analysis; however, the gene SP_0176 (ribAB) inter-
acts with three other genes (SP_0177 or ribE, SP_0175
or ribH, and SP_0178 or ribD) in the bacterial interac-
tome. These four genes were significantly enriched to
the “Riboflavin metabolism” pathway (p-value = 6.82e-
06), a critical pathway in pneumococcal infections that
its regulatory factors have been previously introduced as
novel drug targets [21, 22].

Nasopharynx-lung-blood progression
Given the data derived from the nasopharynx-lung-
blood progression, 179 modules were detected by the
SPD algorithm, among which modules 95 and 103 had

the best clustering results (Fig. 4). As shown in Fig. 4,
the gene expression patterns of these modules can clus-
ter the samples. The heatmaps in Fig. 4 shows that as
the infection progresses from the nasopharynx to lung
and then to blood, the gene expression values are simul-
taneously decreased in module 95 and increased in mod-
ule 103. The genes in module 95 and 103 are
significantly enriched to “Ascorbate and Aldarate” and
“Cysteine and methionine” metabolic pathways, respect-
ively (S2 Table).

Lung-blood-brain progression
Regarding the lung-blood-brain data, 160 modules were
detected, in which just one module (module 30) had ap-
propriate results. As shown in Fig. 5, this module con-
tained three genes, including SP_0171, SP_0391 or
CbpF, and SP_1762.

Nasopharynx-lung-blood-brain progression (full
progression)
In this section, we considered all samples’ data to find
co-expressed modules that their expression patterns
were significantly changed throughout all samples. We
could identify 169 modules, among which two modules,
including modules 34 and 144, had the optimal results
(Fig. 6). Module 34 contained four genes, including SP_
0171, SP_0256, SP_0391, and SP_1762, three of which
are common with module 30 genes detected in the lung-

Fig. 2 a The co-expressed module 22 represents the infection progression in lung to blood (Left to right: MST, protein interaction network, and
hierarchical clustering based on gene expression data). b The co-expressed module 101 represents the infection progression in lung to blood
(Left: MST, Right: hierarchical clustering based on gene expression data)
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Fig. 4 a The co-expressed module 95 represents the infection progression from the nasopharynx to lung and blood (Left: MST, Right: hierarchical
clustering based on gene expression data). b The co-expressed module 103 represents the infection progression from the nasopharynx to lung
and blood (Left: MST, Right: hierarchical clustering based on gene expression data)

Fig. 3 a The co-expressed module 130 represents the infection progression in the blood to the brain (Left to right: MST, the genes interact with
SP_2146 based on STRING database, hierarchical clustering based on gene expression data). b The co-expressed module 87 represents the
infection progression in the blood to the brain (Left: MST, Right: hierarchical clustering based on gene expression data)
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blood-brain progression data. No pathways or processes
were found via enrichment analysis for this module. Re-
garding module 144, three genes, including SP_2031,
SP_2034, and SP_2035, were found. As shown in Fig. 6,
the module’s MST and hierarchical clustering results in-
dicated a significantly different gene expression pattern
compared to all samples. Besides, this module’s genes
were significantly enriched to the “Ascorbate and alda-
rate metabolism” pathway (S2 Table).

Differentially expressed genes vs. SPD results
Considering the infection progression from the naso-
pharynx to the brain, we compared the differentially
expressed genes (DEGs, S2 File) with the genes obtained
from SPD analysis when the pneumococci transfer from
one sample niche to another one. The number of co-
expressed SPD detected genes and DEGs is shown in
Table 2. Also, the Venn diagram of the SPD identified
genes and DEGs is shown in Fig. 7. As shown in Table
2, the number of DEGs (with both logFC thresholds)

when the bacteria move from blood to the brain is
higher than in other conditions. This evidence may indi-
cate the high bacterial transcriptome alteration through
infection progression from blood to the brain. In con-
trast, the transcriptome alteration is the least when the
infection progressed from the lung to blood (comparing
with two other conditions shown in the table). Approxi-
mately 10, 15, and 25% of the DEGs are co-expressed
and detected by SPD in nasopharynx vs. lung, lung vs.
blood, and blood vs. brain conditions.
Regarding the genes in the SPD modules (S1 file), par-

ticularly the modules mentioned earlier, we can find a
group of genes that are not classified as DEGs; however,
they are critical for the infection process based on previ-
ous reports. For instance, as mentioned above, SP_0054
is an early response gene in human lung epithelial cells,
while SP_0274 is a crucial gene in pulmonary infection
[8, 17]. Table 3 shows some critical infection-related
genes detected by the SPD algorithm, while they are not
assigned to DEGs.

Fig. 5 The co-expressed module 30 represents the pneumococcal infection in the lung-blood-brain progression (a: MST, b: hierarchical clustering
based on gene expression data)
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Discussion
Extensive transcriptomic changes occur when pneumo-
cocci migrate from the nasopharynx into the lung,
blood, or brain. Available pneumococcal gene expression
studies rely on only DEG genes during bacterial trans-
mission from one body niche to another. According to
the systems biology approach, sometimes a gene may
not have a significant expression level; however, it could
play an important role in the complex system of gene
regulation and disease progression. Our study aimed to
predict these genes signatures and related alterations
during infection progression from the nasopharynx to
other niches. Acccordingly, we tried to apply a method
on transcriptome data to extract a subset of genes
undergoing a spectrum of expression changes between
niches. Because co-expressed genes often share common

pathways and are involved in common cellular processes
[25], appropriate methods should try to extract co-
expressed modules instead of single or unrelated altered
genes. Therefore, we selected the SPD algorithm as an
appropriate method to identify co-expressed modules
representing sample progression in transcriptome data.
Although other approaches such as differentially co-
expressed module identification [26] and Atomic Regu-
lons can be used [27], the SPD algorithm can compare
multiple niches simultaneously. Though the feature se-
lection algorithms [28] can detect gene alterations in
multiple conditions, they ignore gene-gene interactions
and thus were not suitable for our study.
SPD is performed to obtain different sets of genes spe-

cific to every niche. For example, SP_0446 and SP_0959
genes were detected in lung-blood migration data. These
genes were previously reported as dysregulated genes in
the early response in THP-1 human macrophages [29].
In blood-brain migration data, SP_2144 was detected in
module 26. This gene, along with two others (SP_2145
and SP_1654), was previously reported as virulence-
related genes in S. pneumonia [17, 30, 31]. These three
genes physically interact with module 130 (detected in
blood-brain migration) based on S. pneumonia interac-
tome. SPD detects SP_0171 and SP_0391 (cbpF) in mod-
ule 30 in lung-blood-brain migration data. SP_0171 is a
ROK family protein expressed differentially in the early
response to THP-1 human macrophage [29]. SP_0391

Fig. 6 a The co-expressed module 34 represents the infection progression in the nasopharynx-lung-blood-brain model (Left: MST, Right:
hierarchical clustering based on gene expression data). b The co-expressed module 144 represents the infection progression in the nasopharynx
to lung, blood, and brain (Left: MST, Right: hierarchical clustering based on gene expression data)

Table 2 The number of DEGs and co-expressed SPD detected
genes

Condition #SPD #DEG #Common logFC

Nasopharynx vs. lung 632 729 196 0.7

446 105 1

Lung vs. blood 220 644 59 0.7

327 33 1

Blood vs. brain 485 976 161 0.7

821 126 1

*P-value< 0.05
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(cbpF) is an important choline-binding protein that was
reported previously as a virulence factor in S. pneumonia
[32–34]. In full progression data, SP_0391 and SP_0256
are two important co-expressed genes that were detected
by SPD in module 34. SP_0391 is an important virulence
factor of pneumococci [32–34], and SP_0256 is up-
regulated in response to penicillin [23]. Furthermore, en-
richment analysis revealed some important pathways
and processes which may play an important role in

pneumococcal infection. For instance, the genes in mod-
ule 22, detected in lung-blood progression data, signifi-
cantly enriched to “nitrogen compound metabolic
process.” Lui et al. demonstrated that the genes deferen-
tially expressed in children with acute otitis media due
to Streptococcus pneumonia are significantly enriched in
this process [35]. As mentioned in the result section, in
nasopharynx-lung-blood migration data, module 95 and
103 are significantly enriched to “Ascorbate and aldarate

Fig. 7 The Venn diagram of the SPD results and DEGs (|logFC| > 0.7 and p-value< 0.5)

Table 3 The key infection-related genes were not categorized as DEGs but detected by the SPD algorithm

SPD Modules Gene
name

Role in the infection process Reference
(s)

14
(Nasopharynx,
lung)

SP_0054 Early response gene in human lung epithelial cells [8]

SP_0274 Essential gene in lung infection [17]

SP_1460 Involved in iron starvation condition [16]

SP_1780 Essential gene in pulmonary infection [17]

17
(Nasopharynx,
lung)

SP_2176 Enriched in Two-component system which controls the virulence and bacterial resistance to oxidative
stress

[11, 12]

101(lung, blood) SP_1923 Vaccine candidate gene [19]

22 (lung, blood) SP_0215 Enriched in nitrogen compound metabolism and primary metabolic process which is dysregulated in
copper resistance in Streptococcus pneumonia

[18]

SP_1540

SP_1105 Enriched in the metabolic process of nitrogen compounds [18]

130 (blood,
brain)

SP_0739 Up-regulated in response to exposure to penicillin [23]

SP_1052 Contributes to virulence in mice [24]
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metabolism” and “Cysteine and methionine metabolism”
pathways, respectively. Previous studies demonstrated
that ascorbic acid metabolism affects the expression of
some critical genes in the pathogenicity of S. pneumonia
[36]. Also, methionine synthesis has a critical role in
bacterial growth and virulence [37]. Identified genes may
be applied as antibacterial therapeutic targets and vac-
cine candidates after more investigations, including de-
termining the cellular location. There are some
methodological limitations and problems in this study:
1) Data acquisition; at first, we tried to search for micro-
array and RNA-Seq data from public datasets, such as
GEO and ArrayExpress, using the keyword “Streptococ-
cus pneumonia.” There was a great limitation since the
systems biology approach requires a high number of
clinical samples. Unfortunately, we found that high-
throughput data are scarce for most bacteria, including
S. pneumonia, and in contrast to many other human-
related fields, including cancer studies, the field of bac-
terial pathogenesis in systems biology is relatively in its
infancy. Accordingly, we had to perform our study on
currently available data. We finally found only two ap-
propriate pneumococcal transcriptome datasets that
could be integrated to increase the data volume. How-
ever, regarding the advent of systems biology approaches
in medical bacteriology, this field will be definitely devel-
oped in the future. In spite of limited studies with a
small sample size, the sample size is still critical to
achieving precise statistical significance in systems biol-
ogy. Pooling data from similar studies, if logically per-
missible, could overcome to some extent the problems.
Therefore, it is imperative to conduct larger volume
studies and use a high number of samples to generate
applicable high-throughput data. Due to the emerging of
high-throughput technology, such as RNA-Seq, the data
limit will be diminished, and in future studies, machine-
learning approaches, such as SPD, could be applied to
new appropriate datasets to extract significant results. 2)
Another critical issue is that available databases are not
exclusively devoted to bacteria, and their search tools
are publicly designed, making it difficult to explore bac-
terial data. We could only search and use available data-
sets in spite of their limitations. For this reason, we were
not capable of interpreting some of the obtained results.
Accordingly, developing a comprehensive bacteria-
specific database storing transcriptomic (or other bacter-
ial omics) data, along with specially designed bacterial
searching tools, is a valuable and essential step in devel-
oping and advancing systems biology studies to more in
understanding the pathogenesis of infectious diseases. 3)
The lack of an appropriate enrichment tool is another
challenging issue in our research. STRING was the only
relatively suitable enrichment tool; however, it is not
specific for bacteria and may cover very poorly

pneumococcal genes. Providing powerful and user-
friendly enrichment tools for bacterial pathogens is
highly needed. 4) The next challenge was to interpret
the results to obtain functional information about these
genes and their associated biological processes and path-
ways through databases. Although there are various da-
tabases and many identified biological processes for
human and mouse genes, it does not cover most bac-
teria, including pneumococci. Likewise, no annotation
on the function or biological processes was available in
databases for numerous discovered pneumococcal genes
in this study. This greatly affects the enrichment process
because we were not able to provide any interpretation
for many modules or gene clusters, although the results
showed significant issues.
As a note, although given the small genotype differ-

ences between various serotypes, it would be better to
use data from one serotype alone for the study; however,
for some reason, we utilized only two datasets. First, our
study is based on identifying bacterial invasion patterns
and based on this, and we can approximately categorize
invasive serotypes. Second, we needed to investigate the
pathogenesis pattern in several ecological niches, from
the normal flora in the nasopharynx to the complete
pathogenicity (including meningitis and sepsis). Hence,
we used only two studies. Third, each of these studies
alone had a small sample size, and by pooling them, the
sample volume was increased. Consequently, we believe
that the lack of sufficient omics data, bacteria-specific
databases, and appropriate tools are the main drawbacks
of systems biology and computational research to
analyze bacterial pathogens, such as Streptococcus pneu-
monia. In conclusion, this is the first study using the
SPD algorithm to assess the transcriptome pattern of
pneumococci in different niches, regardless of the ex-
pression fold change of genes. Although some of the
genes obtained here are entirely unknown, our results
show that the expression patterns of these genes are dif-
ferent in different niches, and some of them interact
with important well-known genes at the protein level,
emphasizing their importance for more closely recogni-
tion. It seems that this approach could identify new es-
sential genes involving in various pneumococcal
pathogenesis that have been disregarded in the conven-
tional method (fold change expression analysis). This ap-
proach could identify important novel genes. This
approach is not specific to pneumococci and is applic-
able if there is adequate and appropriate data, database,
and enrichment tools for any other pathogen.

Methods
Data preparation
Figure 8 shows our method workflow. The first step of
our study is data preparation. The datasets used in this
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Fig. 8 Method workflow
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study were downloaded from ArrayExpress database
(https://www.ebi.ac.uk/arrayexpress/) with the accession
numbers of E-BUGS-130 and E-BUGS-133. The two-
color microarray technology had been used to extract the
total RNA expression of the bacteria in 48, 72, and 96 h’ time
points in a mice intranasal challenge experiment [38, 39]. E-
BUGS-130 contains the blood and brain samples, and E-
BUGS-133 contains the nasal, blood, and lung samples. The
pneumococcal strains included the strain WCH43 (serotype
4) and WCH16 (serotype 6A) isolated from blood. The ar-
ray’s design is available at the ArrayExpress database with
the accession number of A-BUGS-14, and the gene annota-
tions are based on TIGR4 and R6 strains.

Data processing
After the pre-processing of samples, the background
correction and the quantile normalization were applied
using the limma R package [40]. The green and red color
data were separated in the microarray results to recon-
struct an expression matrix containing the expression
data of the genes in each experimental condition. Next,
the average expression value was replaced for duplicate
probes or conditions in each dataset. Finally, the data-
sets’ expression matrices were combined to reconstruct
the final expression matrix (S3 File) for further analysis.
In this matrix, the rows represented probes or genes,
and the columns represented the experimental condi-
tions (time points and samples).

Differential gene expression analysis
To compare the SPD results with Differentially Expressed
Genes (DEGs), differential gene expression analysis was
applied using the limma package [40] in the R program-
ming environment. The genes that are differentially
expressed from one niche to another when the infection
progressed from nasopharynx to brain were extracted
through t-test with p-value < 0.05 and |logFC| > 0.7
(|logFC| > 1 was also extracted).

Module detection and enrichment analysis
To detect co-expressed gene modules representing bio-
logical progressions behind time-series microarray data,
the SPD algorithm was applied to the expression matrix
[6]. Based on each detected module’s expression, a Mini-
mum Spanning Tree (MST, an acyclic graph with mini-
mum total edge weights) was created as columns of the
expression matrix for each sample. The weight of each
edge denotes the Euclidean distance between two sam-
ples, and each tree represents a biological progression in
all samples [6]. The pneumococcal infection progression
begins from the nasopharynx and can extend to the
lung, blood, and brain [41]. Considering the expression
data in these niches in multiple time points, we catego-
rized the data into six groups, including 1) [Nasopharynx

and lung], 2) [Lung and blood], 3) [Blood and brain], 4)
[Nasopharynx, lung, and blood], 5) [Lung, blood, and
brain], and 6) finally [Nasopharynx, lung, blood, and
brain]. Subsequently, the SPD algorithm was applied to
each group with the correlation threshold of 0.95 and
the minimum gene cut-off of one to predict the signifi-
cant modules. After detecting the modules, we com-
pared the MSTs in each group and selected those
modules able to separate the body niches based on their
expression patterns. These modules were chosen as the
best results of the SPD algorithm for further analyses.

Gene set enrichment analysis and interaction assessment
The gene set enrichment analysis was performed for de-
tected modules using the Comparative GO web tool [42, 43],
the STRING database [44] based on KEGG pathways [45],
and Gene Ontology Biological Processes [46, 47]. Besides,
the STRING database was used for interaction analysis.

Hierarchical clustering and visualization
Hierarchical clustering and visualization were performed
in the R programming environment with the Euclidean
distance and Ward.D2 method [48]. The Venn diagrams
were drawn with an online tool available at http://bio-
informatics.psb.ugent.be/webtools/Venn/. Also, network
visualization was performed via Cytoscape software [49].

Conclusions
In conclusion, this is the first study using the SPD algo-
rithm to assess the transcriptome pattern of pneumo-
cocci in different niches, regardless of the expression
fold change of genes. Although some of the genes ob-
tained here are entirely unknown, our results show that
the expression patterns of these genes are different in
different niches, and some of them interact with well-
known essential genes at the protein level, emphasizing
their importance for more closely recognition. It seems
that this approach could identify new essential genes in-
volving in various pneumococcal pathogenesis that have
been disregarded in the conventional method (fold
change expression analysis). This approach can identify
significant novel genes not only in pneumococci but also
in other pathogens in the case of the availability of ad-
equate and appropriate data, databases, and enrichment
tools.
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