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Abstract 

Background:  To date, the usefulness of parathyroid hormone [PTH (1–34)] in distraction osteogenesis has been 
reported in several studies. We aimed to determine the optimal timing of PTH (1–34) administration in a rabbit dis-
traction osteogenesis model.

Methods:  The lower hind leg of a Japanese white rabbit was externally fixed, and tibial osteotomy was performed. 
One week after the osteotomy, bone lengthening was carried out at 0.375 mm/12 h for 2 weeks. After 5 weeks, the 
lower leg bone was collected. Bone mineral density (BMD), peripheral quantitative computed tomography (pQCT), 
micro-computed tomography (micro-CT), and mechanical tests were performed on the distracted callus. The rabbits 
were divided into three groups according to the timing of PTH (1–34) administration: 4 weeks during the distraction 
and consolidation phases (group D + C), 2 weeks of the distraction phase (group D), and the first 2 weeks of the con-
solidation phase (group C). A control group (group N) was administered saline for 4 weeks during the distraction and 
consolidation phases. Furthermore, to obtain histological findings, lower leg bones were collected from each rabbit at 
2, 3, and 4 weeks after osteotomy, and tissue sections of the distracted callus were examined histologically.

Results:  The BMD was highest in group C and was significantly higher than group D. In pQCT, the total cross-sec-
tional area was significantly higher in groups D + C, D, and C than group N, and the cortical bone area was highest in 
group C and was significantly higher than group D. In micro-CT, group C had the highest bone mass and number of 
trabeculae. Regarding the mechanical test, group C had the highest callus failure strength, and this value was signifi-
cantly higher compared to group N. There was no significant difference between groups D and N. The histological 
findings revealed that the distracted callus mainly consisted of endochondral ossification in the distraction phase. In 
the consolidation phase, the chondrocytes were almost absent, and intramembranous ossification was the main type 
of ossification.

Conclusion:  We found that the optimal timing of PTH (1–34) administration is during the consolidation phase, which 
is mainly characterized by intramembranous ossification.

Keywords:  Parathyroid hormone, Distraction osteogenesis, Callus strength, Bone mineral density, Administration 
timing
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Background
Distraction osteogenesis is a surgical technique that 
ensures new bone formation in the distraction gap by 
adding traction stress to the osteotomy site. This process 
has three phases: (1) latency phase—the waiting period 
from osteotomy to the start of distraction, (2) distraction 
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phase—the period of bone lengthening, and (3) consoli-
dation phase—the waiting period for callus maturation 
after the end of distraction [1–3] (Fig.  1). Distraction 
osteogenesis is used in clinical practice to treat various 
bone defects [4–10]. Other surgical techniques for bone 
defects include vascularized bone grafts [11] and the 
Masquelet technique [12–14]. Compared to these tech-
niques, the advantage of distraction osteogenesis is that 
normal tissue is not sacrificed because bone grafting is 
unnecessary and special techniques such as microsur-
gery are not required. On the other hand, the disadvan-
tage is the long period required for bone fusion, during 
which an external fixator must be worn for an extended 
period. Clinically, 1 cm of distracted callus takes 1 month 
to mature and heal [15]. In the case of a 10-cm bone 
defect, an external fixator should be worn for 10 months. 
Long-term external fixation may increase the burden on 
daily and social life, economic and mental burden, and 
risk of infection at the pin insertion site [16–18]. There-
fore, the treatment period of distraction osteogenesis 
needs to be shortened. There are ongoing attempts to 
combine distraction osteogenesis with other treatment 
modalities, such as ultrasonic waves [19], extracorporeal 
shock waves [20], alternating current electrical stimula-
tion [21], dynamization [22], and various bone metabo-
lism regulators and cytokine administration [23–30]. The 
parathyroid hormone (PTH (1–34)) has been applied 
clinically to treat osteoporosis and has excellent efficacy 
in increasing bone mineral density (BMD) and inhibit-
ing bone fractures [31]. The usefulness of PTH (1–34) in 
fracture healing has been widely studied. In a rat femoral 
fracture model, PTH (1–34) has been shown to increase 
BMD, ultimate load, callus volume, callus strength, and 

promote fracture healing [32–37]. A recent review arti-
cle also showed that intermittent administration of PTH 
(1–34) promotes fracture healing in animal studies [38]. 
Human studies are few and inconsistent with animal 
studies, but they provide insight into the potential for 
intermittent PTH (1–34) administration to promote 
fracture healing. Another meta-analysis has shown that 
PTH treatment in patients with fracture was better than 
a placebo or no treatment based on the time for fracture 
healing, the degree of fracture pain, and the functional 
outcomes [39].

To date, the usefulness of PTH (1–34) in distrac-
tion osteogenesis has been noted only in a few reports 
[27–30]. Among them, Aleksyniene et al. [27] found that 
callus strength, callus volume, and BMD were not sig-
nificantly different when PTH (1–34) was administered 
during the entire distraction and consolidation phases or 
when administered only during the consolidation phase 
in a rabbit distraction osteogenesis model. However, they 
did not compare the results with those of the group that 
received PTH (1–34) only in the distraction phase. No 
studies have evaluated the optimal timing of PTH (1–34) 
administration during the distraction and consolidation 
phases, considering that the type of ossification is dif-
ferent in these two phases [40, 41]. As the type of ossi-
fication may differ during different phases of distraction 
osteogenesis model, we have assumed the existence of 
an optimal timing of PTH (1–34). Therefore, this study 
aimed to elucidate the optimal timing of PTH (1–34) 
administration by biologically evaluating each phase.

Methods
Animals and test groups
Twenty-one-week-old Japanese male white rabbits (Ori-
ental Yeast Co., Ltd., Tokyo, Japan) weighing 2.5–2.8 kg 
were used. In accordance with a previous study, PTH 
(1–34) was subcutaneously injected at a volume of 30 μg/
kg every other day [30]. A total of 28 rabbits included in 
this study were divided into four groups (group D + C, 
D, C, N), each with seven rabbits. In group D + C, PTH 
(1–34) was administered for 4  weeks (2  weeks distrac-
tion phase + 2 weeks consolidation phase) from the start 
of distraction. In group D, PTH (1–34) was administered 
for 2 weeks during the distraction phase, and saline was 
administered for 2 weeks during the consolidation phase. 
In group C, saline was administered for 2 weeks during 
the distraction phase, and PTH (1–34) was administered 
for 2 weeks during the consolidation phase. Group N was 
the control, and saline was administered for 4 weeks from 
the start of distraction.

In addition, to confirm the type of ossification at the 
distraction site in this experimental model, a histological 
examination of the distracted callus was performed on 

Fig. 1  Three phases in distraction osteogenesis. There are three 
phases in the course of distraction osteogenesis (latency, distraction, 
and consolidation). The latency phase is the waiting period from the 
time of osteotomy to the start of distraction. The distraction phase 
is the period in which tension is applied to the callus at a constant 
rate and rhythm to extend it to the desired length. The consolidation 
phase is the period in which the callus undergoes mineralization and 
finally stabilizes
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the three Japanese male white rabbits that were adminis-
tered with saline for 4 weeks from the start of distraction 
(same as group N) and three rabbits administered with 
PTH (1–34) also for 4 weeks (same as group D + C). The 
histological examination was performed at the distrac-
tion phase (1  week after the start of distraction), at the 
end of the distraction phase (2  weeks after the start of 
distraction), and at the consolidation phase (1 week after 
the end of distraction).

Administration of PTH (1–34)
The PTH (1–34) used in this study was human PTH 
(1–34), teriparatide acetate (Asahi Kasei Pharma, Tokyo, 
Japan), which is a sequence of 34N-terminal amino acids. 
The molecular weight of teriparatide is 4418 Da. A 10 μg/
mL PTH solution was prepared using saline as a solvent, 
and this was divided into 1-mL containers and cryopre-
served at − 80 °C. The PTH solution was thawed at room 
temperature immediately before administration. The 
amount of solution corresponding to the body weight of 
each individual rabbit was calculated, and the required 
amount was subcutaneously injected. The same amount 
of saline was used in a control group.

Distraction osteogenesis model
The distraction osteogenesis model was based on Maru-
no’s method [29]. For anesthesia, ketamine hydrochlo-
ride 15 mg/kg (Sankyo Pharmaceutical Co., Ltd., Tokyo, 
Japan) was intramuscularly injected, and then pentobar-
bital 30 mg/kg (Tanabe Pharmaceutical Co., Ltd., Tokyo, 
Japan) was intravenously administered. A skin incision 
of approximately 40  mm was made on the medial side 
of the lower right hind leg to expose the periosteum on 
the medial aspect of the tibia. Without peeling the per-
iosteum, two half pins with a diameter of 2.0  mm were 
inserted across the inferior tibiofibular junction at an 
intermediate distance of 20 mm, and an external fixator 
for the short tubular bone of humans (Orthofix M-100; 
Verona, Italy) was attached. The distance between the 
two central pins was 20  mm, and the bone was cut at 
10  mm distal to the inferior tibiofibular junction using 
a drill hole (Fig. 2). During osteotomy, saline was added 
dropwise to the osteotomy site to prevent heating. The 
skin was sutured after turning the extender in the direc-
tion for shortening to avoid the gap at the osteotomy 
site. The left hind leg was not treated. The hind legs were 
loaded immediately after surgery without any restric-
tion. One week after the osteotomy, the bones were 
distracted by 0.375  mm every 12  h for two consecutive 
weeks, according to the method of Little et al. [26]. The 
amount of bone distraction was 0.75 mm per day, and the 
total distraction distance was 10.5 mm, corresponding to 
approximately 9.4% of the total tibial length. Following 

completion of the 2-week extension, the external fixator 
was removed after the waiting period of 4  weeks. Eight 
weeks after the operation, the rabbits were euthanized 
under deep anesthesia by an overdose of pentobarbital, 
and the lower leg bone was collected (Fig. 3).

Measurement methods
The collected lower leg bone was wrapped in saline-
soaked gauze and cryopreserved at − 80 °C until each test 
was performed. At the time of measurement, the tibia 
was naturally thawed at room temperature, and various 
imaging tests were performed, followed by a three-point 
bending test. The following parameters were measured 
and compared between groups.

Bone mineral density (BMD)
BMD of the distracted callus was measured by dual-
energy X-ray absorptiometry (DXA) for small animals 
using DCS-600EX-R (Aloka, Japan). BMD was measured 
4  mm both proximally and distally from the osteotomy 
site.

Peripheral quantitative computed tomography (pQCT)
BMD measuring device for small animals, XCT Research 
SA + pQCT (Stratec Medizintechnik GmbH, Pforz-
heim, Germany), was used to assess the cross-sectional 
shapes of the distracted callus. Measurement parameters 
included total (mm3) and cortical (mm3) areas of the dis-
tracted callus.

Fig. 2  Position of osteotomy and pin insertion for the external fixator. 
The Orthofix M-100 was fixed to the tibia with four 2.0-mm half pins. 
The middle two pins were set 20 mm apart and drill hole osteotomy 
was performed between the two pins, i.e., 10 mm distal to the inferior 
tibiofibular junction
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Micro‑computed tomography (micro‑CT)
Micro-CT was measured using a high-resolution 
microfocus X-ray CT scanner, ScanX-mate-A090S 
(Comscan Techno, Japan), to evaluate the three-
dimensional morphology of the cortex and trabecular 
structure of the distracted callus. Bone volume/tissue 
volume (BV/TV), trabecular number (Tb.N), and tra-
becular separation (Tb.Sp) were measured as param-
eters of the micro-trabecular structure.

Mechanical testing (three‑point bending test)
The three-point bending test was performed using 
GRAPH-2000E (Shimadzu, Japan). The anterior surface 
of the tibia faced upward, whereas the posterior surface 
faced downward to allow the center of the distraction 
osteogenesis to be located in the middle between two 
support points at 20 mm distance. Then, pressure was 
applied with a crosshead speed of 2 mm/s at the center 
of the distracted callus from the anterior tibia surface. 
The measurement parameter was absorption energy 
until callus fracture [work to failure (Nmm)].

Histological examination
The lower leg bone collected at each evaluation period 
was decalcified using formic acid-formalin and was cut 
into sagittal sections, which were stained using hema-
toxylin and eosin.

Statistical analysis
For statistical analysis, JMP® 15 (SAS Institute Inc., Cary, 
NC, USA) statistical software was used, with the signifi-
cance set at p < 0.05. Values are expressed as mean ± stand-
ard deviation (SD). Differences between groups were 
tested by analysis of variance with a Tukey–Kramer hon-
estly significant difference for post hoc analysis.

Ethics
This study conformed to Japan’s “Law concerning the 
protection and control of animals,” “Standard concern-
ing the breeding and protection of laboratory animals,” 
“Laboratory Animal Guidelines of Kyorin University,” 
and other relevant guidelines. The study was conducted 
at a laboratory of the Department of Orthopedic Surgery, 
Kyorin University.

Results
Six rabbits were excluded due to loosening of the external 
fixator pin or fracture during the treatment course, and 
the remaining 22 rabbits (seven rabbits in group D + C, 
five rabbits in group D, five rabbits in group C, and five 
rabbits in group N) were evaluated.

Imaging tests
BMD (mg/cm2) (Table 1)
The BMD (mean ± SD) of the whole distracted callus 
by DXA was highest in group C (256 ± 18) and was 
significantly higher compared with group D (196 ± 15).

pQCT (Table 1)
The total area (mean ± SD) was highest in group D. Com-
pared with group N, groups D + C, D, and C were sig-
nificantly higher by 9%, 16%, and 9%, respectively. The 
cortical area (mean ± SD) was highest in group C and was 
significantly different compared with group D.

Fig. 3  Experimental protocol. The 1-week latency phase was 
followed by a 2-week distraction phase and a 5-week consolidation 
phase. Group D + C received PTH (1–34) for 4 weeks from the start of 
distraction. Group D received PTH (1–34) for 2 weeks from the start of 
distraction and saline for the subsequent 2 weeks. Group C received 
saline from the start of distraction and PTH (1–34) for the subsequent 
2 weeks, and group N received saline solution for 4 weeks from the 
start of distraction. The experimental animals were euthanized at 
8 weeks after osteotomy

Table 1  BMD measured with DXA, and total area and cortical 
area measured with pQCT

The values are presented as mean ± standard deviation

*p < 0.05 versus Group D
# p < 0.05 versus Group N

n BMD (mg/cm2) Total area (mm3) Cortical 
area 
(mm3)

Group D + C 7 206 ± 28 76 ± 2# 25 ± 3

Group D 5 196 ± 15 81 ± 3# 24 ± 1

Group C 5 256 ± 18* 76 ± 1# 28 ± 1*

Group N 5 239 ± 42 70 ± 1 25 ± 3
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Mechanical testing (three‑point bending test) (Fig. 5)
The work to failure (mean ± SD) was 471 ± 55 in group 
D + C, 427 ± 99 in group D, 595 ± 126 in group C, and 
313 ± 48 in group N. The work to failure (mean ± SD) was 
highest in group C. Compared with group N, the work 
to failure for groups C and D + C increased by 90% and 
50%, respectively, with statistical significance. There was 
no significant difference between groups D and N and 
between groups C and D + C.

Histological examination (Fig. 6)
The type of ossification of new bone that has begun 
to appear around the distal part of the osteotomy was 
shown. The images on the left showed the histology of 
the distraction phase (Fig.  6a) and the consolidation 
phase (Fig. 6b) by the protocol in group N. The images 
on the right showed the histology of the distraction 
phase (Fig. 6c) and the consolidation phase (Fig. 6d) by 
the protocol in group D + C. In this case, the distrac-
tion phase represented 2  weeks after the osteotomy 
(1  week after the start of distraction) and the consoli-
dation phase represented 4  weeks after the osteotomy 
(1  week after the end of distraction). A different type 
of ossification was seen between the distraction and 
consolidation phases in both group N and group D + C. 
At the distraction phase, the chondrocytes were abun-
dant in the distracted callus, and the new bone was 
formed by endochondral ossification (Fig.  6a, c). The 

Table 2  Micro-architecture of the distracted callus evaluated 
using micro-CT

The values are presented as mean ± standard deviation

*p < 0.05 versus Group D

n BV/TV (%) Tb.N (1/mm) Tb.Sp (μm)

Group D + C 7 44 ± 14 3.0 ± 0.8 235 ± 99

Group D 5 29 ± 4 2.1 ± 0.6 383 ± 156

Group C 5 49 ± 3* 3.2 ± 0.4* 172 ± 29*

Group N 5 49 ± 13 2.8 ± 0.2 229 ± 83

Fig. 4  Three-dimensional micro-computed tomography images of the distracted callus. Longitudinal (left side) and transverse (right side) sections 
for a representative specimen. A Group D + C; B Group D; C Group C; D Group N

Micro‑CT (Table 2)

Three-dimensional images of the trabecular bone 
evaluated with micro-CT are shown in the figure (Fig. 4). 
The bone marrow space of A (group D + C) and C 
(group C) is filled with numerous trabeculae and low 
porosity, whereas B (group D) and D (group N) have 
fewer and thinner trabeculae in the marrow space. The 
architectural differences are quantified in Table 2. BV/TV 
(mean ± SD) and Tb.N (mean ± SD) were both highest in 
group C, and there were significant differences compared 
with group D. Tb.Sp (mean ± SD) was lowest in group C 
and showed a significant difference to group D.
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ossification occurred through a cartilage intermediate. 
At the end of the distraction phase, 2  weeks after the 
start of distraction, the chondrocytes decreased and 
intramembranous ossification was notable. At the con-
solidation phase, only a few chondrocytes were iden-
tified, and the new bone in the callus distraction part 
was almost formed by intramembranous ossification. It 
seemed that there was a difference in the thickness and 
quantity of the new bone between the protocol in group 
N and D + C (Fig. 6b, d). There was no qualitative dif-
ference between the N and D + C groups; however, they 
were observed to be somewhat different quantitatively.

Discussion
Intermittent administration of PTH (1–34) promotes 
the differentiation of mesenchymal stem cells into osteo-
blasts and accelerates bone formation. Studies using ova-
riectomized cynomolgus monkeys [42–44] have shown 
that PTH (1–34) administration significantly increases 
bone mass, improves bone micro-architecture, and 
increases bone strength in the vertebral body and femo-
ral neck. Furthermore, in a study using human iliac bone 
biopsy specimens, PTH (1–34) administration showed 
an increase in total bone mass. Significant improve-
ments in the trabecular structure model index, trabecu-
lar connectivity density, and cortical bone width were 
observed compared to the placebo group [45]. However, 
the mechanism by which PTH (1–34) activates bone 

metabolism predominantly in bone formation remains 
largely unknown.

To date, research on the usefulness of PTH (1–34) in 
distraction osteogenesis has been limited. Seebach et al. 
used a rat femur extension model with PTH (1–34) 
administration, 60  μg/kg daily, for a 10-day distraction 
phase and a 20-day consolidation phase. Following the 
study, they reported a 58% increase in callus mass, 24% 
increase in BMD, and 50% increase in maximum point 
load [28]. Aleksyniene et al. [27] used a rabbit tibial dis-
traction model with PTH (1–34) administration, 25  μg/
kg daily, for a 10-day distraction phase and a 20-day 
consolidation phase, and they reported an increase in 
BMD and bone strength. Recently, by using a rabbit dis-
traction osteogenesis model, we reported an increase in 
the amount of cortical bone formation and callus width, 
as well as a significant increase in callus strength after 
administrating 30 μg/kg of PTH (1–34) every other day 
over a 14-day distraction phase and 35-day consolida-
tion phase [29]. In addition, we have shown that PTH 
(1–34) administration shortened the callus maturation 
period by 2 weeks [30]. Although the PTH (1–34) dose, 
administration interval, and duration of the distraction 
and consolidation phases used in our study were different 
to the study reported by Aleksyniene et al., both empha-
sized the usefulness of PTH (1–34) for rabbit distraction 
osteogenesis.

Regarding the optimal timing of PTH (1–34) admin-
istration for distraction osteogenesis, Aleksyniene et  al. 
[27] reported that administrating PTH (1–34) for both 
distraction and consolidation phases was not superior to 
PTH (1–34) at only the consolidation phase in the callus 
volume, BMD, and work to failure. Richards et  al. [46] 
investigated the bone formation in a rabbit tibial distrac-
tion osteogenesis model and showed that bone formation 
was the best in the first half of the consolidation phase, 
suggesting that this phase may be the optimal time for 
biological and mechanical interventions for promoting 
bone regeneration. In a recent distraction osteogenesis 
study in humans, Wagner et  al. reported that adminis-
trating PTH (1–34) during the consolidation phase raised 
the rate of regenerated calcification twofold compared to 
patients without PTH (1–34) [47]. In our current study, 
for the first time, PTH (1–34) was administered sepa-
rately during the distraction and consolidation phases to 
elucidate the optimal administration timing. Our results 
showed that BMD, cortical area, and the distracted cal-
lus strength were highest in the group that received PTH 
(1–34) in the consolidation phase only. In addition, the 
total distracted callus area was significantly higher in 
all groups that received PTH (1–34) than in the con-
trol group regardless of the timing of administration. 
Except for the group that received PTH (1–34) during 

Fig. 5  Mechanical properties by three-point bending analysis. The 
measurement parameter was absorption energy until the distracted 
callus fracture. The work to failure (mean ± SD) was highest in group 
C. Compared with group N, the work to failure for groups C and D + C 
increased by 90% and 50%, respectively, with statistical significance. 
There was no significant difference between groups D and N and 
between groups C and D + C. *p < 0.05, among four groups
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the distraction phase only, the distracted callus strength 
was significantly higher in the group that received PTH 
(1–34) than in the control group. The increase in the total 
cross-sectional area of callus was considered to be related 
to callus strength. However, although the total distracted 
callus area was highest in the group that received PTH 
(1–34) in the distraction phase only, the distracted callus 
strength was not significantly different compared with 
the control group. This result might have been influ-
enced by the micro-architecture of the distracted callus. 
In general, cylindrical structures, such as long bones with 
a larger diameter and longer outer peripheral length, are 
known to have higher strength on the premise that the 
amount of the constituent materials is the same [48]. In 
micro-CT, the distracted callus micro-architecture of the 
group that received PTH (1–34) in the distraction phase 
only showed less bone mass and Tb.N and larger Tb.Sp. 
Therefore, the distracted callus strength was not suffi-
ciently obtained, despite the large total area. In contrast, 
in the group that received PTH (1–34) during the con-
solidation phase only, the total distracted callus area was 

significantly larger than in the control group with higher 
bone mass and Tb.N and smaller Tb.Sp, which may lead 
to the highest strength.

In distraction osteogenesis, a new bone is predomi-
nantly formed by endochondral ossification in the dis-
traction phase and by intramembranous ossification in 
the consolidation phase [40, 41]. However, the ossifica-
tion form may vary according to the type of experimental 
animal and protocol. Therefore, the histological evalua-
tions of the distracted callus were also confirmed in this 
study. Our results were consistent with previous reports, 
by endochondral ossification being predominant in the 
distraction phase and intramembranous ossification in 
the consolidation phase. The callus formed during the 
healing process after a fracture consists of a mixture of 
intramembranous and endochondral ossification [49], 
which is difficult to distinguish with histological exami-
nation. In contrast, in the distraction osteogenesis model, 
type of ossification is reproducible with the phase, such as 
distraction or consolidation phases. Based on our results 
that the consolidation phase is the optimal PTH (1–34) 

Fig. 6  Histological analysis. Representative histological sections at the distracted callus stained with hematoxylin and eosin. a The histology of 
the distraction phase by the protocol in group N. b The histology of the consolidation phase by the protocol in group N. c The histology of the 
distraction phase by the protocol in group D + C. d The histology of the consolidation phase by the protocol in group D + C. Each of histological 
images a–d was high-power fields of the area around the distal part of the osteotomy where new bone is beginning to appear. Chondrocytes 
were abundant in the distracted callus 2 weeks after the osteotomy (distraction phase), and a new bone was formed by endochondral ossification. 
The woven bone with some cartilage is predominant. Almost no chondrocytes were observed in the distracted callus 4 weeks after osteotomy 
(consolidation phase), and a new bone was formed by intramembranous ossification. The mature lamellar bone is predominant. Car cartilage cell, 
Nb new bone, Cb cortical bone, 2w 2 weeks after the osteotomy, 3w 3 weeks after the osteotomy, 4w 4 weeks after the osteotomy
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administration period, we believe that PTH (1–34) may 
play a dominant role in intramembranous ossification.

Furthermore, in fracture healing, PTH has been shown 
to promote the proliferation and differentiation of chon-
drocytes [50]. Therefore, even in distraction osteogenesis, 
PTH may also have a promoting effect on chondrocytes 
during the distraction phase. However, our results do 
not sufficiently support this conjecture. Accordingly, it 
is important to consider the difference in chondrogen-
esis between fracture repair and distraction osteogen-
esis. In fracture healing, large hematomas, which contain 
abundant mesenchymal cells and respond to PTH, form 
immediately after fracture, and endochondral bone for-
mation robustly occurs in the first period. On the other 
hand, in distraction osteogenesis, due to fewer hemato-
mas being present, substantially less cartilage is formed, 
and its formation is restricted to the early distraction 
phase. After this phase, it is rapidly resorbed [51]. There-
fore, the effect of PTH (1–34) on endochondral ossifi-
cation during the distraction phase may be difficult to 
fully achieve in distraction osteogenesis. In the present 
study, although BMD and the parameters evaluated with 
mechanical testing and micro-CT were slightly better 
in group C than group D + C (Fig.  5, Tables  1, 2), there 
were no statistically significant differences between the 
two groups indicating that PTH (1–34) administration 
did not have positive effect during the distraction phase 
as in group D. Later, during the consolidation phase, pro-
liferating osteoprogenitor cells differentiate from osteo-
blasts into osteocytes, resulting in intramembranous 
ossification. We consider that PTH (1–34) may have its 
most significant effect on promoting the differentiation 
of osteoprogenitor cells during the consolidation phase. 
The histological results of this study showed that there 
seemed to be a difference in the thickness and quantity 
of the new bone in the consolidation phase between the 
N and D + C protocols (Fig.  6b, d). We were unable to 
confirm that this is due to PTH (1–34) administration 
because only one rabbit was examined at each time, as 
the main purpose of this histological examination was 
to verify that the type of ossification (endochondral or 
intramembranous) at the distraction site was repro-
duced in our experimental protocol, similar to the pre-
vious studies. In future research, quantitative evaluation 
of the multiple regenerated tissues at different phases 
using immunohistochemistry or other methods should 
be considered.

Despite the usefulness of PTH (1–34) for distraction 
osteogenesis, its application in clinical practice remains 
a challenge. PTH (1–34) is an expensive drug with a lim-
ited lifetime use of 2 years [52, 53]. Identification of the 
optimal time when PTH (1–34) acts most effectively on 
callus formation for distraction osteogenesis in humans 

will improve patient compliance and cost-effectiveness. 
Regardless of whether PTH (1–34) was administered 
during the distraction and consolidation phases or only 
during the consolidation phase, there was no significant 
difference in the mechanical and structural properties 
of the distracted callus. The current findings suggest 
a clinical implication that will definitely contribute to 
reduce the PTH (1–34) treatment time in distraction 
osteogenesis.

This study had several limitations. First, in this work, 
PTH (1–34) was administered only in the first half of the 
consolidation phase, the effect of PTH (1–34) administra-
tion in the latter half of the consolidation phase remains 
unknown and should be investigated in the future. Sec-
ond, considering that the bone anabolic effect on PTH 
(1–34) differs depending on the administration method 
[54, 55], the optimal administration approach, including 
the administration interval and injection site, should be 
examined in the future. Third, the dose of PTH (1–34) 
used in this experiment was 30  μg/kg, which is equiva-
lent to the dose of other similar animal experiments (25–
60  μg/kg). However, this dose is much higher than that 
approved by the US Food and Drug Administration for 
the treatment of osteoporosis patients (0.25–0.5  μg/kg/
day). The dosage of PTH (1–34) needs to be investigated 
further for clinical application in humans. Fourth, criti-
cism may be raised that the effect of PTH (1–34) on the 
contralateral tibia was not confirmed in the present this 
study. In the previous study, however, the effect of PTH 
(1–34) was analyzed in the intact contralateral tibia, and 
to a lesser extent than that observed in the distracted 
tibia [27]. In addition, PTH (1–34) was reported to have a 
stronger effect on bone with an activated repair response 
than on bone undergoing normal remodeling [28, 56]. 
Therefore, it would be expected to show a limited effect 
in the contralateral intact bone in our experiments as 
well; however, the intact bone was not taken in this study 
as our main purpose was to evaluate the effect of PTH 
(1–34) on distraction osteogenesis.

Conclusions
In the rabbit distraction osteogenesis model, adminis-
tration of PTH (1–34) during the consolidation phase 
formed a distracted callus with a stronger and better 
micro-architecture than the distraction phase. Further-
more, PTH (1–34) was shown to act more effectively for 
the intramembranous ossification during the consolida-
tion phase than for the endochondral ossification during 
the distraction phase. Determining the optimal timing of 
PTH (1–34) administration may have a beneficial impact 
on patient compliance and cost-effectiveness.
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