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Abstract: Metabolomics is increasingly important for biomedical research, but large-scale metabolite
identification in untargeted metabolomics is still challenging. Here, we present Jumbo Mass
spectrometry-based Program of Metabolomics (JUMPm) software, a streamlined software tool for
identifying potential metabolite formulas and structures in mass spectrometry. During database
search, the false discovery rate is evaluated by a target-decoy strategy, where the decoys are produced
by breaking the octet rule of chemistry. We illustrated the utility of JUMPm by detecting metabolite
formulas and structures from liquid chromatography coupled tandem mass spectrometry (LC-MS/MS)
analyses of unlabeled and stable-isotope labeled yeast samples. We also benchmarked the performance
of JUMPm by analyzing a mixed sample from a commercially available metabolite library in both
hydrophilic and hydrophobic LC-MS/MS. These analyses confirm that metabolite identification can
be significantly improved by estimating the element composition in formulas using stable isotope
labeling, or by introducing LC retention time during a spectral library search, which are incorporated
into JUMPm functions. Finally, we compared the performance of JUMPm and two commonly
used programs, Compound Discoverer 3.1 and MZmine 2, with respect to putative metabolite
identifications. Our results indicate that JUMPm is an effective tool for metabolite identification of
both unlabeled and labeled data in untargeted metabolomics.

Keywords: metabolomics; metabolome; mass spectrometry; metabolite identification; database search;
metabolite formula; metabolite structure; software; algorithm; yeast

1. Introduction

Metabolome refers to the complete set of metabolites (or small molecules) in biological samples.
In the multi-omics era, the metabolome is regarded as the most downstream stage in the omics spectrum
and is highly dynamic, sensitive to molecular changes, and descriptive of the phenotype. Importantly,
metabolites also serve as the building blocks to the other macromolecules, and therefore are not
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just endpoints of the central dogma, but the interface to the environment. Metabolites can function
by affecting gene and protein activities through direct interaction and chemical modifications [1].
Large-scale profiling of metabolites can reveal novel mechanisms within a certain biological system.
With the advance of analytical technologies and bioinformatics, metabolomics has been routinely
applied in biomarker discovery, drug development, nutrition, agriculture, etc. [2,3]. More recently,
combined with other omics, metabolomics has been used in basic research, precision health, and disease
studies at a comprehensive systems level [4,5]. Liquid chromatography-tandem mass spectrometry
(LC-MS/MS)-based untargeted metabolomics has become a powerful method for metabolome
profiling, enabling the acquisition of thousands of metabolite features from complex samples [6,7].
Sophisticated informatics tools are required to process large-scale metabolomic data, including
feature detection, formula identification, metabolite annotation, false discovery rate (FDR) estimation,
and metabolite quantification. However, there are still significant challenges in untargeted metabolomics
data processing, which limit the utility of metabolomics in practice and significantly hamper efforts.

Over the past decade, numerous software programs have been developed for untargeted mass
spectrometry-based metabolomics, such as XCMS [8], MS-DIAL 4 [9], MZmine 2 [10], SIRIUS 4 [11],
and Compound Discoverer (CD, Thermo Scientific), which are either dedicated to individual steps
of data processing or designed as a complete workflow to meet the need of different analytical
platforms. Among these data processing steps, structural annotation of global data remains technically
challenging and has become an active research field [12]. The confidence of metabolite annotation
can be classified into four levels [13]. The highest level that the LC-MS/MS approach can achieve is
Level 1 in which metabolite structures are identified by in-house authentic standard libraries with a
matched MS/MS spectrum, established retention time (RT), and known resolution of related isomers of
confounding analytes. When authentic compounds are not available, Level 2 annotation can be reached
by matching MS/MS data with experimental databases in the absence of RT matching [14]. More recently,
an additional annotation level (i.e., Level 0) has been introduced, requiring a definitive analysis of
three-dimensional (3D) structures with pure compounds [15]. A range of publicly and commercially
available experimental MS/MS databases and software tools have been developed [15,16]. However,
there is limited spectral coverage for the 120+ million known chemical structures deposited in public
databases [17], and these collected spectra cannot be simply applied as a universal standard library
because the MS/MS spectra are affected by the use of different MS settings and varying instrument
performances (resolution and mass accuracy). To alleviate this problem, several in silico fragmentation
tools, such as MS-FINDER [18], CFM-ID [19], MetFrag [20], ChemDistiller [21], and CSI:FingerID [22],
have been developed to generate theoretical MS/MS databases [15]. Retention time prediction
models [23] can facilitate metabolite identification by integrating multiple layers of information to
improve confidence, but such predictions are LC method specific and are still exploratory. Moreover,
Level 3 allows the identification of tentative metabolite candidates of compound classes, and Level
4 could have metabolite assignments of molecular formulas without defined structures. A list of
programs that are commonly used in metabolomics is summarized with pros and cons (Table S1).

With the availability of high-resolution mass spectrometry instruments, the benefits of
stable-isotope labeling methods have been recognized including distinguishing endogenous
metabolites from background artifacts, increasing the confidence of metabolite identification [24,25],
mapping metabolic fates, providing critical insights into pathway dynamics [26], and metabolite
quantification [27]. Several programs have been developed for isotope labeled-based
analysis [9,26,28–31], such as feature extraction and small-scale formula annotation, but they are
not intended for large-scale metabolite identification.

In this paper, we describe JUMPm (i.e., Jumbo Mass spectrometry-based Program of Metabolomics),
a sophisticated and publicly available workflow for large-scale metabolomics data analysis starting
from mass spectrometry raw data to metabolite identification. JUMPm is capable of processing
stable isotope-labeled (single element labeling or multiple element labeling) and unlabeled LC-MS/MS
data. Importantly, we include a false discovery rate (FDR) estimation based on our previously
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described target-decoy strategy [32] to evaluate the confidence of identified metabolites across a dataset.
We further evaluated the performance of JUMPm by comparing it with CD (version 3.1) and MZmine
2 for compound identification.

2. Results

2.1. Design and Implementation of JUMPm Program

We have developed JUMPm, a software tool for large-scale metabolite identification of both
unlabeled and stable isotope-labeled data-dependent LC-MS/MS analyses (Figure 1A). The stepwise
analysis includes the detection of peak features from MS1 scans, the estimation of element composition
(e.g., the number of carbon or nitrogen atoms) in formulas, and the search against formula and structure
databases for annotation. If the input is from unlabeled samples, we seek to derive the carbon number
in formulas using naturally occurring isotopic distribution (Figure 1B, see details in Materials and
Methods). If the input is from stable isotope-labeled samples, JUMPm derives the number of labeled
carbon atoms or nitrogen atoms through the accurate mass difference between ion pairs (Figure 1C).
This labeling workflow requires individual samples to be analyzed as a mixture of the unlabeled and
labeled counterparts. Importantly, we have introduced a simple target-decoy strategy [24] to estimate
the FDR in matched formulas and structures. This approach is a widely applied method in MS-based
proteomics [33,34] and is implemented, here, in an analogous fashion for large-scale metabolomics.
Briefly, decoys are generated by violating the octet rule in chemistry to ensure that the decoy formulas
are impossible, and therefore can only be matched by random chance within m/z tolerance. For instance,
if three hydrogen atoms are added to the target formula of methane to produce a respective decoy
formula (Figure 1D), no such structure is possible at the specified charge state. Accordingly, a decoy
MS/MS pattern can be generated by adding three hydrogen atoms to the associated atom (Figure 1E) to
generate implausible MS/MS ion patterns. When searching against a concatenated database composed
of an equal number of targets and decoys, random search values are believed to be equally distributed
between the targets and decoys. Thus, FDR can be estimated in authentic searches by examining
the proportion of decoy matches, i.e., the number of decoy matches divided by the total number of
target matches [24]. Finally, the identified features, formulas, and structures are listed as the output
(Figure 1F), and the reliability of structure matches can be judged by MS/MS-associated matching
scores (Mscores).

To fully evaluate the JUMPm pipeline, we used LC-MS/MS runs from the following three distinct
types of samples (Table 1): (i) reverse phase (RP)-LC-MS/MS of unlabeled metabolites of yeast
lysate in positive ion mode, (ii) RP-LC-MS/MS of labeled yeast metabolite lysate in positive ion
mode, (iii) LC-MS/MS of a known library of synthetic standards by hydrophilic interaction liquid
chromatography (HILIC) in negative ion mode.
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Figure 1. General workflow of Jumbo Mass spectrometry-based Program of Metabolomics (JUMPm)
and the target-decoy strategy for FDR estimation. (A) JUMPm can identify metabolites in a metabolomic
experiment using either unlabeled or labeled data. Inferred stoichiometry is used to limit the search
space of formulas. Candidate formulas are used to propose structure identifications which are then
scored by MS2; (B) The scheme to compute the range of carbon numbers for unlabeled data using natural
isotopic distribution. RSD, relative standard deviation; (C) The scheme to calculate the nitrogen number
using a pair of unlabeled and labeled ions; (D) Utilization of the target-decoy strategy. Decoys (invalid
structures) are made by violating the octet rule with the addition of three hydrogens without changing
the charge state [32]. The impossible decoy structure for methane is shown. The decoy formulas could
be incorrectly identified due to chance matches against searched m/z values; (E) Generation of a decoy
MS/MS pattern by mass addition of three hydrogens on a specific atom; (F) Examples of JUMPm output
for unlabeled and labeled datasets.

Table 1. LC-MS/MS runs of metabolites used in this study.

Sample Name Sample Introduction LC MS Ionization Mode

Unlabeled yeast lysate Unlabeled yeast sample RP Positive

Labeled yeast lysate
4-plex mixture of one unlabeled sample and
three stable-isotope-labeled yeast samples
(C13, N15, and double labeling)

RP Positive

Synthetic standards
(HILIC)

A mixture of purchased synthetic
metabolites HILIC Negative

Yeast extracts and a synthetic standard mix were analyzed by LC-MS/MS with a reverse phase (RP) or HILIC column
in positive or negative ion mode.

Then, we used the complex labeled yeast lysate to illustrate the workflow of JUMPm (Figure S1).
The complex lysate consists of four distinct samples (unlabeled, 13C-labeled, 15N-labeled, and double
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labeled) that are equally mixed prior to the LC-MS/MS run. JUMPm accepts the LC-MS raw data
as input, and then performs deisotoping, noise characterization, and mass calibration to generate
a list of peak features (Figures S2 and S3). JUMPm enables precise determination of the formulas’
labeled elements and stoichiometry from the stable isotope-labeled samples. Differentially labeled
metabolites are observed in pairing groups of co-eluting ions (Figure 2A). These ion pairs are detected
by a pairing score algorithm (Pscore, see details in Materials and Methods) that considers relative
isotopic mass differences of the 13C and 15N labels, relative ion intensity, and co-elution of the putative
ion pairs Figure 2B and Figure S4). Finally, the stoichiometry of isotope-labeled elements (C and N) and
accurate precursor ion mass identify unique metabolite formulas for a given feature from a theoretical
formula database.Metabolites 2020, 10, x  6 of 16 
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Figure 2. JUMPm analysis of labeled samples and an example identification of phenylalanine.
(A) Conceptual workflow for a stable isotope-labeled experiment (the double labeled sample is not
shown); (B) The quality of each isotope-labeled pair is scored with three parameters (mass defect,
relative ion intensity, and co-eluted retention time). The Pscore is used to discriminate authentic
pairs from random matches; (C) For each isotope-labeled pair, the relevant MS2 spectra are scored
(Mscore) and annotated with the top match. Three matched theoretical fragment ions are highlighted
in red; (D) Hierarchical clustering of all structure candidates by predicted product ion intensities
for the example metabolite spectrum (HMDB hits, large red dots and PubChem hits, small dots).
Representative structures from each colored group are shown. All candidates share the neutral formula
C9H11NO2.
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Once the metabolite formulas are identified, JUMPm searches the associated MS/MS spectra
against a user-defined structure database (Figures S5 and S6), for example, the Human Metabolome
Database (HMDB), a public collection of chemical database (PubChem), and the Yeast Metabolome
Database (YMDB), to detect structure candidates and rank the candidates by Mscores. The Mscore
for each structure candidate is calculated by the hypergeometric test which compares theoretical (in
silico) MS/MS product ions with the observed MS/MS peaks (Figure 2C and Figure S7). This strategy is
also widely used in proteomic pattern-matching analysis [35]. One challenge to this strategy is that a
single chemical formula often has many possible structural isomers (37 on average in PubChem) which
cannot be differentiated by available MS/MS ions. For example, the formula C9H11NO2 yields 2521
PubChem entries that can be clustered into five structural families, each shown by a representative
chemical structure (Figure 2D). In this example, there are 25 isomers with Mscore of at least 9.5,
collectively defined as a “metabolite isomer group”. Nevertheless, when the same spectrum is searched
against a small biologically focused database (e.g., HMDB), only eight structural isomers are matched
(large red dots in Figure 2D), in which only phenylalanine has an Mscore above 9.5 and is ranked as
the top candidate. This analysis indicates that excessive search space increases the chance of spurious
matches and reduces the possibility of identifying genuine metabolites.

2.2. Evaluation of False Discovery Rate Based on the Target-Decoy Strategy by JUMPm

As FDR is a novel concept implemented in the JUMPm program, we have scrutinized the FDR
function using multiple LC-MS/MS runs (Table 1). From the unlabeled yeast run, JUMPm detects both
target and decoy metabolite structures with a range of Mscores (Figure 3A). The structure FDR varies
at different cutoffs of Mscores. For example, with a stringent cutoff of 6.0, the FDR in the accepted
matches is still ~20%, suggesting that a significant level of false assignments cannot be filtered out
with this score alone when analyzing the unlabeled data. In sharp contrast, molecular formulas can be
precisely determined when using labeled search data. With an Mscore cutoff of just 3.0, the FDR can be
reduced to as low as ~1% (Figure 3B). Similarly, the Pscore, an index of ion pairing in the 4-plex sample,
can also be used as an additional cutoff to remove false discoveries (Figure 3C). Another strategy
for improving the confidence in metabolite identification is to rely on LC retention time. Indeed,
from the synthetic standard run on the HILIC column (with known components, Table 1), decoys are
almost eliminated when searching against the custom library with defined retention time (Figure 3D).
When using the FDR cutoff of ~1%, we identified 119 target components and only 1 decoy hit (real
FDR = 1/119 = 0.84%), supporting the application of the target-decoy method. Moreover, the results
strongly confirm the notion that metabolite identification can be enhanced by unambiguously defining
molecular composition by stable isotope labeling [24], or by using LC retention time in a custom
library search.
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Figure 3. Target-decoy strategy for the estimation of FDR using JUMPm. The x-axis is different
JUMP scores (Pscores/Mscores) and the y-axis is the number of structures identified using JUMPm.
(A) Distributions of target and decoy Mscores from the unlabeled yeast lysate. All matches with zero
Mscore are filtered out in the graph; (B) Distributions of target and decoy Mscores from the labeled yeast
lysate; (C) Distributions of target and decoy Pscores from the labeled yeast lysate; (D) Distributions of
target and decoy Mscores obtained from a custom library search consisting of a mixture of 120 purchased
synthetic metabolites. A HILIC column is used to run the cocktail of purchased synthetic metabolites
under negative ionization mode.

2.3. Performance Comparison with the Other Metabolite Identification Tools

To further evaluate the performance of JUMPm, we compared the results of metabolite
identification among JUMPm, CD (version 3.1), and MZmine 2 (version 2.53). Both CD and MZmine
2 are two widely used programs available for untargeted metabolomics. In CD and MZmine 2,
the raw MS files are first used to extract peak features. Then, the peak features and associated MS/MS
scans are utilized to search the databases to assign formulas and compound structures (Figure 4A).
Using unlabeled yeast lysate 2827, 2006, and 2165 formulas are detected by JUMPm, CD, and MZmine
2, corresponding to 2846, 560, and 2161 structures, respectively (Figure 4B). CD identifies slightly
fewer but comparable formulas, with a significant reduction in the identification of structures. One
possible explanation is that CD uses the mzLogic algorithm, which combines identifications from
ChemSpider and Metabolika Pathways with the spectral library information from the mzCloud online.
Alternatively, both JUMPm and MZmine 2 use the HMDB, a larger database than the spectral library
in CD. A comparison of the structural identification for JUMPm and MZmine 2 shows that about 55%
(1189/2161) structures detected by MZmine 2 can be identified by JUMPm, whereas 41% (1189/2846)
identifications from JUMPm can be detected by MZmine 2. The difference in identification from
JUMPm and MZmine 2 could be attributed to the difference in data preprocessing, feature extraction,
and scoring algorithm. In addition, we have conducted a comparison of the three tools using a mixture
of synthetic standards with similar results (Figure 4C). It should be mentioned that the FDR analysis is
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not available in CD or MZmine 2, and therefore FDR filtering function is not applied in JUMPm during
this comparison.
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Figure 4. Performance comparison among JUMPm, CD, and MZmine 2 on two LC-MS/MS runs,
i.e., the unlabeled yeast lysate and a mixture of synthetic standards. (A) The workflow of CD and
MZmine 2 (Figure 2) uses the HMDB database; (B) Number of formulas and structures detected from
the sample of unlabeled yeast lysate by the three software tools. RP, reversed phase; (C) Number
of formulas and structures detected from the sample of synthetic standards. HILIC. hydrophilic
interaction liquid chromatography.

3. Discussion

We have developed the JUMPm software package for automated processing of large-scale
metabolomics datasets. JUMPm is capable of analyzing fully stable isotope-labeled, and unlabeled MS
data for confident formula identification and structural interpretation. The program also allows for
the use of theoretical and experimental databases, as well as a spectral library with RT information.
Moreover, different types of LC-MS/MS runs are used to test the JUMPm program. During the
analysis of the unlabeled and labeled yeast samples, we have recognized the challenges of defining
reliable metabolites, from MS raw data to peak features, possible formulas, and putative structures.
The assignment of formulas to peak features can be enhanced by estimating carbon composition
from the carbon-associated isotopic distributions, or by precise determination of element composition
through fully stable isotope labeling [36]. The transition from formulas to structures is also complicated
by the presence of a large number of structural isomers, which can be alleviated by the introduction of
synthetic standards with RT information and known MS/MS patterns. Finally, the computer-derived
output should still be examined with caution.

Furthermore, we have implemented the newly developed target-decoy strategy to evaluate the
FDR [32]. The strategy is useful to estimate the degree of random MS/MS assignments based on a null
hypothesis, in which the decoys should be equal to the targets and share similar physical properties to
the targets. Adding a small odd number of hydrogen atoms (e.g., one, three, or five) to the targets
violates the octet rule and fits the requirements of generating the decoys [32]. Three-hydrogen addition
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is selected in this method, because one-hydrogen addition can generate isobaric ions to the naturally
occurring isotopic ions, and five-hydrogen addition leads to a larger mass shift. Using the synthetic
library sample, the estimated FDR is highly consistent with the real FDR, demonstrating the validity of
the target-decoy method. Finally, the source code of JUMPm is publicly available, with a modular
design and implementation that easily enables new algorithms to be added. Thus, we believe that
JUMPm is a complementary tool for metabolite identification in the studies of untargeted metabolomics.

4. Materials and Methods

4.1. Reagents

The reagents included the following: LC-MS grade acetonitrile (ACN); water; ammonium acetate;
ammonium sulfate; ammonium hydroxide; and formic acid (Sigma-Aldrich, St. Louis, MD, USA);
0.5 mm disruption beads (RPI); DifcoTM yeast nitrogen base (BD Bioscience, San Jose, CA, USA);
dextrose (Fisher Bioreagents, Fair Lawn, NJ, USA); 13C-6 glucose; 15N-2 ammonium sulfate (Cambridge
Isotope Laboratories, Tewksbury, MA, USA); Mass Spectrometry Metabolite Library of Standards (IROA
Technologies, Sea Girt, NJ, USA); 1.9 µm C18 beads (Dr. Maisch GmbH, Germany); 75 µm ID empty
silica column (New Objective, Woburn, MA, USA); and SeQuant ZIC-HILIC column (MilliporeSigma,
Burlington, VT, USA).

4.2. Isotope Labeling Protocol

S. cerevisiae (Fleischmann) cells were grown in four different minimal media conditions. A control
media consisted of the following natural isotopic abundance components: DifcoTM yeast nitrogen
base without amino acids and ammonium sulfate (BD Biosciences), with 5 g/L ammonium sulfate
(Sigma) and 20 g/L glucose (Sigma). For carbon-13 labeling, the media remained the same, except that
13C-6 glucose (Cambridge Isotope Laboratories) was used in place of standard glucose. Similarly,
for nitrogen-15 labeling, 15N-2 ammonium sulfate was substituted into the media. Each culture was
maintained for ~30 generations in the labeled media before analysis. Cultures were seeded to an OD600

of 0.1 and allowed to grow to 1 (~6 generations).

4.3. Sample Preparation

Each sample was harvested, and then subjected to a universal metabolite extraction procedure.
The liquid culture was transferred to 15 mL conical vials and centrifuged at 1000× g for 3 min to obtain a
cell pellet. The supernatant was discarded and 1 mL of freezing 80% acetonitrile was added along with
disruption beads to facilitate lysis. Each vial was subjected to 3 min of vortexing at 3000 rpm in a 1 on/1
off pattern to maintain sample temperature [6]. The lysate was transferred to a fresh vial to exclude the
beads, and then centrifuged at 21,000× g for 5 min to clarify the liquid phase. Metabolite concentrations
in the lysates were measured using UV absorbance at 300 nm, and then equally pooled together as a
4-plex sample. The pooled mixture was aliquoted, speed vacuum dried, and stored at −80 ◦C until
LC-MS analysis. Metabolite Library of Standards (IROA Technologies) were prepared according to the
manufacturer’s instruction.

4.4. LC-MS Analysis and Parameters

All samples were analyzed on an Orbitrap Q Exactive HF (Thermo Scientific) coupled to Waters
nanoAcquity UPLC using a previously optimized protocol [6,36]. The chromatographic stationary phase
was a nanoscale column (75 µm × 100 mm) packed with 1.9 µm C18 beads to facilitate the reverse-phase
analysis or a SeQuant ZIC-HILIC column (2.1 mm × 150 mm, 3.5 µm resin) for chromatographic
separation of polar metabolites. For the reverse phase C18 separation, mobile phases A and B each
consisted of LC-MS grade water or acetonitrile, respectively, with 0.2% formic acid. The sample
injection volume was 2 µL, while the system flow rate was 0.25 µL/min with a biphasic gradient in
60 min. For the HILIC analysis, 10 mM ammonium acetate in LC-MS grade water or acetonitrile with



Metabolites 2020, 10, 190 10 of 16

pH 8 was used for mobile phase A and B. The sample injection volume was 2 µL, while the system
flow rate was 0.1 mL/min with a 90 min triphasic gradient. Full MS scans used a resolution of 120,000
from m/z 100–1000. Automatic gain control was set to 3e6 for full MS. A top 20 MS/MS method used
HCD at a stepped normalized collision energy of 50, 100, and 150 for fragmentation and a resolution of
30,000 in the Orbitrap. Isolation width in the ion trap was 1 Da. Each MS/MS scan had a target of 3e5
automatic gain control. Dynamic exclusion was set at 20 s.

4.5. Construction of the Theoretical Mass-Formula Database

To quickly retrieve possible formulas for a given mass value, we generated a mass-formula
database containing all possible formulas and their corresponding theoretical neutral monoisotopic
masses. The composition of elements included carbon (C), hydrogen (H), nitrogen (N), oxygen (O),
phosphorus (P), and sulfur (S), with default ranges of C[0–105], H[0–170], N[0–30], O[0–40], P[0–4],
and S[0–4] in the Human Metabolome Database (HMDB). The theoretical formulas were filtered by the
ring double bond equivalents (RDBE) rule. The maximum mass was set to 1500 Da with ~265 million
entries, indexed by mass and element composition.

4.6. Feature Detection and Signal-to-Noise Definition

The raw LC-MS data (.raw format) were converted into .mzXML format using ReAdW (http:
//tools.proteomecenter.org). This program extracts ion features in an MS scan using the method
reported by Cox and Mann [37]. Peaks, in an MS scan, were detected by fitting data in profile mode
to a Gaussian distribution (referred to as two-dimensional (2D) peaks of m/z and intensity), and then
assembled into three-dimensional (3D) peaks (m/z, intensity, and retention time) as metabolite features.
Seven parameters could be adjusted, such as (i) minimum 2D intensity, (ii) m/z tolerance, (iii) the
minimum number of consecutive MS1 scans for defining 3D peaks. All 2D and 3D peaks were saved
in binary files for subsequent analyses.

In complex samples, feature extraction is complicated by a mixture of signal and noise peaks. The
noise peaks may be derived from electrical and chemical sources, and are mostly not reproducible
from scans to scans in LC-MS/MS. Thus, we defined candidate “noise” peaks as those that could not
be replicated in adjacent MS1 scans. The noise level was defined as the mean of the intensities of
all noise peaks for each scan after outlier removal. We filtered metabolite features with a cutoff of 3
signal-to-noise (S/N) ratio.

4.7. Mass Calibration

Mass accuracy is a crucial parameter for determining the metabolite formula and generating
confident annotations. JUMPm is able to calibrate raw m/z values based on a known internal
standard generated from electrospray of air, polydimethyl-cyclosiloxane ([Si(CH3)2O))6 + H]+,
m/z 445.120025) [38], which is present in most scans. We divided the entire elution profile into
10 windows and calibrated in each window. If the number of detected polysiloxane ions is less than
5% of all scans, the program does not perform this function. After mass calibration, we used a mass
tolerance as small as 4 ppm (default) to extract metabolite features followed by deisotoping and
peak pairing.

4.8. Detection and Scoring of Candidate Peak Pairs

Candidate metabolite features are selected by pairing 12C14N, 12C15N and 13C14N peaks with
mass defects (e.g., Dn,c = 0.99703 for 15N, and Dc,c = 1.00335 for 13C):

Dn,c =
M(N15) −M(C12)
||M(N15) −M(C12)||

≤ 0.99703± tolerance

where “M” represents the mass of a peak, and “|| ||” represents the ceiling of the mass difference.

http://tools.proteomecenter.org
http://tools.proteomecenter.org
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To discriminate authentic pairs from by-chance matches, JUMPm generates a combined Pscore
based on the mass defect, relative ion intensity, and co-elution of the putative ion pairs. Under similar
conditions, the unlabeled and labeled metabolites are expected to show comparable intensities in the
12C-13C and 12C-15N pairs.

4.8.1. Calculating p Value for Mass Defect

JUMPm generates a p value to determine the mass defect for the 12C-13C and 12C-15N candidate
pairs. To calculating the p value, we assume that the random shift of each peak follows the normal
distribution:

M ∼ N
(
µ, σ2

)
where µ and σ represent mean and standard deviation of the peak, respectively.

The mass defect can be calculated as follows:

Dm =
M(N) −M(C12)
||M(N) −M(C12) ||

thus, the Dm is normal distributed because the numerator (i.e., M(N) −M(C12)) follows a normal
distribution and denominator (i.e., ||M(N) −M(C12) ||) is an integer value,

Dm ∼ N
(
µ, σ2

)
where µ = 0.997035 for N mass defect and µ = 1.003355 for C mass defect; the scale parameter σ2 can be
estimated from authentic peak pairs, or targets (defined below) in our case.

4.8.2. Calculating p Value for Relative Intensity

JUMPm generates a p value to determine the relative intensity for candidate pairs. We assume that
the signal intensity of the peaks follows an exponential distribution, and thus log2(Intensity) follows a
normal distribution as below,

log2(I) ∼ N
(
µ, σ2

)
thus, the logarithm of the intensity ratio between 12C-13C and 12C-15N peaks follows a normal
distribution with the mean µ and the standard deviation σ,

log2

(
Ix

Iy

)
= log2(Ix) − log2

(
Iy
)
∼ N

(
µ, σ2

)
4.8.3. Calculating p Value for Pearson Correlation (Co-Elution)

JUMPm generates a p value to assess how well the paired peaks correlate in intensity over
co-elution time. The p value is calculated based on the relative intensities of each pair using Pearson
correlation and t statistic with n − 2 degrees of freedom:

r
√

n− 2
√

1− r2
∼ t(n− 2)

where r is the correlation coefficient, and n is the number of scans across co-elution time.
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4.8.4. Generating the Combined Pair Score

Finally, JUMPm uses Fisher’s method to generate a combined pair score (i.e., Pscore). All six p
values (two pairs, 12C-13C and 12C-15N, for each test) are combined using the Chi-square test,

χ2
2k = −2

k∑
i=1

ln(pi)

where pi represents the p value for the ith of the above tests, and k represents the number of p values
used for combination (i.e., 6 for our case). The Pscore is calculated as follows:

Pscore = − log(p value)

4.9. Formula Identification

JUMPm searches for candidate formula(s) based on the accurate precursor mass and the specified
number of carbon and nitrogen atoms (determined from the mass shift of the isotope-labeled pairs).
We used the following two limiting criteria for the search: (i) narrowing the search within a user-defined
mass tolerance (e.g., 10 ppm) and (ii) matching the required elemental composition. For the example
in Figure 2A, the monoisotopic unlabeled peak is m/z 166.0856, so JUMPm finds the surrounding
10 ppm indexed segments of the mass-formula database. From the mass shifts of the isotope labels
(m/z 175.1156 and m/z 167.0826 for carbon-13 and nitrogen-15, respectively), JUMPm determines that
this formula must have exactly 9 carbons and 1 nitrogen. Only one formula (C9H11NO2) fits these
criteria within the lookup range. JUMPm can process both positive and negative mode LC-MS data,
with the polarity being a user-selectable option in the parameter file.

4.10. Structure Database and Identification

To generate a structure database, we used three databases including PubChem, HMDB, and YMDB.
The PubChem database in XML format was downloaded from the FTP (ftp://ftp.ncbi.nlm.nih.gov/

pubchem/). We parsed the XML file and extracted the metadata for each entry from the database using
an in-house script. The extracted metadata included PubChem ID, formula, InChI key, InChI string,
SMILES, IUPAC, and monoisotopic mass for each structure. The database was indexed into the
same two layers (i.e., mass and elemental composition) as the theoretical mass-formula database.
The Human Metabolome Database (HMDB3.0; http://www.hmdb.ca) and the Yeast Metabolome
Database (YMDB1.0; http://www.ymdb.ca) were processed as described for PubChem. The user can
choose any of these default databases for analysis. JUMPm can also use any custom database of
structures as long as it matches the same generic format described above.

After identifying the corresponding formula(s) for each peak pair, JUMPm searches for all potential
structures in the local structure database based on its formula. If a candidate structure is present in the
database, JUMPm retrieves its SMILES, PubChem ID, InChI key, and IUPAC name. The SMILES is
used for subsequent in silico fragmentation and MS2 scoring.

JUMPm uses MetFrag [39], a predictive fragmentation program to generate MS/MS theoretical
product ions. JUMPm also ensures that the mass and formula of the candidate are the same as the
precursor of the MS2 scan. If the MS2 spectrum derives from 15N or 13C instead of a 12C precursor,
then the predicted MS/MS ions are adjusted to include these heavy isotopes. In addition, users can
choose CFM-ID [40], an alternative predictive fragmentation program in JUMPm.

ftp://ftp.ncbi.nlm.nih.gov/pubchem/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/
http://www.hmdb.ca
http://www.ymdb.ca
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4.11. Structure Scoring (Mscore)

JUMPm uses the hypergeometric test to compare theoretical fragments generated by either
MetFrag or CFM-ID program to the measured MS/MS ions:

p value =

(
n1

m

)(
n− n1

k−m

)
(

n
k

)
where n is all possible ion locations, calculated as the mass range of the MS2 spectrum divided by the
mass tolerance; k is the total number of theoretical product ions of the metabolite structure; n1 is the
number of detected product ions within the MS2 mass range; and m is the number of matched product
ions for each structure. On the basis of the p value from the hypergeometric test, JUMPm generates an
Mscore as below:

Mscore = − log(p value)

4.12. Structure Clustering

We performed structure clustering based on theoretical product ions for candidate structures.
A binary matrix table was constructed representing the presence or absence of fragmented chemical
formulas for each structure, and a distance matrix was calculated using the Jaccard similarity coefficient.
To distinguish between groups with similar structures, hierarchical clustering was performed via
Ward’s method [41] followed by careful manual inspection. Then, a representative structure for
each cluster was determined by the following five steps: (i) for each fragment chemical formula,
the percentage of structures containing that formula was identified; (ii) for all formulas present in the
fragmented structure, their percentage was derived from Step 1; (iii) for all formulas absent in the
fragmented structure, one minus their decimal percentage derived from step 1 was summed together;
(iv) for each structure, the values derived from Steps 2 and 3 were summed together; (v) The structure
with the highest score was selected as the cluster’s representative structure.

For Compound Discoverer, 10 ppm for m/z tolerance, and 10 for noise threshold were used.
The remaining parameters were set as the defaults.

4.13. Input and Output

JUMPm can take either .raw (ThermoTM) files or .mzXML files as input. JUMPm can simultaneously
search multiple raw files with the same parameter settings, and it also allows the user to specify certain
scan regions for search. The output includes four tables in flat text format. The first (feature table) is a
table containing all detected features, including mass values (m/z), intensity, and signal vs. noise ratio.
The second (formula table) is an exhaustive list of all detected formulas and reports the observed mass
values (m/z) for the three labels (i.e., 12C14N, 12C15N, and 13C14N) for each peak pair, the pair score,
retention time, relative intensity, and chemical formula for each pair. The third (spectrum matching
table) contains all candidate structures for each peak pair and their MS2 matching score in addition to
the mass and formula in the formula file. The fourth (structure table) lists the top structure (with the
highest matching score) for each pair in the spectrum matching table.

4.14. Parallel Computing and High-Performance Computation

JUMPm is designed for a parallel computing system, which can significantly increase the processing
speed. For our current system, we executed JUMPm on a cluster of 512 cores, 2.3 GHz, 128 GB ram.
For the LC-MS yeast metabolite analysis, the .raw file with ~18,000 scans required about 0.5 h to
analyze, however, the analyses of two independent .raw files did not take 2X the computational time,
because of the parallel nature of the process.
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4.15. Parameters Used in CD and MZmine 2

For CD, a mass tolerance of 10 ppm was used for both noise filtering and database search,
and default values were set for other parameters. For MZmine 2, Automated Data Analysis Pipeline
(ADAP) was used for data pre-processing, including chromatogram builder, and wavelet deconvolution
(MS2 mass tolerance of 0.01 Da; RT range of 0.2 min). Features were detected by the GridMass algorithm,
followed by peak deisotoping and alignment using the random sample consensus (RANSAC) algorithm.

4.16. Software

JUMPm is programmed in Perl, JAVA, and R, and can be executed on a Linux cluster system.
Analytical variables are controlled with a text-based parameter (.param) file which can be edited
by the user to meet their specific needs. The source code and raw data can be downloaded at
http://www.stjuderesearch.org/site/lab/peng/jumpm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/5/190/s1.
Figure S1: Detailed workflow for JUMPm, Figure S2: Distribution of signal and noise levels in the testing
dataset, Figure S3: Mass calibration by moving average method, Figure S4: Statistical distribution used for pair
scoring, Figure S5: Comparison of the PubChem, Human Metabolome Database (HMDB), and Yeast Metabolome
Database (YMDB) databases, Figure S6: Number of molecular formulas containing 16 selected elements in
HMDB and YMDB, Figure S7: Scoring of metabolite-spectrum matches, Table S1: List of common software tools
in metabolomics.
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