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T helper 22 (Th22) cells are a newly identified subset of CD4+ T cells that secrete the
effector cytokine interleukin 22 (IL-22) upon specific antigen stimulation, barely with IFN-g
or IL-17. Increasing studies have demonstrated that Th22 cells and IL-22 play essential
roles in skin barrier defense and skin disease pathogenesis since the IL-22 receptor is
widely expressed in the skin, especially in keratinocytes. Herein, we reviewed the
characterization, differentiation, and biological activities of Th22 cells and elucidated
their roles in skin health and disease. We mainly focused on the intricate crosstalk
between Th22 cells and keratinocytes and provided potential therapeutic strategies
targeting the Th22/IL-22 signaling pathway.
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INTRODUCTION

The skin is the outmost sentinel barrier of the body and is continuously exposed to pathogens and the
environment. The skin is composed of the epidermis, dermis, and subcutaneous tissues. Besides its
mechanical barrier role, the skinacts as thefirst lineofhost immunedefense.Keratinocytesarenotonlya
component of the skin physical barrier but also have important immunoregulatory roles by secreting
various cytokines and chemokines that work with cutaneous antigen-presenting cells (APC) such as
Langerhans cells (LC), dendritic cells (DC), andmacrophages,finally contributing to the innate immune
system.Tomaintain skin immunehomeostasis, innate and adaptive immune cells, especially T cells and
tissue cells, interact finely with each other and constitute an intricate immune regulatory network (1, 2).
As another leading actor of these crosstalk, dysregulated T cell immune responses can contribute to the
pathogenesis of skin disorders. In the microenvironment and disease setting contexts, naive T cells can
functionally differentiate into effector T helper (Th) cells. Furthermore, skin inflammatory diseases can
be divided into four types based on the polarization of Th cells subsets. First, Th1-dominant skin
diseases, such as lichen planus and vitiligo, share a lichenoid clinical phenotype. Atopic dermatitis (AD)
is a clear example of Th2-specific skin diseases, characterized by autoantibody production and
eosinophil-infiltrated eczematous patterns. Fibrogenesis is involved in regulatory T cells-polarized
skin diseases, including systemic sclerosis. Finally, Th17 andTh22 cells, alongwith their cytokines IL-17
and IL-22, contribute to a neutrophilmigration andwound-healing-like pattern, such as psoriasis (3–6).
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The discovery of Th22 cells occurred much later than its
defining cytokine, IL-22, which was initially regarded as a
cytokine secreted by Th1 or Th17 cells. Nograles and Fujita
proposed the possible existence of discrete Th22 cells, producing
IL-22 without IFN-g or IL-17 in the skin (7, 8). Then, Th22 cells
were identified as a novel Th cell subset according to its
particular transcriptional profile of aryl hydrocarbon receptor
(AHR), chemokine receptors CCR4, CCR6, CCR10, as well as
cytokines IL-22 instead of IFN-g, IL-4, or IL-17 (9–11).
Additionally, Th22 cells remain stable under inducible Th1,
Th2, Th17, and Treg cells conditions, which reinforced that
Th22 cells are a novel effector T subtype contributing to skin
homeostasis and inflammation (10). Furthermore, results from
an IL-17A fate-mapping reporter assay and a transcription
profile supported Th22 cells as a distinct lineage from Th17
cells (12, 13).

Th22 cells have been proposed to play essential roles in
autoimmune diseases including rheumatoid arthritis,
inflammatory bowel diseases, asthma, multiple sclerosis,
immune thrombocytopenia, nephropathy, hepatitis, thyroid
diseases, and myasthenia gravis, as well as infectious diseases
and tumors (14–22). Recently, emerging advances regarding the
understanding of Th22 cel ls are al lowing in-depth
comprehension of the cutaneous immune system, which might
promote the development of treatments targeting Th22 cells.
Here, we review the current knowledge regarding Th22 cells and
their main functional cytokine IL-22, especially their interaction
with keratinocytes, in the pathogenesis of psoriasis, atopic
dermatitis, lupus erythematosus, and other skin immune
diseases. We also provided potential bases for treatments
targeting the Th22/IL-22 signaling pathway.
CHARACTERIZATION AND
DIFFERENTIATION OF TH22 CELLS

Originally, Th22 cells were derived from the IL-22 study. IL-22 is
the main effector cytokine of Th22 cells and belongs to the
interleukin 10 (IL-10) family. IL-22 was first recognized as an IL-
10-related T cell-derived inducible factor in 2000 (23, 24).
Although IL-22 was primarily discovered that IL-22 was
produced by Th1 and natural killer (NK) cells (25), IL-22 was
usually viewed as a Th17 cytokine (26, 27) until the identification
of Th22 cells (8–11). They were discovered as a new subset that
only secreted IL-22, and barely produced IFN-g, IL-4, or IL-17
(15, 20). Duhen estimated that about a half of IL-22 producing
CD4+ memory T cells from healthy human peripheral blood
secreted only IL-22, whereas around 30% and 13% separately co-
expressed IFN-g and IL-17, separately, with nearly 6% producing
all three (9). Apart from its characteristic cytokine IL-22, Th22
cells can also produce IL-13 (10–12, 28), TNF-a (10, 11), IL-26
(11), and granzyme B (12). Additionally, Th22 cells orchestrate
skin immunity and wound healing along with keratinocytes (10).
Supporting the function of Th22 cells in the skin, they have been
shown to possess skin-homing properties with CCR4, CCR6, and
CCR10 expressions (9–11). Unsurprisingly, the frequency of
Frontiers in Immunology | www.frontiersin.org 2
cutaneous Th22 cells is higher in inflammatory skin than that
in the blood, accounting for 30% of IL-22+ cells in the epidermis
and dermis (10). Recently, Foster ’s team generated
IL17aeGFPIL22tdTom dual-reporter transgenic mice and
proved that Th22 cells were not derived from Th17 cells as a
distinct lineage in Th22-enriched culture conditions (12).
Further, they validated this finding in vivo with triple-reporter
mice in which Th22 cells seldom developed through the IL-17A-
expressing stage during bacterial infection (13). Collectively,
Th22 cells are regarded as a novel T cell subset. Considering
the complexity of T cells subsets identification, flow cytometry
appeared to be the most popular method to segregate Th22 cells
by combining extracellular proteins (CCR4, CCR6, and CCR10),
a transcription factor (AHR) and cytokine profiles (IL-22+, along
with IFN-g-, IL-4-, IL-9-, IL-10- and IL-17-) (29). Additionally,
the dual cytokine-secretion assay allowes the isolation and
purification of Th22 cells, which might provide possibilities for
further characterizations (30).

The differentiation of T cells is primed by direct contact or the
interaction with cytokines produced by APC and tissue cells and
depends on complex lineage-defining transcriptional networks (31).
Previous studies have demonstrated that TGF-b promotes IL-17
while differentially inhibits IL-22 during early Th cell differentiation
(11, 32). Trifari has also found that human naive T cells co-cultured
with IL-1b and IL-23 secreted IL-22 rather than IL-17 (11). Further,
Yoon has revealed that tape stripping of mouse and human skin can
lead to the activation of Toll-like receptors 4 (TLR4). Finally, the
skin DC can be polarized by IL-23 and promote Th22 cell
differentiation (33). On the other hand, Basu has shown that IL-6
alone can trigger the development of Th22 cells. (34). Although IL-
23 can augment the polarization of Th22 cells primed by IL-6, IL-23
is dispensable since its blockage did not affect TCDD-induced IL-22
production. (34, 35). Moreover, Duhen has demonstrated that IL-6
and TNF-a contributed to Th22 cells production (9). Studies also
suggested that IL21 or IL-26 enhanced Th22 differentiation (36, 37).
Recently, Prostaglandin E2 (PGE2) has been proved to increase IL-
22 under Th22-priming conditions and to stimulate IL-22 in vivo by
binding to the EP4 receptor. (38). Prostaglandin I (2) analogs has
been proved to augment IL-22 and IL-17 in vitro and expanded
Th17 and TH22 cells as well (39). Jiao et al. have found that ICOS/
ICOSL signaling increased the proliferation of CCR4+ CCR6+ Th22
cells (40). Besides various cytokines and molecules, APC could also
regulate Th22 cells differentiation (Figure 1). Plasmacytoid DC
(pDC) was more potent than conventional DC (cDC) to induce
human Th22 cells via IL-6 secretion (9). For example, Wilkinson
has shown that IL-6 is released by DC-polarized Th22 cells through
classical, trans, and cluster signaling pathways. (41). Additionally,
CD5+ LC and CD5+ DC were strong stimulators of Th22 cells (42).
In another study, LC was more efficient than DC to induce Th22
polarization (8). Yang indicated that activated B cells also promoted
Th22 cell formation (43). Although studies revealed that various
factors regulated Th22 cells differentiation, there was no standard
Th22 cells polarization protocol. Recently, the optimized Th22-
skewing condition proposed by Plank was widely accepted, which
was composed of IL-23, IL-1b, IL-6, the endogenous AHR ligand 6-
Formylindolo[3,2-b]carbazole (FICZ), and the TGF-bR inhibitor
July 2022 | Volume 13 | Article 911546
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Galunsertib (12). However, differentiation of Th22 cells in different
context of disease settings and distinct immune microenvironments
remains to be explored.

The transcriptional mechanisms orchestrating the phenotypic
identity of Th22 cells are not fully elucidated. Nevertheless, AHR is
mainly considered as a characteristic transcription factor of Th22
cells. Studies have demonstrated that the AHR agonists b-
naphthoflavone, FICZ, and dioxin upregulated not only induced
the production of IL-22 but also of IL-17 (11, 35). Similarly, the
AHR ligand VAF347 selectively promoted IL-22 by acting on
monocytes and naive T cells (44). Conversely, inhibiting or
silencing AHR in vitro, and knocking out AHR in vivo led to
reduced IL-22 (11, 34, 45). Moreover, Alam et al. have identified a
Notch-AHR axis using RBP-J deficient mice, where Notch1 and
Notch2 compensated each other to control IL-22 expression. They
have also discovered that Notch signaling can induce heat-labile
molecules to stimulate AHR (45). Zeng has also shown that the
Notch-Hes-1 axis facilitates the production of Th22 cells (46).
Medroxyprogesterone acetate promoted Th22 cells through AHR
and T-bet while inhibiting RORgt (47). Besides the essential roles
Frontiers in Immunology | www.frontiersin.org 3
of master regulatory, co-regulator, placeholder, and other
epigenetic programs also cooperate together in a coordinated
network to drive Th cells differentiation. For example, RORgt is
a positive regulator of Th22 cell differentiation, (11, 12). combined
with RUNX1, it promotes IL-22 expression through their
enhancer, CNS-32 (48). Besides, HIF-1a and RUNX3 can also
elevate the expression of IL-22 (49, 50). Notably, T-bet knock-out
mice exhibited compromised IL-22 expression in Th22 cells
without affecting IL-22 in Th17 cells (34). In contrast, Plank has
described the inhibitory role of T-bet in vitro in Th22 cell cultures
with potential minimal Th17 cell contamination (12). These
controversial results motivated us to define Th22 cells accurately
and explore the underlying mechanisms balancing their stability
and plasticity.

Plasticity allows for heterogeneity, which facilitates Th cells to
continuously adapt to the ever-changing surroundings and is
crucial for immune homeostasis (31, 51). Studies have
demonstrated that a proportion of Th22 cells can express IFN-g
(10, 12, 28, 32), IL-4 (10) IL-13 (12, 28), and IL-17 (10, 12, 13, 32),
indicating a possible conversion from Th22 cells to Th1/2/17 cells.
In turn, Th17 clones, derived from psoriatic skin, could be
polarized to an IL-22-single-producing Th22 cell profile (52).
Besides, T cells exposed to filaggrin-deficient skin equivalents
shifted from a Th1/Th17 to a Th2/Th22 profile (53).
Additionally, IL-22+ Th cells predominantly produce IFN-g
instead of IL-17 under Th0 and Th17 conditions, indicating co-
regulation of IL-22 and IFN-g (32). Shen et al. have described that
in vitro generated mouse IL-22+ Th cells were relatively stable
under Th1 or Th2 conditions in vitro, whilst acquired IL-17-
expressing ability under Th17 conditions (54). However, Plank
et al. have suggested that IL-17, IL-13, and IFN-g expressions were
augmented in Th22 cells under respective re-stimulated
circumstances (12). The different polarization conditions that
Shen used to differentiate Th22 cells with TGF-b while Plank
induced Th22 differentiation with TGF-bR inhibitor Galunisertib
with potential minimal Th17 contamination, whichmight account
for the paradoxical results. The in vivo generated IL-22+ Th cells
in IL-22-tdTomato mice lost IL-22 expression and converted to
express IL-17 with higher T-bet. This was further confirmed by a
colitis model in which transferred IL-22+T cells gained IFN-g and
IL-17 productions (54). Furthermore, IL-22+ Th cells generated in
vivo using IL-22-tdTomato mice lost IL-22 expression and
expressed IL-17 with higher T-bet, which was further confirmed
by a colitis model in which the transferred IL-22+T cells started to
produce IFN-g and IL-17 (12). Human study proved that the
plasticity of Th22 cells varied in different diseases with
dysregulated Th-skewing. IL-4-secreting Th22 cells were only
apparent in atopic eczema rather than allergic contact
dermatitis or psoriasis, although IFN-g and IL-17-producing
Th22 cells could be found in all three (10). In summary, Th22
cells can acquire plasticity under certain influences including
extrinsic factors like cytokine milieu or pathogen infection,
which might play essential roles in the pathogenesis of skin
immune diseases. Finally, uncovering the mechanisms that
orchestrate the differentiation and plasticity of Th22 cells is
crucial for therapeutic interventions.
FIGURE 1 | The characterization, differentiation of Th22 and the signaling
pathway of Th22/IL-22. Native T cells induced by IL-6, IL-23, IL-1b and TNF-
a, mediated by LC, DC or activated B cells could differentiate into Th22, while
TGFb could inhibit Th22 polarization. AHR, the master transcription factor of
Th22, could be upregulated by ultraviolet B, microbiota, PGE2 and Notch
signaling. Th22 secreted its effector cytokine IL-22, as well as IL-13, IL-26,
TNF- a and granzyme B. Th22 might converted to Th1, Th2, Th17 under
certain conditions. IL-22 could bind to receptor complex of IL-22R and IL-
10R, activating TYK2 and JAK1, thus mediating multiple pathways. In
contrast, the decoy receptor IL-22BP blocks the roles of IL-22. Th22, T
helper 22 cell; LC, Langerhans cell; DC, dendritic cell; AHR, aryl hydrocarbon
receptor; IL-22R, IL-22 receptor; IL-10R, IL-10 receptor; IL-22BP, IL-22
binding protein; PGE2, Prostaglandin E2. Created with Biorender.com
July 2022 | Volume 13 | Article 911546

https://Biorender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pan et al. Th22 in Dermatological Disorders
BIOLOGICAL ACTIVITIES OF TH22 CELLS
AND IL-22 IN THE SKIN

As mentioned above, Th22 cells were initially discovered and play
a vital role in the skin, particularly via its effector cytokine, IL-22.
In addition to Th22 cells, cutaneous IL-22 is also expressed by
innate and adaptive immune cells including NK cells, innate
lymphoid cells (ILCs), lymphoid tissue inducer cells, NK T and
gdT cells, DC, macrophages, mast cells, neutrophils, as well as Th1
cells, Th17 cells, and CD8+ T cells, and even fibroblasts (55–63)
(Table S1). Generally, innate immune cells respond directly to
local environment and quickly modulate surrounding epithelial
host defense in the early state, while T cells induce strong and
sustained immune responders in the late state. ILCs were
supposed as the main producer of IL-22 in mucosa, while Th
cells were believed as the primary sources of IL-22 in epithelial
tissues (64). ILCs initiated inflammatory response rapidly after
stimulation by IL-23 in psoriatic mice (65). Compared with ILCs
targeting surface intestinal epithelial cells, Th22 cells have a
nonredundant role in the intestinal crypts, revealing
spatiotemporal differences between Th22 cells and ILC3 during
infection (66). The differences of IL-22-producing ILCs and Th22
cells were not fully elucidated in the skin. ILCs were mostly
clustered beneath the dermoepidermal junction and close to T
cells (67), which indicated possible crosstalk between them.
Strikingly, Mashiko proposed that mast cells were major IL-22
producers in psoriasis patients and atopic dermatitis individuals
(68). The emergences of IL-22-expressing cancer-associated
fibroblasts and immunofibroblats enhance the complexity of IL-
Frontiers in Immunology | www.frontiersin.org 4
22 production. The limited data requires further exploration of the
different roles of various IL-22-expressing cells, both in
physiological and pathological conditions. Questions such as
whether IL-22-expressing innate immune cells respond earlier
and result in acute inflammation while IL-22-producing T cells
participate in later stages and cause chronic immune dysfunction,
and what are the differences between Th17/Tc17 and Th22/Tc22,
considering differentiation, regulation, and plasticity in specific
pathological conditions remains unanswered. Also, it is important
to consider the differences between murine and human skin when
interpreting the underlying mechanism of skin disorders. For
example, it is known that the interfollicular epidermis in
humans is larger than that in mice. Moreover, the composition
of their immune cells is different. For example, dendritic epidermal
T cells are only present in the mouse skin. Here, we summarized
published data and focused on the biological activities of Th22
cells and IL-22 in the skin.

IL-22canberegulatedbypositive inducers including IL-6, IL-21,
IL-23, IL-1b, IL-7, AHR, Notch and negative controllers such as
TGF-b, IRF-4, IL-27, ICOS, and c-Maf (Figure 2). Interestingly,
ultraviolet B irradiation of keratinocytes increased the productions
of both AHR ligand (69, 70) and IL-22R1 (71), amplifying the roles
of Th22 cells and IL-22 (Figure 1). Soluble IL-22 binding proteins
(IL-22BP, or IL-22R2) serve as its natural inhibitor. Furthermore, a
high concentration of IL-38 augmented IL-22 while a low
concentration attenuated it (58, 60, 63, 72). IL-22 binds with a
heterodimeric complex receptor composed of IL-22R1 and IL-
10R2. Previously, it was determined that IL-22 bound to IL-22R1
first with high affinity, leading to a conformational adjustment
FIGURE 2 | Cutaneous biological roles of Th22 cells and IL-22. Th22 cells exert biological functions through its effector cytokine IL-22 in the skin. Besides, IL-22
could also be secreted by ILC, NK cells, LTi, NKT, gdT, Th1/17, CD8+ T cell, DC, macrophage, mast cell, neutrophil and fibroblast in the skin. Both positive inducers
and negative controllers could regulate the expression of IL-22. IL-22 plays a vital role in Th22-mediated host defense by communicating with keratinocytes,
promoting antimicrobial peptides and keratinocytes proliferation, inhibiting keratinocyte differentiation, and regulating tissue remodeling as well as inflammation.
Furthermore, IL-22 could amplify its biological activities through a positive feedback loop by inducing IL-20 production in keratinocytes, which has similar effects on
keratinocytes. ILC, innate lymphoid cell; NKT, natural killer T cell; LTi, Lymphoid tissue inducer; gdT, gamma-delta T cell; DC, dendritic cell; Th, T helper cell; IL-22BP,
IL-22 binding protein; MMP, matrix metalloproteinases; AHR, aryl hydrocarbon receptor. Created with Biorender.com.
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which in turn promotes the combination with IL-10R. While IL-
10R2 is widely expressed, IL-22R1 is restricted to non-
hematopoietic epithelial cells such as keratinocytes and
fibroblasts. IL-22 activates JAK1 and TYK2, transmitting the
signal to downstream pathways, including STAT3, STAT1,
STAT5, P38, MAPK, JNK and MEK, ERK, AKT, and mTOR
(58–60, 63, 72, 73) (Figure 1). Considering the expressions of IL-
22R1 and IL-22BP in keratinocytes, IL-22 functions to sustain the
integrity andbarrier functionsof the skin. In contrast, IL-22canalso
amplify inflammation cascade, and promote abnormal
proliferation and differentiation in certain cases.

IL-22 plays a vital role in Th22-mediated host defense by
communicating with keratinocytes (Figure 2). The function of IL-
22 on keratinocytes can be divided into five sections. First, IL-22
protects the host defense through promoting antimicrobial peptides
(AMP), including psoriasin (S100A7), calgranulin A (S100A8),
calgranulin B (S100A9), S100A12, S100A15, hBD2, and hBD3 (26,
74–77). Similarly, keratinocytes exposed to Th22 supernatants
showed increased S100A7 (10). Mechanically, MSX2P1 promoted
the progression and growth of IL-22-stimulated keratinocytes by
targetingmiR-6731-5p and activating S100A7 (78). Additionally, IL-
22-induced SPRR2C has been reported to target the miR-330/
STAT1/S100A7 axis in HaCaT cells (79). In contrast, CXCL8 and
hBD2 were upregulated by IL-22 via STAT3-mediated Bcl-3 (77).
Interestingly, IL-17 alone could not enhance S100A7 and S100A8,
but, when combined with IL-22, upregulated S100A9 and hBD in
primary keratinocytes (26). Unlike the described host defense role of
IL-22 to induceReg family proteins in intestinal epithelia, IL-22 alone
could not induce Reg3a in keratinocytes (80). However, along with
IL-17, IL-22 can elevate the levels of Reg3a, thereby promoting the
proliferation of keratinocytes and inhibiting the terminal
differentiation in feedback (81). Blocking either IL-17 or IL-22
increased the severity of Staphylococcus aureus infections,
indicating complementary and nonredundant roles of IL-17 and
IL-22 (82).

Second, IL-22 promotes keratinocytes proliferation. Among the
IL-20 family, IL-22 induced themaximal level of proliferationboth in
monolayer keratinocytes and reconstituted human epithelial culture
system (76). Yang proved that Nrf2 elevated keratin 6 (K6), K16, and
K17 by regulating their antioxidant responsive element after IL-22
stimulation, finally promoting proliferation (83). By contrast, IL-22
inhibited apoptosis by increasing Bcl-xl and decreasing Bax (84).
Recently, studies demonstrated that microRNAs (miRNAs)
cooperated with IL-22 and regulated keratinocytes proliferation
through miR-197/IL-22R, miR-122-5p/Sprouty2, miR-330/
CTNNB1, miR-20a-3p/SFMBT1, miR-548a-3p/PPP3R1, MSX2P1/
miR-6731-5p, miR-233/PTEN, NORAD/miR-26a, and miR-617/
FOXO4 signaling pathways (78, 85–92). Furthermore, STAT3, Erk,
Akt, MAPK, and JNK were demonstrated to be involved in the
hyperproliferationofkeratinocytes (93–97).Notably, IL-22andIL-17
might induce keratinocytes stemness to promote regeneration (98).

Third, IL-22 can restrain the differentiation of keratinocytes and
has essential impacts on epithelial architecture, leading to acanthosis,
parakeratosis, and hypogranularity. Those differentiated proteins
were inhibited by IL-22, including K1, K10, K7, kallikrein 7,
profilaggrin/filaggrin, involucrin, loricrin, desmocollin 1, and
Frontiers in Immunology | www.frontiersin.org 5
CALM5 (75, 76, 99–103). Padhi further proved that IL-22
suppressed peptidylarginine deiminase-1 to hinder epithelial
differentiation (104).

Fourth, IL-22 also contributes to tissue remodeling, particularly
throughmatrixmetalloproteinases (MMP) 1 and 3 in keratinocytes
(75, 99, 105). Scratch wound healing and transwell assay further
proved themobility role of IL-22 (95, 103). Impaired skin showed a
delayed healing process and reduced IL-22 (105, 106), while
recombinant IL-22 alleviated skin damage in different wound-
healing stages (103, 107). Additionally, IL-22 promoted collagen
deposition in fibroblasts and accelerated wound healing (73, 108).
Moreover, IL-22 activated TNF-induced keratinocytes, then
promoted MMP1 in fibroblasts through increasing IL-22R (109).
Recently, Li suggested that CD11c+ myeloid cells were important
for the underlying mechanisms of wound healing via regulation of
the IL-23/IL-22 axis (110).

Fifth, IL-22 can also regulates inflammation in keratinocytes,
mainly through inducing granulocyte-attracting chemokines,
such as CXCL1, CXCL5, and CXCL8 (76, 99, 111). Also, IL-22
can enhance IL-1, IL-8, and TNF-a (71, 112–114). Furthermore,
IFNa increased IL-22R and amplified the pro-inflammatory role
of IL-22 (112, 115). Interestingly, IL-22, IL-20, and IL-24 share
the IL-22R1 subunit and have redundant roles in the skin (76,
100, 107). Moreover, IFNa increases IL-22R and amplifies the
pro-inflammatory role of IL-22 (100).

Nowadays, increasing studies have proved that IL-22 exerted
dual roles, both guardian andpathogenic, depending on the context
(56, 63, 116). The dysregulated interplay between immune and
epithelial cells can lead to the disruption of skin homeostasis. In
contrast to its skin integrity protective function, excessive IL-22 can
lead to skin disorders. There is emerging evidence that Th22 cells
and IL-22 are involved in the development of skin diseases,
particularly psoriasis and AD (55, 57, 62).

IL-22 is thought to multifactorial develop psoriatic lesions. Also,
the pathological pattern of psoriasis can be viewed as an uncontrolled
IL-22 physiological activity in all aspects. Gene-editing mice are
widely used when exploring the mechanism of psoriasis-like models
composed of hyperkeratosis, parakeratosis, acanthosis, and dermal
inflammation. IL-22-transgenicmice showedneonatalmortality and
psoriatic morphological changes (117). Reversely, IL-22-deficient
mice were protected from IL-23- or imiquimod-induced psoriatic
lesions (27, 118, 119). Similarly, neutralizing IL-22 significantly
ameliorates murine psoriatic phenotype (27, 119, 120). Moreover,
knocking down IL-22BP also elevates the production of Th22 and
gdT cells, (121, 122). thereby deteriorating psoriasiform dermatitis.
(121, 123). Zheng suggested that IL-23 induced IL-22production and
activated STAT3, while IL-6 was dispensable for IL-22 expression
(27). Then, Lindroos verified that the expressions of IL-22R1 and IL-
22BP were IL-6-dependent, although IL-6-/- T cells did not reduce
IL-22 production (124). On the other hand, Chen has shown that
K23/IL-22+/+ and K23/IL-22−/− mice are not different and
hypothesized that IL-22 deficiency is not required for psoriasis
development, although IL-22 aggravates psoriatic arthritis in K23
mice. (125).Hedrickdemonstrated that IL-23didnot induce IL-22 in
CCR6-/- mouse ears, while triggering IL-22 production in Rag-/-
mice, implying that both T and non-T cell-derived IL-22 were
July 2022 | Volume 13 | Article 911546
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involved in IL-23-induced ear swelling in murine psoriasis models
(126). The previous studies were predominantly concentrated on the
biological activities of IL-22 and simply considered it as a Th17
cytokine in the IL-23/IL-17/IL-22 axis in psoriasiform models
without elucidating the sources of IL-22. Along with IL-22, IL-17,
theprimary effector ofTh17 cells, also seemednecessary to induce IL-
23-mediated murine psoriasis (118, 127). A 2D visualization of
psoriasis RNA-seq datasets was unable to prove the relationship
between IL-17A and IL-22, which indicated alternative sources of IL-
22 such as Th22 or non-T cells rather than Th17 in psoriasis (128).
Th22 and IL-22 producing CD8+ T cells are one of the primary
sources of IL-22 in AD (129). For example, IL-22 mediates the
proliferation of keratinocytes and epithelial thickness in AD-like
models. (130). IL-22 mediated keratinocytes proliferation and
epithelial thickness in AD-like models (131–133). Additionally,
skin-specific IL-22 transgenic (K5-tTA-IL-22) mice exhibited
chronic pruritic dermatitis with increased IL-4, IL-13, and gastrin-
releasing peptides, along with elevated susceptibility to S. aureus
infections (134). Epicutaneous-sensitized AD models promoted IL-
22 expression aswell as Th22 cell accumulation (33, 135–137). IL-23,
triggered by endogenous TLR4, promoted DC-induced Th22 cell
polarization after antigen application following tape stripping in
mouse skin (33). Furthermore, Robb found that PGE2 markedly
augmented IL-22 in both Th22 cells and ILCs (38, 138). Several
studies proposed that ILCs and gdT cells were acknowledged as
primary producers of IL-22 in psoriatic mouse models instead of Th
cells (65, 119, 139–141).
THE ROLES OF TH22 CELLS IN
SKIN DISEASES

Studies have revealed that Th22 cells play a regulatory role in the
pathogenesis of varied immune disorders, infections, and tumors
(14, 15, 21, 22, 142, 143). Here, we provided a brief summary of
published research pertaining to the roles of Th22 cells in
skin diseases.

Psoriasis
Psoriasis is an inflammatory skin disease with high incidence,
characterized by erythematous scaly patches or plaques usually on
extensor locations, caused by immune-mediated hyperproliferation
and chaotic differentiation of keratinocytes. Substantial progress has
been made in relating skin lesions with systemic comorbidities such
as psoriatic arthritis (PsA) and metabolic syndromes (144). Both
circulation and skin lesion showed higher IL-22 expression in
psoriasis patients, which was also associated with disease severity
(84, 145–148). Although IL-22-producing Th22 cells were first
discovered in psoriatic lesions, it is widely accepted that IL-17- and
IL-22- expressing Th17 cells drive the inflammatory cascades and
activate and recruit Th1 cells and Th22 cells, resulting in abnormal
immune response and aberrant epidermal proliferation in psoriasis
(149). Moreover, IL-22 enhanced the production of IL-17 in
keratinocytes, promoting keratinocytes migration (150). IL-17 and
IL-22 in synergism with each other induce the secretion of AMP,
promote acanthosis, parakeratosis and inflammation. However,
while IL-17 dominates inflammation by activating immune cells,
Frontiers in Immunology | www.frontiersin.org 6
IL-22 mainly regulates the proliferation and differentiation
of keratinocytes.

IL-22 might be a genetic risk factor in psoriasis. Copy number
variations (CNV) of IL-22 exon1 were significantly associated with
psoriasis severity (151, 152). Pollock proposed IL-22 as a possible
germ line risk locus for PsA (153) Furthermore,Nikamo found that
a high-risk IL-22 promoter variant might lead to the onset of
psoriasis before puberty (154). Similarly, Cordero discovered
higher IL-22-expressing T cells in pediatric psoriasis patients
rather than adult ones (155). Both studies indicated that pediatric
psoriasis patients might benefit from anti-IL-22 therapy. Besides,
differential IL-22 expression at different sitesmight result in diverse
local manifestations of psoriasis. Serum IL-22 was elevated in PsA
patients with entheseal and joint changes (148, 156). CD4+ IL-22+
Tcellswere lower in the synovialfluidofPsA(156),while the level of
IL-22 was higher in the intestine of PsA patients (157). Moreover,
Ahn found that scalp psoriasis had higher IL-22 derived fromCD8
+Tcells (158).However, usingGSEAandGSVA,Ruanohas founda
similar Th1/Th17 profile but less activation of Th22 cells in scalp
psoriasis compared to skinpsoriasis (159). Besides, these discordant
expressions at different sites put forward a hypothesis that
differential IL-22 expression might result in diverse local
manifestations of psoriasis.

Collectively, both IL-22-producing Th17 cells and Th22 cells
play important roles in psoriasis patients. Rather than dominant
function of Th17 cells in psoriasis, Th22 cells, serve as immune
response of Th17 cells, mostly act on keratinocytes leading to
excessive proliferation and deviate differentiation in the skin.
However, the emergence of IL-22-producing innate immune
cells increase the complexity of immune activity in psoriasis.
Future studies illustrating distinct roles among innate and
adaptive IL-22-expressing immune cells are required.

AD
AD is the most common pruritic inflammatory skin disease with
recurrent eczematous dermatitis. AD affects all ages and ethnicities
and can be classified as extrinsic and intrinsic phenotypes. Its
pathophysiology is complicated and involves genetic predisposition
and epidermal dysfunction, along with diverse T cell-related
inflammation (160).

Numerous Studies demonstrated that increased expression of IL-
22 was correlated with the Scoring of Atopic Dermatitis (SCORAD)
(161–164). The elevated IL-22 was localized in skin lesions in mild
AD (165), while affecting both local skin and circulation in severeAD
(162). A comparative study revealed differential expression of
chemokines in AD (CCL17/18/20) and psoriasis (CXCL1, IL-8,
and CCL20), indicating that disease-specific microenvironments
might be involved in Th differentiation (166) While psoriasis is
Th17/Th22-skewing, AD tends to be Th2/Th22 polarized (129, 166,
167). The Th2-skewing microenvironment inhibited AMP, thus
resulting in more vulnerable skin colonization with S. aureus in AD
patients rather than in psoriasis individuals (162, 168).

The immune infiltration in AD is quite heterogeneous
depending on the disease-specific manifestation-related contexts.
Intrinsic AD presented higher skewing of Th17/TH22 than extrinsic
phenotype (169), and the “Th2/Th22/PARC-dominant” cluster in
four types of intrinsic AD patients showed the highest SCORAD
July 2022 | Volume 13 | Article 911546

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pan et al. Th22 in Dermatological Disorders
(170). Besides, Th2/Th22 activation progressively intensified from
acute to chronic while IL-17 was decreased from acute to chronic
phase (168, 171). The immune cells infiltrations also vary among
different AD ethnicities. African American AD patients (172),
Tanzanian AD patients (173), and Asian AD patients (174, 175)
had higher Th2/Th22 skewing than European Americans. Although
common Th2/Th22 skewing can be found in different age groups
(176), adult AD patients had elevated IL-22 frequencies than infants
and adolescents (177, 178) but decreased with age in elderly AD
patients especially those over 40 (179, 180). Future study with
continuous monitoring in AD patients from infants to seniors
might expand our knowledge in aged-related immune
heterogeneity in AD. Moreover, gene predisposition influences the
immune pathways in AD. AD children with FLG mutation
demonstrated higher Th22 cell numbers without affecting the
adaptive immunity composition (181).

Recently, laser capture micro-dissection has been used to detect
IL-22 in the dermis (163). Compared to a skin biopsy, tape strip
sampling and interstitial fluid from suction blistering are less
invasive methods to identify similar inflammatory cytokines
(182–184). However, the detection and qualification of cytokine
profiles in interstitial fluid is unstable and sometimes might not
detect IL-22 (185). Microneedle patch for ultrasensitive biomarkers
quantification in interstitial fluids would facilitate point-of-care
diagnosis and longitudinal monitoring and uncover the
underlying mechanism of background immune activation in
different ethnicities and age groups.
Lupus Erythematosus
Lupus erythematosus is a heterogeneous autoimmune disease,
ranging from skin lesions to nephritis, characterized by
exaggerated B and T cell immune responses with impaired
immune tolerance against self-antigens (186–188). Studies
related with Th22 cells and IL-22 in lupus patients are quite
controversial, possibly due to small sample sizes.

Some found decreased plasma IL-22 in inactive SLE individuals
(189) and new-onset SLE patients (190). In contrast, other studies
revealed elevated Th22/IL-22, implying its pathologic roles (191,
192). CNV of IL-22 and IL-17 were higher in SLE patients without
synergistic contribution to SLE risks (193).Additionally, IL-22 gene
rs2227513 polymorphism was associated with increased risk in
renal SLE (194). The frequencies of Th22 cells vary among different
lupus erythematosus subtypes, indicating a prognostic role of IL-22
in various types. Additionally, discoid erythematosus has higher
levels of Th22 cells and IL-22 compared to subacute cutaneous
lupus erythematosus inboth skin lesionsandcirculation. (195, 196).
Yang et al. have also found increased Th22 cells in sole skin
involvement patients but decreased in sole nephritis ones (197).
However, they later reported controversial results in which serum
IL-22 levels in AD were higher compared to healthy controls, and
anti-IL-22 monoclonal antibody treatment attenuated nephritis in
MRL-lprmice (198). Zhong foundaugmentedCCR6+Th22 cells in
SLE patients with sole skin and/or renal impairments (199).
In addition, Luk investigated and revealed higher IL-22 levels in
the urinary sediment of SLE patients with proliferative nephritis
than those with nonproliferative (200).
Frontiers in Immunology | www.frontiersin.org 7
Other Skin Inflammatory Immune Diseases
Systemic sclerosis (SSc) is an immune-mediated disease with T cell
abnormalities, characterized by skin or/and organs fibrosis. SSc
patients had increased Th22 cells in both circulation and lesional
skin, indicating abnormal crosstalk between Th22 cells and
fibroblasts (39, 108, 109, 201, 202). Hypertrophic scar and keloid
caused byproliferativefibroblasts further confirmed the interaction
between Th22 cells and fibroblasts with augmented Th22 numbers
and IL-22 levels (195, 203, 204). Alopecia areata (AA) is a common
non-scarring hair-loss immune disease with limited therapeutics
(205). Some studies described elevated IL-22 inbothAA lesions and
serum (206), as well as expanded CLA+ Th22 cells in the blood
(207). Meanwhile, other studies have suggested AA as Th1/Th2
skewing instead of Th17/Th22 (208). Larger cohort investigations
are urgent to reveal underlying Th polarization in AA. The biology
of Behcet’s disease (BD) is not fully understood, however, a recent
study found that increased Th22 cells were associated with
mucocutaneous BD (209). Hidradenitis suppurativa (HS) is a
chronic inflammatory disorder with painful inflamed nodules,
abscesses, sinus tracts, and fistulas in intertriginous skin, leading
to severely decreased life quality (210). IL-22 deficiencies might
participate in HS pathogenetic mechanisms (211, 212). In contrast,
transcriptional profiles showed apparent Th22/IL-22-skewing in
prurigo nodularis (213). Furthermore, Th22 cells were augmented
in Graft-versus-host disease (GVHD), a complication following
allogeneic hematopoietic-cell transplantation involving the skin
(214, 215). IL-22 derived from donor T- cells alleviated cutaneous
GVHD in mouse models (216, 217).

Taken together, Th22 cells and IL-22 play essential roles in in the
pathogenesis of skin disorders. However, we found that most studies
and clinical trials (Table S2) concentrate on the function of IL-22.
As we know, IL-22 could be secreted by not only Th22 cells but
other immune cells and tissue cells. Thus, future studies focused on
the behaviors of Th22 cells n dermatological disorders are needed.
BIOLOGICS TARGETING IL-22
SIGNALING PATHWAYS IN SKIN
DISEASES

Over the past 20 years, biologics have remarkably updated our
knowledge of dermatological treatments, especially in psoriasis and
AD. Biologics are recommended as a first-line treatment of
moderate to severe plaque psoriasis, including 11 approved
inhibitors of TNF-a (infliximab, adalimumab, certolizumab
pegol, golimumab, and etanercept), p19 of IL-23 (tildrakizumab,
risankizumab, and guselkumab), p40 of IL-12/23 (ustekinumab),
IL-17(secukinumab, ixekizumab, and brodalumab) (144, 218, 219).
Another two drugs targeted IL-23 or IL-17, Mirikizumab (anti-p19
of IL-23) (220) or bimekizumab (anti-IL-17) (221), are in clinical
development. Currently, three inhibitors are approved in AD,
including dupilumab (anti-IL-4Ra), tralokinumab (anti-IL-13),
baricitinib (JAK1/2 inhibitor). Antibodies of CCR4, CCL20, IL-6/
IL-6R, along withother JAK inhibitors (detailed information see
Table S2) are under clinical development. However, all of those
biologics are not applicable in patients with active tuberculosis or
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TABLE 1 | Clinical Trials Targeted IL-22 Immune Response.

Results Trial Reference

Not open NCT00563524 –

Not open NCT00434746 –

Not open NCT00447681 –

No efficacy NCT00883896/
2008-006936-37

–

Improve
SCORAD

NCT01941537 (243), (244)

Not open NCT00822835 –

Not open NCT00822484 –

No efficacy NCT01010542 –

Not open NCT03514511 –

– NCT04922021 –

Safe &
tolerable

ACTRN12612000713897 (245)

70.4% NCT02406651 –

Improve
MELD scores

NCT02655510 (246)

– NCT04498377 –

Safe &
tolerable

2014-002252-10 (247)

Not open NCT02833389 –

Not open NCT02749630 –

– NCT03650413 –

– NCT03558152 –

– NCT04539470 –

Not open NCT04386616 –
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s; SCORAD, the Scoring of Atopic Dermatitis; PASI, Psoriasis
Severity Index; AEs, Adverse Events; SAEs, Serious Adverse

P
an

et
al.

Th22
in

D
erm

atologicalD
isorders

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

July
2022

|
Volum

e
13

|
A
rticle

911546
8

Intervention Biologic Type Year Diseases Status Phase SampleSize Subjects Primary Outcomes

Time
Frame

Index

ILV-094
(Fezakinumab)

anti-IL-22 mAb IgG1 2007 PS Completed 1 76 ≥ 18 y 126 d AEs
56-84 d PASI, TLS,

PGA
2007 HeS Completed 1 56 20 y – 40

y
1 y AEs, PK,

PD
2007 HeS Completed 1 56 18 y – 50

y
– AEs, PK,

PD
2009 RA Completed 2 195 23 y – 81

y
12 w ACR20

2013 AD Completed 2 60 18 y – 75
y

12 w SCORAD

ILV-095 anti-IL-22 antagonist 2009 HeS Completed 1 48 18 y – 50
y

3 w AEs

2009 HeS Completed 1 48 20 y – 45
y

3 w AEs

2009 PS Terminated 1 39 ≥ 18 y 56 d PASI, TLS,
PGA

LEO 138559
(ARGX-112 or LP 0145)

IL-22R antagonists 2018 AD Completed 1 47 18 y – 55
y

120 d AEs

2021 AD Recruiting 2 52 18 y – 64
y

16 w EASI

F-652 recombinant human
IL-22 Fc IgG2

2012 HeS Completed 1 40 18 y – 45
y

22 d AEs

2015 lower GI
aGVHD

Completed 1, 2 27 18 y – 80
y

28 d Response
Rate

2016 AH Completed 1, 2 18 ≥ 21 y 42 d SAEs

2020 COVID-19 Recruiting 2 38 ≥ 18 y 29 d NIAID
UTTR1147A
(Efmarodocokin alfa or UTTR1147A or
RG7880 or RO7021610)

recombinant IL-22Fc
IgG4

2014 HeS Completed 1 68 18 y – 50
y

57 d AEs, PK,
PD

2016 NDFU Completed 1 72 ≥ 18 y 141 d AEs
2016 UC, CD Completed 1 70 18 y – 80

y
134 d AEs

2018 UC, CD Recruiting 2 320 18 y – 80
y

2 y AEs

2018 UC Not
Recruiting

2 195 18 y – 80
y

8 w Clinical
Remission

2020 aGVHD Recruiting 1 24 ≥ 18 y 365 d AEs
2020 COVID-19 Completed 2 410 ≥ 18 y 28 d Time to

Recovery

Data obtained from https://www.clinicaltrials.gov/, https://www.anzctr.org.au/, and https://www.clinicaltrialsregister.eu/ with search terms "ILV-094", ''ILV-095", "fezakinuma
"RG7880", "RO 7021610", “LEO 138559”, “ARGX-112”, “LP 0145” (Deadline: September 26, 2021).
mAb, monoclonal antibody; PS, Psoriasis; HeS, Healthy Subjects; AD, Atopic Dermatitis; AA, Alopecia Areata; SLE, Systemic Lupus Erythematosus; aGVHD, acute Graft-Vers
Diabetic Foot Ulcers; UC, Ulcerative Colitis; CD, Crohn's Disease; DMARD, Disease-modifying antirheumatic drugs; NIAID, the National Institute of Allergy and Infectious Diseas
Area and Severity Index; TLS, Target Lesion Score; PGA, Physician global assessment; ACR20, American College of Rheumatology 20% improvement; EASI, Eczema Area an
Events; PK, Pharmacokinetic; PD, Pharmacodynamics; MELD, Model for End-Stage Liver Disease; d, day; w, week; y, year.
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hepatitis B virus infection, which might lead to deadly infection
(218, 222, 223). Targeting the IL-22-IL-22R systemmight provide a
new therapeuticwithminimal side effects of infectiondue to the lack
of IL-22R on hematopoietic cells (59).

Reich found that guselkumab had better long-term efficacy than
secukinumab (224), which might because of broader spectrum of
both IL-22 and IL-17 inhibiting roles of guselkumab than decrising
Il-17 solelyof sekinumab.Furthermore,Evidencesof suppressionof
IL-22 expression were also discovered in infliximab (225),
adalimumab (225–227), etanercept (228, 229), tildrakizumab
(230), risankizumab (230), guselkumab (231, 232), ustekinumab
(233–235), filgotinib (jak1 inhibitor) (236), upadacitinib (jak1
inhibitor) (230) and baricitinib (237), which is in consistent with
the signaling pathway of Th22/IL-22. Besides, ruxolitinib exhibited
extra role of inhibiting expression of IL-22R1 (238) (Table S3). In
contrast, anakinra (recombinant IL-1Ra) increased production of
IL-22 in Hidradenitis Suppurativa (239, 240), possibly via
promoting the differentiation of Th22 cells. However, tapinarof
(AHRagonist) increased theproductionof IL-22 inkeratinocytes in
vitro, while inhibited IL-22 in psoriasis mouse model (241). This
discrepancy again reminds us of the complexity of IL-22 related
immune responses with both innate and adaptive IL-22-producing
immune cells, which urges us to clarify the different roles of IL-22-
producing cells in human health and skin diseases.

Integrative biology techniques combing human transcriptome
profiles with clinically relevant in vivo models have identified IL-22-
targeting as a prospective intervention in psoriasis (242) Guselkumab
(anti-IL-23) acted as a long-time effector by suppressing IL-17 and IL-
22 after withdrawal in the treatment of psoriasis, indicating that IL-22
blockers might be effective in both active and maintenance phases
(231). Surprisingly, clinical trials of anti-IL-22 monoclonal antibodies
(mAb), ILV-094 (NCT00563524) and ILV-095 (NCT01010542), are
discontinued because of no efficacy in psoriasis patients with PASI ≥
11 and PGA ≥ 3 in active phases (Table 1). The negative results of
both trials might be due to that IL-22 acts on keratinocytes and
induces abnormal proliferation and differentiation of the epidermis
rather than inflammation. Notably, after years of treatment with both
infliximab and ustekinumab, IL-22-expressing CD4+ T cells-
maintained secretion of IL-22 after stimulation in clinically-healed-
lesions (248). Thus, targeting IL-22 might be used as a maintenance
treatment to avoid psoriasis relapse. In some cases, patients do not
respond to common biologics. For example, Fania reported that three
psoriasis patients developed psoriasiform skin lesions with augmented
expression of IL-22 after receiving adalimumab (249). Megna also
discovered increased levels of IL-22 in psoriasis patients who switched
to eczematous drug eruption after treatment of anti-IL-17 biologics
(250). Thus, combined therapies of anti-TNF-a (or anti-IL-23/IL-17)
and anti-IL-22 intervention might be effective in anti-TNF-a (or anti-
IL-23/IL-17)-resistant psoriasis individuals. Another reason for the
failure of anti-IL-22 therapy in psoriasis might be the overlapping
activities of IL-22, IL-20 and IL-24 (218). Thus, inhibiting IL-22 or IL-
20 (251) alone might not be enough for a strong clinical response.
Targeting IL-22R might have better clinical improvements than IL-22
neutralization since it also inhibits IL-20 and IL-24 (Table 1).
Moreover, Michiels proposed a specific noncanonical STAT3
activation targeting by IL-22R1 Y-independent pathways, which not
Frontiers in Immunology | www.frontiersin.org 9
only relieved psoriatic skin but also protected IL-22-dependent barrier
defense function at mucosal sites (252). However, lower serum IL-22
was detected in psoriasis patients with metabolic syndromes than that
in patients without systemic complications (253). As IL-22 proved
beneficial effects in metabolic syndromes (254, 255), anti-IL-22
treatment might deteriorate metabolic changes in psoriasis patients.

Different from the negative results of anti-IL-22 in psoriasis
trials, ILV-094 seems attractive in AD therapeutics, as it
improved SCORAD and neutrophils infiltration of asthma in
severe AD patients in a preliminary study (243, 244) (Table 1).
Dupilumab could inhibit IL-4, IL-13 and IL-22 simultaneously
(256). However, some refractory AD patients respond poorly to
dupilumab. Interestingly, a mathematical model revealed that
simultaneous inhibition of IL-13 and IL-22 would be a promising
intervention for them (257). Conversely, recombinant IL-22, F-
652 or UTTR1147A, might strengthen its protective role in IL-
22-deficient diseases such as GVHD and ulcer (Table 1).

In summary, Th22 cells represent a novel Th cell subset.
However, their differentiation and regulation mechanisms remain
to be fully elucidated. Emerging evidences have suggested that Th22
cells and IL-22 can play either protective or pathogenetic roles in
various skin disorders. The biological roles of IL-22 depend on the
local environment and disease setting contexts. Further studies are
required to elucidate the mechanisms of Th22 cells in the
pathogenesis of different diseases, as well as explore therapeutics
targeting the Th22/IL-22 signaling pathway in skin disorders. Non-
invasive transdermal delivery systems, such as microneedles with
cell-penetrating peptides (258), might expand our application of
biologics in the future.
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