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Performance of high resolution 
(400 m) PM2.5 forecast over Delhi
Chinmay Jena1*, Sachin D. Ghude1*, Rajesh Kumar2, Sreyashi Debnath1,3, 
Gaurav Govardhan1,7, Vijay K. Soni4, Santosh H. Kulkarni5, G. Beig1, Ravi S. Nanjundiah1,6 & 
M. Rajeevan8

This study reports a very high-resolution (400 m grid-spacing) operational air quality forecasting 
system developed to alert residents of Delhi and the National Capital Region (NCR) about forthcoming 
acute air pollution episodes. Such a high-resolution system has been developed for the first time 
and is evaluated during October 2019-February 2020. The system assimilates near real-time aerosol 
observations from in situ and space-borne platform in the Weather Research and Forecasting model 
coupled with Chemistry (WRF-Chem) to produce a 72-h forecast daily in a dynamical downscaling 
framework. The assimilation of aerosol optical depth and surface PM2.5 observations improves 
the initial condition for surface PM2.5 by about 45 µg/m3 (about 50%).The accuracy of the forecast 
degrades slightly with lead time as mean bias increase from + 2.5 µg/m3 on the first day to − 17 µg/m3 
on the third day of forecast. Our forecast is found to be very skillful both for PM2.5 concentration and 
unhealthy/ very unhealthy air quality index categories, and has been helping the decision-makers in 
Delhi make informed decisions.

Delhi, being the second most populated megacity in the world, faces a range of environmental challenges includ-
ing adverse air pollution episodes particularly during the winter season1–5. Exposure of large fraction of the 
population to poor air quality, pose a higher health risk6–10. In recent years, particulate matter of aerodynamic 
diameter smaller than 2.5 µm (PM2.5) has dominated severe air pollution episodes, and been severely affecting 
daily life in Delhi11,12. Thus, managing air quality with practical mitigation options has emerged as one of the 
top priorities of the Government of India (GOI) without compromising the current and projected growth in the 
overall economy, infrastructure development, industries, and service sectors.

The GOI is committed to enforce policy-driven measures to reduce the pollutant emissions. The National 
Clean Air Program (NCAP) initiated by the GOI targets significant reduction of surface PM2.5 concentrations 
by the year 2024. A Graded Response Action Plan (GRAP) has been designed for the National Capital Region 
(NCR) that allows pollution control authorities to reduce the magnitude of predicted air pollution for differ-
ent air quality index (AQI) categories by imposing temporary control measures. Activation of different GRAP 
measures requires information of forthcoming extreme air pollution episodes so that effective temporary control 
measures can be identified early and implemented in advance. Therefore, GOI mandate required the Ministry of 
Earth Science (MoES) to develop an operational high-resolution air quality forecasting system for the NCR. In 
response to this mandate, MoES institutions namely the, Indian Institute of Tropical Meteorology (IITM) and 
India Meteorology Department (IMD), has developed a first very high-resolution (400 m) chemical weather 
forecasting capability in mutual collaboration with U.S. National Centre for Atmospheric Research (NCAR). The 
initial capability was developed for Delhi during 2018 based on WRF-Chem model at horizontal grid-spacing 
of 10 km and 2 km13. The first version of the forecasting system assimilated the Moderate Resolution Imaging 
Spectro-radiometer (MODIS) aerosol optical depth (AOD) retrievals and significantly improved air quality 
decision-making activity by reducing biases in 72-h PM2.5 forecasts to a greater extent14. However, that system 
struggled to predict the absolute PM2.5 levels during very acute air pollution episodes characterized by surface 
PM2.5 mass concentrations greater than 350 µg/m313,14.

To further enhance the air quality decision-making activity by accurately predicting the PM2.5 concentrations 
during acute air pollution episodes, the modelling framework was further extended to produce PM2.5 forecast at 
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much higher grid-spacing of 400 m. This new framework is envisaged to make the neighborhood scale air-quality 
management initiatives (e.g. GRAP) more effective. The finer grid-spacing would also represent the emission-
sources in a much robust and realistic manner. To the best of our knowledge, none of the operational centres 
are currently providing short-term operational air quality forecasts at a spatial scale of 400 × 400 m2 covering 
approximately 50 km2 areas. This is the first attempt to develop and evaluate the performance of PM2.5 forecasts 
in a highly polluted environment using integration of dynamical models with chemical data assimilation. This 
high-resolution forecasting system consists of a newly developed high-resolution (400 m grid-spacing) emission 
inventory for Delhi, assimilation of MODIS AOD and in-situ observations of surface PM2.5 concentrations from 
a dense air quality monitoring network in Delhi to improve regional and local initialization of aerosols, ingests 
near real-time fire emissions, and applies a high-resolution dynamical downscaling into the WRF-Chem model. 
The PM2.5 forecasts at 400 m grid-spacing were made operational in October 2019.

Here, we provide a brief description of this newly developed operational high-resolution forecasting system, 
highlight the impact of data assimilation, and evaluate the quality of the PM2.5 operational forecast for the latest 
winter season in Delhi. We show that the forecast falls within the expected uncertainties and, is therefore suitable 
for issuing timely warnings to the residents of Delhi and NCR.

Data and methods
The architecture of the air quality early warning system is shown in Fig. S1. The major components of the sys-
tem are (a) numerical air quality predication model WRF-Chem, (b) Gridpoint Statistical Interpolation (GSI) 
based three-dimensional variational (3D-var) data assimilation system, (c) observational data and emission 
pre-processers, (d) WRF-Chem output post-processor, and (e) a public dissemination system (https​://ews.tropm​
et.res.in/). The system starts every day at 5:30 pm Indian Standard Time (IST, which is 5:30 h ahead of the UTC), 
finishes the forecasts and post-processing overnight and disseminates the air quality forecast products in the 
morning for the next 72 h.

The core of the forecasting system consists of the regional WRF-Chem Version 3.9.1 configured in a three 
domain set-up with the outer domain covering northern part of the Indian subcontinent at a horizontal grid-
spacing of 10 km × 10 km, the second domain covering the NCR and neighboring states at 2 km × 2 km grid-
spacing, and the innermost domain covering Delhi at 400 m × 400 m grid-spacing (Fig. S2). The meteorological 
initial and boundary conditions are based on the analysis and forecast product (Ensemble-Kalman filtering) 
produced by the IITM-Global Forecasting System (IITM-GFS, T1534) spectral model at 12.5 km grid spacing 
available every three hours. The outermost domain (D1) is provided with the six-hourly chemical boundary 
conditions from the Model for Ozone and related Chemical Tracers version 4 (MOZART-4) 10-year clima-
tology. However, the chemistry output from the outer domain (D1) is dynamically used to provide chemical 
boundary conditions for the first inner domain (D2) every three-hour. Similarly, the output from the domain 
D2 is dynamically used to provide boundary conditions for the final 400 m domain (D3). The physical and 
chemical parameterizations used in the model are listed in Supplementary Table ST1. We use MOZART-4 gas-
phase chemistry linked to Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol scheme 
(MOZCART) to represent gas-phase chemistry and aerosol processes in our system. In the GOCART scheme, 
aerosol species namely nitrates and secondary organic aerosols are missing and are a source of uncertainty in 
the estimated PM2.5. Both MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) and GOCART 
have been found to underestimate the observed wintertime PM2.5 mass concentrations in Delhi with MOSAIC 
showing superior performance15. However, the computationally efficiency of GOCART compared to MOSAIC 
combined with the positive impact of chemical data assimilation motivated us to use GOCART in operations.

We used three-dimensional variational (3D-VAR) method of the community Grid-point Statistical Interpola-
tion (GSI) system Version 3.5. The 3D-VAR scheme blends the information from the satellite AOD and surface 
PM2.5 observations, and iteratively minimizes a cost function J that depends on observation and background 
error covariance matrices as defined in Eq. (1).

 where x represents the state vector that contains aerosol chemical composition and other meteorological vari-
ables required for computing AOD, xb represents the “a priori” information about x and is referred to as back-
ground state, B is the background error covariance (BEC) matrix, H is the forward operator that transforms 
WRF-Chem aerosol chemical composition to AOD following Liu et al.16, y represents the MODIS AOD retriev-
als, and R is the observation error covariance matrix. BEC statistical parameters are calculated using two 24-h 
WRF-Chem forecast initialized at 00 z with different meteorological conditions, anthropogenic emissions, and 
biomass burning emissions to account for the uncertainties in meteorology, anthropogenic, and biomass burning 
emissions17. Observations from MODIS overpasses at 10:30 and 1:30 Local Time (L.T.) at 10 km grid spacing 
and hourly mean surface PM2.5 observations from the 37 monitoring stations (Fig. S3) across Delhi are collected 
at the initial time (0900 UTC) of each forecast cycle. GOCART has sixteen aerosol species and all of them are 
adjusted in response to AOD assimilation whereas only the species contributing to PM2.5 are adjusted in response 
to surface PM2.5 assimilation.

Parameters for modeling the background error covariance (BEC) matrix are estimated using the National 
Meteorological Center (NMC)18 method of a community Generalized Background Error (GEN_BE). The NMC 
method uses the difference between two forecasts valid at the same time to model the BEC matrix. Here, two 24-h 
WRF-Chem forecasts initialized at 00 Z with different meteorological, anthropogenic emissions, and biomass 
burning emission inputs are generated every day from January to December, 2018. Different anthropogenic 
and biomass burning emissions are used to incorporate uncertainties in anthropogenic and biomass burning 
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emissions in the BEC. Meteorological uncertainties are represented by driving the WRF-Chem forecasts with 
the Global Forecast System (GFS) and Era-Interim reanalysis datasets. We assume 100% uncertainties in both 
the anthropogenic and biomass burning emissions following inter-comparison of different anthropogenic19 and 
biomass burning20 emission inventories. A total of 30/31(28 in February) pairs of forecasts are generated at 09 
UTC (corresponding to MODIS Aqua overpass time) every month and supplied to the GEN_BE for calculation 
of the BEC statistical parameters in three stages. The first stage reads these paired WRF-Chem forecasts and 
stores the difference between the two forecasts in a binary file per day in every month. The second stage removes 
the temporal mean from the differences generated in stage 1 and stores the perturbations around the mean in 
another set of binary files for each day. The third stage uses the perturbation files from the second stage to cal-
culate the statistical parameters, i.e., variance, horizontal length scale, and vertical length scales which are then 
used to model the background error in GSI. The variance determines how much of the innovation (difference 
between the model and observations) becomes the analysis increment whereas horizontal and vertical length 
scales determine how the analysis increment influences the neighboring grids horizontally and vertically. Back-
ground error variances for all the species are the highest in the boundary layer, i.e., below 3 km which reflects 
larger uncertainties in aerosols near the surface except for sea-salt for which standard deviation values similar 
to boundary layer are also seen in the free troposphere. The variance is the highest for OC2. The horizontal and 
vertical length scales are within 1–3 grid points.

Since GOCART is a bulk aerosol model and does not simulate size distribution of aerosols, the forward 
operator H, i.e., Community Radiative Transfer Model (CRTM) assumes that each aerosol chemical compo-
nent follows a log-normal size distribution. The effective radii are assumed to be 0.242 µm for sulfate, 0.087 µm 
for organic carbon, and 0.036 µm for black carbon in dry air with the standard deviation of 2.03 µm, 2.2 µm, 
and 2.0 µm, respectively. The CRTM uses the same effective radii for dust and sea-salt aerosols that are used in 
GOCART, i.e., 0.3 µm, 1.0 µm, 3.25 µm, and 7.5 µm for the four bins of sea-salt aerosols and 0.73 µm, 1.4 µm, 
2.4 µm, 4.5 µm, and 8.0 µm for five bins of the dust aerosols. The standard deviation of sea-salt and dust aerosols 
are assumed to be 2.03 µm and 2.0 µm, respectively. The hygroscopic growth of hydrophilic aerosols (i.e., sulfate, 
sea-salt, hydrophilic components of organic carbon and black carbon) is also calculated as a function of relative 
humidity from the pre-computed look-up tables. Refractive indices for different dry aerosol components are 
based on the Optical Properties of Aerosols and Clouds (OPAC) database21 and that of water is based on Hale 
& Querry et al.22. After calculating size distribution and refractive indices, Mie theory is employed to calculate 
mass extinction coefficient which is then multiplied with aerosol columnar mass concentrations to obtain AOD. 
The model AOD is compared with MODIS AOD at the satellite retrieval location and the difference between 
model and MODIS AOD is minimized using a preconditioned conjugate gradient method. The changes in AOD 
due to assimilation are translated back to the aerosol chemical composition using the adjoint of the forward 
operator which is described along with mass extinction coefficients at 550 nm, and density of different aerosol 
types in Sect. 3.4 of Liu et al.16.

We assimilate the near-real time MODIS AOD retrievals in WRF-Chem that are available 3 h after the satellite 
overpass. The observation errors are specified as (0.03 + 0.05*AOD) and (0.05 + 0.15*AOD) over ocean and land, 
respectively. The error in surface PM2.5 observation is specified as 1.5 µg/m3. MODIS AOD from both Terra and 
Aqua satellites as well as surface PM2.5 observation is assumed to be available for assimilation at 09 UTC. MODIS 
near real-time retrievals are available with a latency of 3 h, which means that they become available at about 
16:30 IST. Downloading and processing of the near-real time MODIS AOD retrieval takes about 15 min in the 
operational forecasting set-up. MODIS AOD retrievals are not available during cloudy conditions and our system 
relies on the in situ PM2.5 observations for improving the initial conditions during those situations. However, this 
problem is more prevalent during the monsoon season but not as much during winter which is the focus here.

Every day, the chemical fields are initialized from the previous day’s WRF-Chem forecast, aerosol fields are 
updated through assimilation, and meteorology is refreshed using the IITM-GFS forecast. The first version 
of our forecasting system used the EDGAR-HTAP emission inventory to represent anthropogenic emissions. 
We have developed two more anthropogenic emissions to test the sensitivity of our forecasting setup to input 
anthropogenic emissions. First, we scaled 2010 EDGAR-HTAP emissions for the outer (D1) and the first inner 
(D2) domains to 2019 using scaling factors given in Venkataraman et al.23. For Delhi itself, i.e., the innermost 
domain (D3), we used 400 m High-resolution Delhi Emission Inventory (HrDEI) for the year 2018 developed 
under the MoES (Fig. S4) System of Air Quality and Weather Forecasting and Research (SAFAR) project (http://
safar​.tropm​et.res.in/sourc​e.pdf). For D1 and D2, the original 400 m emissions were processed using a mass-
conserving approach and mapped to match the 10 km and 2 km grid spacing so that the total mass emitted is 
same before and after re-grinding. We adopted diurnal variation in emissions from a recent study by Govardhan 
et al.24. The Model of Emissions of Gases and Aerosols from Nature (MEGAN)25 is used to calculate biogenic 
emissions online within the model. Dust emissions are based on the online Atmospheric and Environmental 
Research/Air Force Weather Agency (AER/AFWA) scheme26. Our recent study shows that post-monsoon bio-
mass burning emission significantly affects the air quality in Delhi26. Therefore, an accurate representation of 
fire emissions is essential for the accuracy of the forecast. Most of the near real-time biomass burning emission 
estimates are available with a time lag of one day and thus operational air quality forecasts are forced to assume 
persistent fire emissions over the forecast cycle. Here, we have developed a pre-processor based on the high-
resolution Fire INventory from NCAR (FINN)20 to derive fire emissions for the forecast day instead of using the 
estimates from a previous day. First, we developed a historical daily gridded (at the model grid spacing) data set 
of fire emissions from 2002 to 2018. Second, daily fire location information is obtained from the near real-time 
MODIS-C6 active fire data from FIRMS (https​://firms​.modap​s.eosdi​s.nasa.gov/). Finally, fire activity obtained 
in the second step is compared with the fire activity in the historical dataset and fire emissions corresponding to 
the best match between present-day and past fire activity are used in each grid cell.To include the fire emissions 
for the next two days, we calculated the historical fire frequency for each day and for each model grid based on 

http://safar.tropmet.res.in/source.pdf
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a 10-year gridded data set. We include the fire emissions only in those grid cells where confidence level of fire 
count is more than 50%.

Quality controlled PM2.5 observations are obtained in near real-time from the 37 air quality monitoring sta-
tions operated by the Central Pollution Control Board (CPCB), Delhi Pollution Control Committee (DPCC), 
and the IITM. Details about the calibration of the instruments and quality controlled procedure can be seen here 
https​://cpcb.nic.in/quali​ty-assur​ance-quali​ty-contr​ol/. In addition to the automated CPCB quality control, we 
apply additional filters to remove spurious observations by rejecting, PM2.5 measurements above 1500 µg/m3, 
and those corresponding to instrument malfunction14. The details of these monitoring locations are given in the 
supplementary material (Table ST3), and the geographical locations are shown in Fig. S3. A variety of widely used 
statistical evaluation metrics such as mean bias (MB), Pearson’s correlation coefficient (r), normalized mean bias 
(NMB), normalized mean fractional error (NMFE)27,28 are used to evaluate the performance of PM2.5 forecasts.

Results
Influence of assimilation and high‑resolution emissions on PM2.5 forecast.  To understand how 
much the assimilation of surface PM2.5 and satellite AOD observations changes the WRF-Chem PM2.5 at the 
initialization time every day, modeled surface PM2.5 concentrations averaged at all the stations before and after 
assimilation are compared with the observations at 09:00 UTC (Fig. 1). Before assimilation, the model signifi-
cantly underestimates the observed PM2.5 mass concentrations and assimilation pushes the initial PM2.5 con-
centrations in the model very close to the observations. The average observed PM2.5 is about 133 ± 88 µg/m3, 
whereas simulated PM2.5 concentrations before and after assimilation are estimated as 90 ± 36  µg/m3 (mean 
bias = − 32%) and 135 ± 83 µg/m3 (mean bias =  + 1%), respectively. This indicates that assimilation improves the 
initial condition for PM2.5 by ~ 45 µg/m3 (about 50%).

We performed emission sensitivity simulations by keeping EDGAR emissions for the entire model domain 
and then replacing the Delhi region with high-resolution Delhi emission inventory (HrDEI). We find that PM2.5 
mass concentration simulated by the EDGAR-HTAP only emissions largely under-predicted (bias = − 52%) 
the observed PM2.5 mass concentration in Delhi, whereas the original HrDEI 400 m resolution inventory over-
predicted the observations by 36% during the winter season (Fig. S5). An additional simulation in which HrDEI 
emissions are reduced by 40% showed better agreement with observations (bias = 3%). Therefore, in the forecast-
ing setup, we choose to reduce the HrDEI emissions by 40% over the Delhi region.

We analyze the effects of inclusion of such high-resolution emissions on the simulated PM2.5 concentrations by 
comparing the simulated PM2.5 concentrations with the observations from three sensitivity simulations (Fig. S6). 
These sensitivity simulations are designed to delineate the relative benefits of finer grid-spacing and the improved 
emission inventory in improving the PM2.5 forecasts. The first simulation uses EDGAR anthropogenic emissions 
in D1 (green line, Fig. S6); the second simulation uses HrDEI emissions mapped in D1 (blue line, Fig. S6); and 
the third simulation is performed with the new model set-up with HrDEI emissions at 400 m grid-spacing in 
D3 (red line, Fig. S6). All the three simulations capture the day-to-day variability in the observed PM2.5 mass 
concentrations very well but the first simulations with original EDGAR emissions fail to capture the observed 
peaks in PM2.5 concentrations. Upon just switching from the EDGAR emissions to the HrDEI emissions upscaled 
from 400 m to 10 km grid spacing, the model captured all the observed peaks in PM2.5 concentrations particularly 
after 17 Nov. Switching the grid-spacing from 10 km to 400 m, i.e., the third simulation does not improve the 
model performance further. The performance statistics for these three sensitivity simulations for hourly and daily 

Figure 1.   Averaged surface PM2.5 simulated by the model before (red) and after (green) assimilation at 0900 
UTC assimilation cycle and its comparison with observed mean PM2.5 over Delhi during 21 October 2019 to 01 
February 2020. The model output is averaged over the observational locations across Delhi.

https://cpcb.nic.in/quality-assurance-quality-control/
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mean of the simulated PM2.5 mass concentration for the first day is evaluated by examining the mean bias (MB), 
Pearson’s correlation coefficient (r), normalized mean fractional bias (NMFB) and normalized mean fractional 
error (NMFE) (Table ST2). We find that the PM2.5 mass concentration simulated by the model employing EDGAR 
emissions largely under-predicts the observed PM2.5 mass concentration in Delhi as indicated by higher values 
of MB, NMFB, and NMFE. On the other hand, the corresponding values for the model simulations involving 
HrDEI emissions are substantially better. These new simulations highlight that development of a 400 m resolu-
tion emission inventory is the primary driver of the improvement in air quality forecast rather than the model 
resolution during wintertime in Delhi. This suggests that 10 km grid spacing is resolving the processes controlling 
PM2.5 during this period in Delhi but similar analysis must be performed for other seasons and multiple years 
to determine if air quality forecasts at 10 km grid spacing driven by anthropogenic emissions upscaled from a 
400 m emission inventory are of the same value as we found for this season.

Performance of the PM2.5 and Air Quality Index (AQI) forecast.  The air quality forecast verification 
period (21 October 2019 to 02 February 2020) selected here was dominated by the large-scale open biomass 
burning in October and first half of November followed by wintertime stable meteorological conditions which 
are conducive for build-up of PM2.5 pollution in Delhi. An example of the spatial distribution of average PM2.5 
concentration from day 1 forecast is shown in Fig. 2a. As expected, D3 resolves emission sources in Delhi much 
better than the 10 km and 2 km domains (Fig. S7). At finer (400 m) grid-spacing, PM2.5 hotspots associated 
with the industrial, dense residential, major traffic junctions, and high-density vehicular traffic roads can be 
clearly distinguished (Fig. 2a). Daily air quality forecasts (Fig. 2b) reproduce the daily variation of mean obser-
vations quite well in the NCR. However, model performance at individual monitoring stations (supplementary 
Table ST3) shows that the NMB varies from − 46% to 85% among the 37 stations located across the NCR. Out of 
37 stations, 24 stations (65% of stations) show NMB within ± 30%, and 5 stations (13% of stations) show NMB 
exceeding 50%.

To assess the ability of the model in capturing NCR scale variability in PM2.5 concentrations, we compared the 
hourly time series of observed and modeled PM2.5 averaged at all the observation sites. The comparison based 
on the first day of forecast from D3 is depicted in Fig. 3a. The forecast captures the temporal variability in PM2.5 
observation quite well on most of the days (Fig. 3a). On two occasions, 2–4 November and 12–16 November, 
the model failed to capture extremely high PM2.5 values observed in the NCR. However, very-poor AQI category 
pollution events observed on 20–22 November, and very-poor to severe AQI category events observed on 5–12 
December, 19–22 December, 19–21 December, 29 December 2019–5 January 2020 were captured very well by 
our forecasting system. The sudden drop in PM2.5 levels (e.g., on 14 December, 7 January, and 24 January, etc.) 
followed by the very-poor to severe AQI category events were also captured very well by the model. The temporal 
variation in observed PM2.5 over Delhi are driven mainly by the frequent large scale open biomass burning29 and 
wintertime synoptic-scale meteorological condition in combination with the large anthropogenic emissions in 
Delhi itself. The ability of the model to capture this variability indicates that the forecast system has excellent 
skills in issuing PM2.5 forecasts associated with urban pollution and regional-scale events. The seasonal-mean 
diurnal variations of the observed and modeled PM2.5 mass concentration are compared in Fig. 3b. The model 
captures the bi-modal behavior of the observed PM2.5 mass concentration arising mainly from the interactions 
between increased emissions during rush-hours of the day and the atmospheric boundary-layer processes30. 
Even on day 3 of the forecast (green line, Fig. 3b), the model captures hourly variations in PM2.5 concentrations 
which highlights the usefulness of our air-quality forecast on the 72-h horizon frame.

The performance statistics for hourly mean PM2.5 forecast for the first, second and third day is evaluated by 
examining MB, RMSE, r, NMFB, and NMFE (Table 1). Following Morris et al.31, we have adopted three lev-
els of performance criteria for fractional bias and error to evaluate the forecast performance (Supplementary 

Figure 2.   (a) Spatial distribution of averaged PM2.5 concentrations at 400 m horizontal grid-spacing (from day 
1 forecast) overlaid with mean PM2.5 observed at different monitoring stations across Delhi during 21 October 
2019 to 01 February 2020, (b) Comparisons between daily mean PM2.5 forecast (red) and daily mean PM2.5 
observations (blue) over Delhi during 21 October 2019 to 01 February 2020 (vertical bar shows the standard 
deviation).



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4104  | https://doi.org/10.1038/s41598-021-83467-8

www.nature.com/scientificreports/

Table ST4). The MB statistics shows that the model slightly overestimates the observed PM2.5 concentrations 
by 2.5 µg/m3, but changes behavior to underestimation by about − 9 µg/m3and − 17 µg/m3on the second and 
third day of the forecast, respectively. Table 1 reveals that PM2.5 forecast performed close to excellent criteria 
on day 1 as the NMFB and NMFE are within 1.3% and 36.3%, respectively. The model performance is good on 
day 2 and day 3 with fairly low NMFB (< ± 10%), and NMFE is within ± 40%. Performance statistics on daily 
mean PM2.5 time series show excellent performance on all the three days of forecast since NMFB and NMFE 
were within ± 10% and 29%, respectively. The correlation coefficient (r) is around 0.5 for the hourly forecast 
and 0.6 for the daily mean forecast. It appears from Fig. S8 that there is a considerable scatter between observed 
and predicted PM2.5. The forecasts generally show a tendency to under predict the higher values and slightly 
over predict the lower values, consistent with the other studies32,33. Efforts are underway to investigate why this 
underestimation in higher values occurs and whether it is the result of errors in the meteorological, boundary 
condition, emission, or chemical factors.

The main objective of developing this high-resolution forecasting system is to provide timely air quality alerts 
to the residents of NCR, particularly for the Poor to Severe AQI category. As per the CPCB guidelines, AQI 
category is classified as poor for the AQI range 201–300, very-poor for the AQI range 301–400, and severe for 
the AQI range 401 and above. Therefore, it is essential to evaluate the applicability of the system to simulate the 
correct AQI values, as these are disseminated to the general public rather than the actual PM2.5 mass concentra-
tions. Therefore, hourly AQI values for PM2.5 based on 24-h PM2.5 standard was calculated based on National 
Ambient Air Quality Standard (NAAQS), and break-point concentration suggested in the CPCB notification 
(see Supplementary Table ST5). Table 1 shows that the magnitude of MB for overall AQI values (0–500) was 
slightly higher (about 22 units) on the first day of forecast compared to MB observed on the second day (10 
unit) and third day (< 1 unit). However, following the Morris et al.31 criteria, the AQI forecast on all three days 
showed “excellent” performance, since NMFB and NMFE are within ± 6% and 18%, respectively. The statistical 
performance (Supplementary Table ST6) indicates that the forecast over-predicts the poor air quality AQI cat-
egory by about 22% on day one and by about 19% and 16% on days two and three, respectively. AQI forecast on 
all the three days in the poor AQI category performed good, since NMFB and NMFE are within ± 22% and 22%, 

Figure 3.   (a) Comparisons between hourly mean PM2.5 forecast (red) and hourly mean PM2.5 observations 
(blue) on day one forecast at 400 m horizontal grid spacing over Delhi during 21 October 2019 to 01 February 
2020 (vertical bar shows the standard deviation) and (b) diurnal plots of hourly mean PM2.5 observations and 
hourly mean PM2.5 forecast on day one (red), day two (blue) and day three (green).



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4104  | https://doi.org/10.1038/s41598-021-83467-8

www.nature.com/scientificreports/

respectively. For the very-poor AQI category, the AQI forecast performed excellent on all three days (NMFB < 5% 
and NMFE < 9%). In comparison, the forecasting system under-predicts the severe AQI category by about 14% 
on day one and by about 17% and 21% on days two and three, respectively. On the first day, the AQI forecast for 
the severe AQI category performed excellently (NMFB < 14% and NMFE < 17%), while it performed reasonably 
well on days two and three (NMFB < 21% and NMFE < 21%). Overall, the forecast falls within the expected 
uncertainties and, therefore, is suitable to help decision-makers make informed decisions.

Skill score for categorical AQI forecast.  To assess the skill of real-time forecast, i.e., whether the forecast 
will fall in unhealthy (AQI > 201), or very-unhealthy (AQI > 301) or critical category (AQI > 401), false alarm 
rate (FAR), probability of detection (POD) or hit rate, critical success index (CIS) and accuracy, are calculated 
according to Kang et al.34 and Eder et al.33. Supplementary Table ST7 describes the equations used to calculate 
the skill score of the categorical AQI forecast. Table 1 presents the skill score for the unhealthy, very-unhealthy, 
and critical categories of AQI for the winter season. The forecast accuracy for unhealthy category (i.e., forecast 
that correctly predicted the unhealthy or no-unhealthy AQI) is estimated to be > 88% on all the three days. The 
skill score for the POD and CSI is relatively promising with a value greater than ~ 0.9, which indicates that the 
model has good accuracy in predicting the unhealthy air quality conditions with respect to a total number of 
the observed air quality hours. Also note that FAR is quite low (~ 10%) for the unhealthy category, which indi-
cates that the performance of the real-time high-resolution forecast was excellent for both unhealthy category 
and non-unhealthy category of air quality. For the very-unhealthy category, the POD score (> 0.9) is excellent, 
but CSI score is somewhat lower (~ 0.7), and the FAR score is a slightly higher (20–30%) compared to the 
unhealthy category on all three days of forecast. However, the skill scores overall indicate excellent performance 
for predicting air quality in the very-unhealthy category. On the other hand, the skill score shows moderate 
performance for the severe AQI category on all three days. Table 1 indicates that compared to the unhealthy 
and very-unhealthy category, the skill score for POD and CSI is low (< 0.35) on days one and two of forecast 
and further declines on day three. The accuracy of the forecast is about 80%, and the FAR score does not show a 
significant increase compared to the other two categories, which indicates the moderate skill of the forecasting 
system to predict the extremely high pollution events in NCR region. Some of the causes of unsuccessful predic-
tion of accurate extremely high pollution events may include difficulties in simulating processes like boundary 
layer height, synoptic advection, and synoptic-scale conditions and choice of aerosol module parameterization. 
Our future studies will investigate the role of these processes in predicting the extreme PM2.5 pollution events 
in the NCR region.

Table 1.   Performance statistics for mean PM2.5 forecast and skill score for different forecast AQI category over 
Delhi during 21 October 2019 to 01 February 2020.

Statistical performance

State variables Forecast day

400 meter

MB NMFB (%) NMFE (%) r

PM25_hourly

1st day 2.5 1.3 36.3 0.5

2nd day − 8.4 − 4.8 38.1 0.5

3rd day − 16.8 − 9.8 40.5 0.4

PM25_daily

1st day 1.8 1.0 25.6 0.6

2nd day − 8.8 − 5.0 26.7 0.6

3rd day − 17.3 − 10.1 29.5 0.5

PM25_AQI

1st day 21.7 6.5 16.5 0.7

2nd day 10.4 3.1 16.5 0.6

3rd day 0.3 0.1 17.8 0.5

Skill score for AQI

AQI range Forecast Day FAR POD CSI Accuracy

Unhealthy (poor, very-poor, severe)

1st day 0.11 1.00 0.88 0.88

2nd day 0.09 0.99 0.90 0.90

3rd day 0.09 0.98 0.88 0.88

Very unhealthy (very poor, severe)
1st day 0.28 0.98 0.70 0.72

2nd day 0.25 0.94 0.71 0.75

Critical (severe)

3rd day 0.23 0.89 0.70 0.74

1st day 0.35 0.34 0.29 0.82

2nd day 0.15 0.35 0.33 0.85

3rd day 0.25 0.21 0.19 0.82
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Conclusion
This study demonstrates the efficacy of a newly developed very high-resolution operational air quality forecast-
ing system to issue timely warning to the residents of Delhi and NCR about forthcoming air pollution episodes. 
The system applies the WRF-Chem model in a dynamical downscaling framework and assimilates satellite AOD 
and surface PM2.5 observations for improving the initial conditions. Performance of the system is evaluated for 
both surface PM2.5 mass concentration and AQI categories to assist both local forecasters and air quality model 
developers. The assimilation of MODIS AOD and surface PM2.5 data, on an average, improves the initial condi-
tion for PM2.5 about by ~ 45 µg/m3 (~ 50%). Model evaluation shows that our forecasting system is capable of 
issuing reliable forecasts for Delhi during winter season both for PM2.5 concentration and AQI in particular for 
unhealthy and very-unhealthy AQI categories, within the expected uncertainties. On the other hand, verifica-
tion statistics for the severe AQI category show moderate skill and require further improvement in the forecast. 
Although HrDEI emission inventory captures the spatial variability in emissions, it is desirable to have an accu-
rate forecast at every individual station. The model showed moderate performance in capturing the accurate 
spatial distribution of PM2.5 across the NCR and requires further improvement. We recognize that the accuracy 
of the high-resolution emission inventory, choice of aerosol parameterization, chemical mechanism, and bound-
ary layer parameterization will continue to be a challenge to forecast the PM2.5 at individual point monitoring 
locations in this region. Efforts are underway to explore the sensitivity of these parameters to the accuracy of 
location-specific PM2.5 forecast. For the first time, this system has also been used by the environmental pollution 
control authorities to make the decision on imposing/lifting the temporary restriction on construction activi-
ties and regulating the heavy vehicle inflow in Delhi region during the pollution/no-pollution events. This has 
significantly contributed in building-up the trust of the end-users and policy-makers for taking science-based 
well-informed decisions and actions for important public services in India.

Data availability
The 0.1° × 0.1° emission grid maps can be downloaded from the EDGAR website on https​://edgar​.jrc.ec.europ​
a.eu/htap_v2/index​.php?SECUR​E=_123 per year per sector. MODIS AOD retrievals used for assimilation can 
be downloaded from this site (https​://earth​data.nasa.gov/). Observational data on PM2.5 measurements can be 
obtained from CPCB website on https​://app.cpcbc​cr.com/ccr. The model data has been archived at Prithvi (IITM) 
super-computer and can be provided upon request to corresponding author.
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