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Abstract: Ceramifiable ethylene propylene diene monomer (EPDM) composites with fiber network
structures were prepared by using aramid fiber (AF), ammonium polyphosphate (APP), and silicate
glass frits (SGF). The effect of AF on the curing characteristic of the ceramifiable EPDM composites
was studied. The morphology of AF in the composites system was observed by optical microscopy
(OM) and scanning electron microscope (SEM). The effects of the observed AF network structures
on the solvent resistance, mechanical properties, ablative resistance, self-supporting property,
and ceramifiable properties of the composites were investigated. Results suggested that the existence
of the AF network structure improved the vulcanization properties, solvent resistance, thermal
stability, and ablative resistance of the EPDM composites. An excellent self-supporting property of
the EPDM composites was obtained by combining the formation of the AF network and the formation
of crystalline phases at higher temperature (above 600 ◦C). The thermal shrinkage performance of AF
and the increased thermal stability of the EPDM composites improved the ceramifiable properties of
the EPDM composites.
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1. Introduction

Polymeric ablative materials are usually used for insulation and fire prevention in electric power
and propulsion systems [1–3]. Ethylene-propylene-diene monomer (EPDM) represents one of the best
matrices for polymeric ablative materials [4–6]; the thermal stability and electrical insulation of EPDM
is comparable to or higher than that of other rubbers [7]. Therefore, EPDM as a synthetic rubber is
used in construction, electrical insulation, automobile manufacturing, and even propulsion systems
of solid rocket motors [8–11]. However, as a type of thermal protection material, the dripping and
bending behaviors of EPDM composites have been the most serious drawback, which can cause the
composite to lose its thermal protection function and even ignite other flammable materials. Thus, it is
important to develop a novel EPDM composite with self-supporting and anti-dripping properties.

In addition, EPDM composite has been often used in the thermal protection field because of its high
char yield, which increases the ablation resistance and the thermal insulation performance [3,8,10,12].
With the development of aerospace solid propulsion technology, the thermal protection material will
also be mechanically eroded by the action of condensed high speed solid alumina particles produced
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during the combustion of modern aluminized solid rocket motor propellants [13,14]. Thus, this requires
a thermal protection material with higher anti-erosion and ablation resistance properties.

Ceramifiable polymer composites possess the performance features of polymers at room
temperature and of ceramics at high temperatures [15–19]. Bennett and Young [20] reported that for
the glass ceramic containing boron, in which B2O3 can be formed from borates and boric acid at high
temperatures, a glassy protective layer emerged. Novel laponite-armored hollow composite particles
(LHCPs) with a pre-organized “house-of-cards” structure were synthesized by Zhang [21]. It was
revealed that the ceramifiable silicone rubber with laponite platelets as fillers can maintain its shape
and mechanical strength in the range of 500–900 ◦C. The ceramic residues of ceramifiable silicone
rubber can also act as a heat transport barrier that protects the underlying material from incoming heat
flux [22]. In addition, the fire resistance and ablation resistance of the ceramifiable polymer composites
at high temperatures could be further improved by forming crystalline phases. In our previous
work [23,24], a novel ceramifiable ethylene-vinyl acetate (EVA) composite and a novel ceramifiable
silicon rubber composite were successfully prepared. A novel ceramization mechanism of liquid-solid
transition was also proposed. However, the formation of inorganic crystalline phases tends to happen
at high temperatures (over 600 ◦C). Before the formation of crystalline phases, polymer composites
are often too weak to keep their original shape. A cross-linking modification was often considered
to enhance the thermal stability of the composites [25,26], and ceramifiable EVA composites with
improved self-supporting and ceramifiable properties were obtained using a cross-linking strategy [27].
However, there are still dripping and bending behaviors during the ablation process for cross-linked
ceramifiable EPDM composites.

Aramid fibers (AF) were often used as a low-density reinforcement due to their high thermal
capacity, high chemical stability, high fire resistance, and high ablation resistance [28–31]. Qin et al. [32]
prepared a type of ceramifiable EPDM rubber composites with EPDM, AF, flux, and other fillers and
focused on the investigation of the effect of different fluxes on the formation of ceramic structure.
Chen et al. [33] found that AF could improve the ablative resistance of EPDM vulcanizate effectively
compared to basalt fiber and carbon fiber. Maurizio et al. [5,34] prepared a type of EPDM thermal
protective material for a solid rocket motor. They found that AF had a better interfacial compatibility
with the EPDM matrix than silicon fiber. In addition, AF formed a carbon framework at high
temperatures, which improved the ablative resistance of the composite. Li et al. [35] studied the
ablation and erosion characteristics of EPDM composites under realistic solid rocket motor operating
conditions. They found that the combined use of silica and AF in EPDM composites can improve
the heat-shielding performance of the char layer. In this work, in order to significantly improve the
thermal stability of the ceramifiable EPDM composite before the formation of crystalline phases at
high temperature, a novel ceramifiable EPDM composite was prepared by adding AF, ammonium
polyphosphate (APP), and silicate glass frits (SGF) as a ceramic precursor. We aimed to improve the
self-supporting performance and optimize the ceramifiable properties of EPDM composite by forming
an AF network structure.

2. Experimental

2.1. Materials

Ethylene propylene diene monomer (EPDM) (DuPont, Nordel IP-4725P) and aramid fiber (AF)
(ALKEX, AF-1000) were supplied by Shanghai Academy of Aerospace Propulsion Technology. Silicate
glass frits (SGF) (500 mesh) was provided by Donggu New Material Co., Ltd. (Foshan, China).
Ammonium polyphosphate (APP) (crystalline form II, polymerization degree exceeds 1500) was
supplied by Zhengzhou Hao Rong Chemical Products Co., Ltd. (Zhengzhou, China). Sulfur (S) was
purchased from Merck, Germany. Dicumyl peroxide (DCP) was supplied by He Fei An Bang Chemical
Co., Ltd. (Hefei, China).
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2.2. Sample Preparation

EPDM and other materials were compounded on a two-roll mill, as listed in Table 1. The rolls
were set to a temperature of 50 ◦C. EPDM was first mixed with AF, and then the SGF and APP were
added. Finally, the remaining additives (DCP and S) were added. The total mixing time was 15 min.
The vulcanization parameters, curing time (t90), and maximum (MH) and minimum (ML) torque were
determined using the Dynamic Moving Die Rheometer (MDR 2000, Wuxi Liyuan Electronic & Chemical
Equipment Co., Ltd., Wuxi, China). For characterization of the ceramifiable EPDM composites, sheets
with thicknesses of 2 and 10 mm were cured in a compression mold at a temperature of 180 ◦C with a
pressure of 10 MPa for 15 min.

Table 1. Formulations of ceramifiable EPDM composites (g).

Sample EPDM SGF APP AF DCP S

EPDM/AF0 70 85 45 0 2.10 0.35
EPDM/AF5 70 85 45 3.5 2.10 0.35
EPDM/AF10 70 85 45 7 2.10 0.35
EPDM/AF15 70 85 45 10.5 2.10 0.35

2.3. Characterization

The microstructure of the cured ceramifiable EPDM composites and the distribution of the AF in
the system were observed using a metallographic microscope (Axio Observer A1m, Carl Zeiss Jena
Company, Jena, Germany).

Samples with the dimensions of 20 mm × 20 mm × 2 mm were immersed in 40 mL of
tetrachloromethane solution at 25 ◦C for 12 h. The liquid absorbency (A) was calculated as follows
with Equation (1):

A = (mt − m0)/m0 × 100% (1)

where A is the liquid absorbency, and m0 and mt are the weight of the dry sample and swollen sample,
respectively. In addition, the dimension of the sample before and after swelling was also recorded.

Tear tests were carried out using a universal testing machine (CMT 5254, Shenzhen SANS Testing
Machine Co., Ltd., Shenzhen, China), under a stable rate of 100 mm/min, according to the GB/T529-2008
standard. The test results were the average of at least five specimens.

All samples (125 mm × 13 mm × 2 mm) were measured using the vertical burning test
instrument (CZF-3) (Nanjing Jiangning analytical instrument factory, Nanjing, China) according
to the GB/T10707-2008 standard.

The self-supporting property of the ceramifiable EPDM composites was tested by measuring the
bending angles of the composites after firing at different temperatures for 30 min in a muffle furnace.
The test method is as follows: (1) firstly, the sample (50 mm × 5 mm × 2 mm) was placed on a refractory
brick. Moreover, the long axis of the sample was perpendicular to the edge of the brick, and 20% of the
length of the sample extended from the edge of the brick; (2) then, all samples were fired at 600, 700,
800, and 900 ◦C; (3) finally, the bending angle of the residue to its original position was obtained [24].

The linear ablation rate test under a oxyacetylene torch was conducted following the GJB323A-96
standard. All specimens were vertically subjected to the flame gun with a heat flux of 4110.0 KW/m2.
Gas pressures of O2 and C2H2 were 0.4 and 0.095 MPa, respectively, and the gas fluxes were 1512
and 1116 L/h, respectively. The oxyacetylene gun tip was 2 mm in diameter, and its distance from the
sample was 10 cm. Linear ablation rates of the specimens were obtained according to Equation (2):

A = (dt − d0)/t (2)

where A is the linear ablation rate; dt and d0 are the thickness of the specimen at the center region
before and after ablation, respectively; and t is the ablation time. Three specimens were tested for each
of the samples.
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The flexural strength of residues was tested on a universal testing machine (UH 6502, Youhong
Measurement and Control Technology Co., Ltd., Shanghai, China) by the three-point bend method at a
stable rate of 0.5 mm/min, according to the GB/T9596-2006 standard.

Linear shrinkage was obtained according to the length of the sample before and after firing at
high temperatures. The linear shrinkage was calculated using Equation (3):

L = (L0 − Ld)/L0 × 100% (3)

where L is linear shrinkage (%); and L0 and Ld are the length of the specimen before and after
firing, respectively.

Thermogravimetric analysis (TGA) was performed on a TA Instruments (STA449C) at a heating
rate of 10 ◦C/min under N2 atmosphere. All composites were heated in a temperature range from room
temperature to 800 ◦C. Moreover, pure AF was heated from room temperature to 700 ◦C.

The surface morphology of the residue and the state of AF in the residue were observed on a
scanning electron microscope (SEM) (JSM-6510, Jeol, Tokyo, Japan) with an acceleration voltage of
15 kV.

The phase composition of the residue powders were characterized through an X-ray diffraction
instrument (Rigaku Corporation, Akishima, Tokyo, Japan) with Cu Kα radiation in the 2θ range of
10◦–80◦ at a scan rate of 10◦/min.

The fourier transform infrared spectroscopy (FTIR) spectra of residue powders were recorded with
a Nicolet spectrometer (NEXUS670, Thermo Fisher, Waltham, MA, USA) with a range of 4000–400 cm−1.

3. Results and Discussion

3.1. Curing Properties of Ceramifiable EPDM Composites

The vulcanization properties of pure EPMD at different temperatures are shown in Figure 1a
and Table 2. It was observed that ceramifiable EPDM has a different optimum cure time at different
temperatures. Under the curing time of 900 s, EPDM was not in the plateau of vulcanizing curves
at 160 and 170 ◦C, while the state of vulcanized EPDM was in the plateau of vulcanizing curves
at the temperature of 180 ◦C. Therefore, the curing condition of 180 ◦C and 900 s was applied for
ceramifiable EPDM composites. Figure 2b and Table 3 show the curing properties of the ceramifiable
EPDM composites. The addition of inorganic fillers (SGF and APP) and AF into the EPDM rubber
increased its minimum torque (ML) and maximum torque (MH), which can be ascribed to the inorganic
reinforcing fillers [36,37]. Table 3 shows that the MH value gradually increased with further addition
of AF, showing again the reinforcing effect of AF. The value of ∆M (MH −ML) increased as the content
of AF increased, indicating that reduced slippage between the polymer chains may occur [38].
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Table 2. Curing characteristics of pure EPDM at different temperatures.

Sample t10 (s) t90 (s) ML/(N·m) MH/(N·m) ∆M/(N·m)

EPDM-160 ◦C 127 689 0.28 0.57 0.29
EPDM-170 ◦C 102 651 0.12 0.59 0.47
EPDM-180 ◦C 70 388 0.11 0.65 0.53

Table 3. Curing characteristics of ceramifiable EPDM composites at 180 ◦C.

Sample t10 (s) t90 (s) ML/(N·m) MH/(N·m) ∆M/(N·m)

EPDM/AF0 84 559 0.39 1.72 1.33
EPDM/AF5 86 586 0.56 2.07 1.51
EPDM/AF10 86 650 0.62 2.23 1.61
EPDM/AF15 87 638 0.62 2.48 1.86

Polymers 2020, 12, x FOR PEER REVIEW 6 of 17 

 

 
Figure 2. Optical microscopy (OM) photographs of EPDM/AF0 (a), EPDM/AF5 (b), EPDM/AF10 (c), 
and EPDM/AF15 (d). 

3.3. Swelling Property of Ceramifiable EPDM Composites 

The swelling test results of the ceramifiable EPDM composites are presented in Figure 3 and 
Table 4. It is clear that the sample of EPDM/AF0 showed the most serious dimensional changes and 
the highest liquid absorbency among all the composites. In tetrachloromethane solvent, the 
percentage of liquid absorbency significantly decreases with increasing AF content from 5–15 wt %. 
It can be observed that there was little change in the dimension of sample EPDM/AF15, as shown in 
Figure 3. It is widely accepted that the swelling is directly related to the cross-linking density of 
molecular chains [39–41], and less solvent uptake or penetration into the blends indicated higher 
cross-linking density. However, there is no cross-linking reaction between EPDM molecular chains 
and AF fiber; the lower solvent uptake or penetration into the blends could be attributed to the AF 
fiber, which restricted the slippage between the polymer chains [41]. Therefore, the solvent cannot 
easily penetrate into the blends. Swelling test results showed that the addition of AF enhanced the 
interaction within the system of the composite. This enhanced interaction within the system of the 
material might be able to improve the self-supporting and anti-dripping properties at high 
temperatures. 

 
Figure 3. Digital photos of ceramifiable EPDM composite before and after swelling in pure 
tetrachloromethane. 

 

Figure 2. Optical microscopy (OM) photographs of EPDM/AF0 (a), EPDM/AF5 (b), EPDM/AF10 (c),
and EPDM/AF15 (d).

3.2. Surface Morphology of Ceramifiable EPDM Composites

In order to observe the effect of AF on the ceramifiable EPDM composites, the morphology of the
ceramifiable EPDM composites for various contents of AF were characterized using optical microscopy
(OM) (Figure 2). The OM micrographs of the surface of EPDM/AF10 and EPDM/AF15 indicate that
the AF was evenly distributed. There were many superfine fibers sticking on the main trunk fiber,
which could promote the formation of a fiber network in ceramifiable EPDM composites.

3.3. Swelling Property of Ceramifiable EPDM Composites

The swelling test results of the ceramifiable EPDM composites are presented in Figure 3 and
Table 4. It is clear that the sample of EPDM/AF0 showed the most serious dimensional changes and the
highest liquid absorbency among all the composites. In tetrachloromethane solvent, the percentage
of liquid absorbency significantly decreases with increasing AF content from 5–15 wt %. It can be
observed that there was little change in the dimension of sample EPDM/AF15, as shown in Figure 3.
It is widely accepted that the swelling is directly related to the cross-linking density of molecular
chains [39–41], and less solvent uptake or penetration into the blends indicated higher cross-linking
density. However, there is no cross-linking reaction between EPDM molecular chains and AF fiber; the
lower solvent uptake or penetration into the blends could be attributed to the AF fiber, which restricted
the slippage between the polymer chains [41]. Therefore, the solvent cannot easily penetrate into
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the blends. Swelling test results showed that the addition of AF enhanced the interaction within the
system of the composite. This enhanced interaction within the system of the material might be able to
improve the self-supporting and anti-dripping properties at high temperatures.
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Table 4. Liquid absorbency and dimensional change of ceramifiable EPDM composites in pure
tetrachloromethane.

Sample Dimensional Change (Length ×Width) (mm) Liquid Absorbency (%)

EPDM/AF0
Before swelling 20.08 × 20.06

252.23After swelling 29.34 × 29.34

EPDM/AF5
Before swelling 20.08 × 20.18

184.25After swelling 21.24 × 24.50

EPDM/AF10
Before swelling 20.04 × 20.14

150.72After swelling 21.10 × 23.20

EPDM/AF15
Before swelling 20.02 × 20.04

132.66After swelling 20.90 × 20.90

3.4. Mechanical Properties of Ceramifiable EPDM Composites

Table 5 shows that there was an obvious increase in tear strength from 14.85 N/m to 22.02 N/m for
ceramifiable EPDM composites when the content of AF increases from 5 to 15 wt %. The improvement
of tear strength was due to the addition of AF for absorbing energy and blocking crack-growth during
the tearing process [42].

Table 5. Mechanical properties of ceramifiable EPDM composites.

Sample Tearing Strength (N/m)

EPDM/AF0 11.53 ± 0.62
EPDM/AF5 14.85 ± 0.70
EPDM/AF10 16.61 ± 0.95
EPDM/AF15 22.02 ± 0.65

3.5. Anti-Dripping and Self-Supporting Properties of Ceramifiable EPDM Composites

It can be seen from Table 6 that samples EPDM/AF0 and EPDM/AF5 had serious melt dripping,
while EPDM/AF10 and EPDM/AF15 did not show any melt dripping. However, no samples achieved
any classification in the UL 94 test, as they did not extinguish within a short time period of the defined
specimen after removing the Bunsen-burner-type ignition source.
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Table 6. Combustion test results of ceramifiable EPDM composites.

Sample Dripping or Not UL94 Rating

EPDM/AF0 Dripping NC
EPDM/AF5 Dripping NC
EPDM/AF10 No dripping NC
EPDM/AF15 No dripping NC

NC: not classified without self-extinguishing.

To characterize the self-supporting property, the bending angles of ceramifiable EPDM composites
firing at high temperatures were tested. As shown in Table 7, when the firing temperature increased
from 700 to 900 ◦C, the bending angles of the residues obtained by firing the same sample increased in
different degrees. Under the same firing condition, the bending angles of the sample decreased with
the increasing content of AF. The occurrence of bending behavior was ascribed to soften and molten
of the materials at high temperatures. Bending deformation of the ceramifiable composites can be
suppressed by forming a crystalline phase at high temperatures (above 600 ◦C) [24,27]. Before the
formation of the crystalline phase, the polymer composite is often too weak to support its own weight.
The addition of AF could significantly enhance the thermal stability of the EPDM composites by
forming a fiber network structure, leading to a remarkable improvement of the self-supporting property
at high temperatures.

Table 7. Bending angles for the residues of ceramifiable EPDM composites firing at different temperatures.

Sample Bending Angle at
600 ◦C (◦)

Bending Angle at
700 ◦C (◦)

Bending Angle at
800 ◦C (◦)

Bending Angle at
900 ◦C (◦)

EPDM/AF0 16.32 67.42 90 90
EPDM/AF5 10.63 12.46 21.65 39.91
EPDM/AF10 0 0 5.37 9.6
EPDM/AF15 0 0 0 6.38

3.6. Linear Ablation Property of Ceramifiable EPDM Composites

Table 8 shows the ablation rates of the ceramifiable EPDM composites after exposure to the
oxyacetylene torch flame for 20 s under 4110.0 KW/m2 of heat flux. Sample EPDM/AF0 was burned
through, as shown in Figure S3 (Supplementary Materials). However, the linear ablation rate of
composites decreased from 0.28 mm/s to 0.23 mm/s when the AF content in the samples increased from
5 to 15 wt %, and their back sides maintained the original features. This indicated that the introduction
of AF greatly improved the ablation performance [42].

Table 8. Linear ablation rate of ceramifiable EPDM composites.

Sample Linear Ablation Rate (mm/s)

EPDM/AF0 - a

EPDM/AF5 0.28
EPDM/AF10 0.25
EPDM/AF15 0.23

a Sample was burned through.

3.7. Flexural Strength and Linear Shrinkage of Ceramifiable EPDM Composites

Figures 4 and 5 present the effects of AF on the flexural strength and linear shrinkage of the
ceramifiable EPDM composites fired at different temperatures. In the temperature range of 700–900 ◦C,
the flexural strength of all samples increased as the firing temperature increased. This phenomenon
was in accordance with the ceramifiable EVA composites [43]. It was noteworthy that the flexural
strength improved as the AF content increased in EPDM/AF5, EPDM/AF10, and EPDM/AF15 under
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the same pyrolysis conditions. At 900 ◦C, the flexural strength of the ceramic residue reached the
maximum value of 10.88 MPa, exhibiting excellent mechanical properties.Polymers 2020, 12, x FOR PEER REVIEW 9 of 17 
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EPDM/AF0 exhibited linear expansion at various temperatures owing to the fast decomposition of
the EPDM matrix and APP, which resulted in poor flexural strength. In the case of EPDM/AF5, EPDM/10,
and EPDM/15, the linear shrinkage was positive at various temperatures, indicating that a degree of
sintering occurred in these samples. The linear shrinkage of the sample under the same firing conditions
increased with increasing AF. In addition, taking samples EPDM/AF0 and EPDM/AF10 as examples,
their surface morphology fired at 600, 700, 800, and 900 ◦C is shown in Figure S1 (Supplementary
Materials). These results indicated that the addition of AF can improve the compactness of the residue.
These results correspond with the flexural strength results.

3.8. Thermogravimetric Analysis

TGA data of the samples under N2 atmosphere are presented in Figure 6 and Table 9. A characteristic
temperature was used to evaluate the thermal stability: T5% (temperature when weight loss reaches
5 wt %). For pure AF, it can be seen that the T5% is 481.23 ◦C, and the residual mass at 500 ◦C was
94.49 wt %. It was possible to contribute to an excellent self-supporting performance of EPDM/AF
composites at high temperatures. In addition, it could be seen that the thermal degradation of
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EPDM/AF0 and EPDM/AF10 both involved two main steps. There was a slight difference in the
first steps of degradation between EPDM/AF0 and EPDM/AF10. EPDM/AF10 exhibited a higher
T5% degradation temperature (T5% 378.39 ◦C), while EPDM/AF0 displayed a lower T5% degradation
temperature (T5% 360.73 ◦C). For EPDM/AF0, the temperature at the maximum weight loss rate (Tmax1)
in the main step was 381.57 ◦C, which was lower than the corresponding value of EPDM/AF10 (Tmax1

394.16 ◦C). Compared with EPDM/AF0, the char residue of EPDM/AF10 increased from 56.74% to
57.62% at 500 ◦C. The occurrence of these behaviors could be attributed to the existence of the AF
network structure, resulting in a higher thermal stability of the EPDM/AF system [44]. In addition,
a weak thermal degradation step appeared between 550–600 ◦C owing to the slower pyrolysis of AF.
This indicated that AF can still remain after the pyrolysis of EPDM and APP. Therefore, the addition of
AF not only can improve the thermal stability of the sample before the formation of crystalline phases
but also can increase the compactness of the residue.
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Table 9. TGA data of AF, EPDM/AF0 and EPDM/AF10 under N2.

Sample T5% (◦C) Tmax1 (◦C) Residue at 500 ◦C (wt %)

AF 481.23 - 94.49
EPDM/AF0 360.73 381.57 56.74
EPDM/AF10 378.39 394.16 57.62

3.9. SEM Analysis

Figure 7 shows the SEM images of the sample EPDM/AF10 fired at 350 ◦C for 20 min. It clearly
shows the existent form of AF in the cross section of residue, and the structure of AF is relatively
undamaged. In addition, residues from SGF, APP, and EPDM decomposition attached to the fiber.
Thus, anti-dripping and self-supporting properties of ceramifiable EPDM composites were improved
owing to the increase in interaction between residues at high temperatures.

The surface structures of the residues of EPDM/AF0 fired at 600 ◦C and 800 ◦C for 30 min are
shown in Figure 8a,c. The surface of the residue fired at 600 ◦C exhibited many pores in Figure 8a.
The formation of pores was attributed to the pyrolysis of APP and the EPDM matrix. However,
when the sample fired at 800 ◦C, a more compact structure was formed, as observed in Figure 8c.
Densification of the residue can be due to the strong liquidity of molten fillers at high temperatures.
Therefore, the flexural strength increased with the increase in firing temperature, and this was also
consistent with previous research on the EVA system [27].
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It is noteworthy that the residues of EPDM/AF10 showed a more compact structure at corresponding
temperatures compared with the residues of EPDM/AF0. As shown in Figure 8b,d, a dense
microstructure was formed at 600 and 800 ◦C, which caused the improvement in the flexural strength of
the fired samples. According to the results of EPDM/AF0 and EPDM/AF10, a possible mechanism for the
formation of the compact surface structure of the EPDM/AF10 residue was suggested. For EPDM/AF10,
the formation of the compact ceramic structure can be attributed to the existence of AF. During the
processing of composites, the AF fibers were subjected to a degree of stretching and orientation.
With the temperature increasing, AF will shrink slowly [5]. The shrinkage behavior of AF at high
temperatures can be seen in Figure S2 (Supplementary Materials). Thermal shrinkage of AF will
make the close-contacted fillers and EPDM matrix move together; thus, the addition of AF leads
to the obvious shrinkage of ceramifiable EPDM composites at high temperatures and improves the
sintering densification.

3.10. Mechanism for the Transformation to Ceramic at High Temperature

The existence of AF inhibited the dripping and bending of the ceramifiable EPDM composite
at high temperature (500–600 ◦C). Theoretically, when the firing temperature is higher than the
decomposition temperature of the AF, the material will tend to bend or melt drip due to the fusibility
and flow properties of inorganic fillers [24,27]. On the contrary, the EPDM/AF system still showed a
good self-supporting property over 600 ◦C.

To identify the phase composition of the residue, XRD and FTIR were performed for the residues
formed at various temperatures, and the results are shown in Figures 9 and 10. It is shown that an



Polymers 2020, 12, 1523 11 of 15

obvious “hump” appeared at 15◦–35◦, indicating the amorphous structure [45,46] of EPDM/AF10 after
firing at 600 ◦C. Meanwhile, there are some weak peaks appearing at the 2θ of 20.09◦ and 21.83◦

represented sodium phosphate (Pdf No.11–383) and cristobalite (Pdf No.1–438), respectively [23,47].
With increasing temperature, the “hump” became very weak, and even disappeared. When EPDM/AF10

was fired at 700 ◦C or even higher, the main crystalline phase of its residues was cristobalite. For the
FTIR curve, the peak at 1022 cm−1 is assigned to the vibration of Si-O-Si in SGF [48–50]. The absorbing
peak at 3445 cm−1 is ascribed to the stretching vibration of the O-H bond [51], which gradually
decreased when the temperature increased. These changes meant a change in the SGF structure.
For ceramic residues formed at 600 ◦C and 700 ◦C, it was found that some new peaks appeared at
914 cm−1 and 557 cm−1, which was ascribed to the formation of the sodium phosphate [52]. Moreover,
with the temperature increasing, a new peak appeared at 620 cm−1, and the peak at 792 cm−1 became
stronger in the FTIR spectrum of residues of EPDM/AF10, representing the formation of cristobalite [53].
These results were consistent with the analysis of XRD, and illustrated that the phase change occurred
when the EPDM/AF10 composite was fired at higher temperatures. Thus, the composite showed a good
self-supporting property even if the firing temperature was higher than the melting point of the SGF.
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The formation mechanism of this novel ceramifiable EPDM composite was proposed as shown in
Figure 11. Below about 600 ◦C, the ceramifiable EPDM composite can support its own weight very
well with the AF network structures. The formation of crystalline phases (sodium phosphate and
cristobalite) played a significant role in keeping the self-supporting property of the ceramifiable EPDM
composite above 600 ◦C.
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composite without AF, (b) EPDM/AF composite, (c) fired at below 600 ◦C, (d) fired at a range of
600–800 ◦C, and (e) fired at above 800 ◦C.

4. Conclusions

A ceramifiable EPDM composite with fiber network structures was successfully prepared. AF as a
“skeletal structure” existed in the ceramifiable EPDM composite system. The AF network structure
reinforced the interaction between EMPD and fillers. Compared with the ceramifiable EPDM composite
without AF, the tear strength of EPDM/AF15 increased from 11.53 to 22.02 N/m. The solvent resistance
and ablative resistance of the ceramifiable EPDM composite with AF were also enhanced. With the
addition of AF, the ceramifiable and self-supporting properties of the ceramifiable EPDM composite
were improved significantly. Compared with the residue of ceramifiable EPDM composite without AF,
the residue of EPDM/AF system had higher flexural strength and a more compact structure. The excellent
self-supporting property of the EPDM/AF system was obtained by combining the formation of the
AF network and the formation of crystalline phases at higher temperature (above 600 ◦C). This study
provides a new thought and route to prepare ceramifiable polymer composites with excellent overall
performance, which will be of great theoretical and practical significance.
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Figure S1: Photos of surface morphology of samples EPDM/AF0 (left) and EPDM/AF10 (right) fired at 600 ◦C (a),
700 ◦C (b), 800 ◦C (c) and 900 ◦C (d); Figure S2: Digital photos of AF before and after heat reatment at 400 ◦C;
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