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Abstract

This study aims to explore the possibility of predicting the dispositional level of

dialectical thinking using resting-state electroencephalography signals. Thirty-four

participants completed a self-reported measure of dialectical thinking, and their

resting-state electroencephalography was recorded. After wave filtration and eye

movement removal, time-frequency electroencephalography signals were converted

into four frequency domains: delta (1–4 Hz), theta (4–7 Hz), alpha (7–13 Hz), and beta

(13–30 Hz). Functional principal component analysis with B-spline approximation was

then applied for feature reduction. Five machine learning methods (support vector

regression, least absolute shrinkage and selection operator, K-nearest neighbors, ran-

dom forest, and gradient boosting decision tree) were applied to the reduced features

for prediction. The model ensemble technique was used to create the best performing

final model. The results showed that the alpha wave of the electroencephalography

signal in the early period (12–15 s) contributed most to the prediction of dialectical

thinking.With data-driven electrode selection (FC1, FCz, Fz, FC3, Cz, AFz), the predic-

tion model achieved an average coefficient of determination of 0.45 on 200 random

test sets. Furthermore, a significant positive correlation was found between the alpha

value of standardized low-resolution electromagnetic tomography activity in the right

dorsal anterior cingulate cortex and dialectical self-scale score. The prefrontal and

midline alpha oscillations of resting electroencephalography are good predictors of

the dispositional level of dialectical thinking, possibly reflecting these brain structures’

involvement in dialectical thinking.
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1 INTRODUCTION

We live in a world full of contradictions. One possible way to deal with

conflicting information we face every day is dialectical thinking, which

involves viewing the world through a dynamic and holistic lens and
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accepting and resolving the inevitable contradictions (Peng & Nisbett,

1999).

Dialectical thinking has been considered by developmental psy-

chologists as a sophisticated form of thinking that emerges in the

final stage of cognitive development (Basseches, 1980; Piaget, 1974;
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Riegel, 1973). Later cross-cultural research demonstrated that

dialectical thinking is especially prevalent in East Asian cultures with

three central principles: (i) the principle of change, which states that

everything is constantly changing; (ii) the principle of contradiction,

which states that contradiction exists everywhere and even coex-

ists within the same thing; and (iii) the principle of relationships or

holism, which states everything is connected (Peng & Nisbett, 1999).

Although, some individuals from Western cultures may also use it

regularly.

Dialectical thinking has overarching impact on cognitive processes

as various levels (Spencer-Rodgers & Peng, 2018; Spencer-Rodgers

et al., 2010), and an inquiry into the underlying brain mechanisms may

deepen our understanding of how dialectical thinking exerts its effects

on human cognition. Among the three principles of dialecticism, the

principle of contradiction has received a lot of attention. Functional

magnetic resonance imaging (fMRI) studies have revealed that the dor-

sal anterior cingulate cortex (dACC) plays a key role in the monitor-

ing and resolution of conflicting information (Botvinick et al., 2004;

Cachia et al., 2017; Carter & van Veen, 2007; Wang et al., 2016).

Furthermore, within a broader framework of executive functions and

cognitive control (Cohen, 2017; Diamond, 2013), dealing with contra-

diction requires a heightened level of executive control. Accordingly,

neuroimaging studies have found that the processing of contradiction

involves attentional control network regions, such as the dorsolateral

prefrontal cortex (DLPFC), (Botvinick et al., 2004; Carter & van Veen,

2007; Egner, 2007). These fMRI findings were further supported by

brain lesion studies, which have also shown that a common conse-

quence of dACC injuries is the inability to reliably eliminate conflict-

driven behaviors (Mansouri et al., 2017), and the DLPFC is also associ-

ated with conflict processing (Botvinick et al., 2004; Egner, 2007).

Another line of research has utilized the superior temporal reso-

lution of electroencephalography (EEG) to examine the temporal fea-

tures of the brain mechanisms underlying conflict processing. Studies

that employed paradigms such as the Stroop task (Badzakova-Trajkov

et al., 2009; Chuderski et al., 2016), go/no-go task (Kostyrka-Allchorne

et al., 2019), flanker conflict task (Kanske & Kotz, 2010; Tillman &

Wiens, 2011), Simon task (DeRidder et al., 2011;Galashan et al., 2008),

and speeded response task (Sokhadze et al., 2008) suggest that the

occurrence of cognitive conflict is often associated with an increased

N2 and N450 component. Furthermore, several studies have demon-

strated that EEG features, such as EEG rhythmic activity (e.g., delta,

theta, alpha, and beta) change as a function of contradiction process-

ing (Almabruk et al., 2016; Moore et al., 2012; Nakao et al., 2013;

Pornpattananangkul et al., 2019). Delta rhythmic activity is related to

behavioral inhibition (Kamarajan et al., 2004; Knyazev, 2007; Putman,

2011), theta-band (4−8Hz) rhythmic activity supposedly reflects neu-

ral mechanisms of conflict detection (Cavanagh & Frank, 2014), alpha

rhythmic activity is related to conflict processing (Capuron et al., 2005;

Jiang et al., 2015; Wacker et al., 2010), beta rhythmic activity plays a

role in conflict detection (Chen et al., 2020).

For example, in the occupation choice task, the high-contradiction

group had greater delta and theta power in the N2 amplitude in the

frontocentral region than the low-conflict group (Nakao et al., 2013).

Additionally, in the signal stop task, the frequency band from 1 to 7 Hz

(i.e., delta and theta range) is induced at 800ms (Andersen et al., 2009;

Moore et al., 2006; Savostyanov et al., 2009). In contrast, the amount

of conflict was associated with alpha and beta frequencies in the left

occipitotemporal regions (Nakao et al., 2013).

Even though these studies provide valuable insight into the ques-

tion of how the brain processes conflicting information, direct investi-

gations into theneural basesof dialectical thinkinghavebeen scarce. To

the best of our knowledge, only one recent fMRI study directly exam-

ined the effect of dispositional dialectical thinking on the brain. Wang

et al. (2016) used a modified self-reference paradigm to present par-

ticipants with contradictory or noncontradictory personality adjective

pairs and recorded their brain activitieswhenmaking self or other judg-

ments. They found that the level of dialectical thinking positively cor-

related with the dACC’s involvement in the processing of self-relevant

contradictions. Based on this finding, they suggest that the critical dif-

ference between dialectical and nondialectic thinkers is how likely they

are to utilize the dACC tomodulate other regions’ activities.

While Wang et al. (2016) provided initial evidence regarding the

neural basis of dialectical thinking, there are still issues to be clari-

fied. First, their study was exclusive to the domain of the self, and it is

still not clear whether dispositional dialectical thinking may also man-

ifest in the brain’s stable and task-free activity patterns, such as in

the resting state. Intriguingly, the dACC is a part of the salience net-

work (SN), which governs the allocation of attention to stimuli based

on their subjective salience (Seeley et al., 2007; Sridharan et al., 2008).

SN has a key role in switching between the default mode network

(Buckner et al., 2008) and executive control network (Osaka et al.,

2004), and these networks interactwith each other even in the resting-

state. Therefore, it is worthy to examine the link between dialectical

thinking and resting-state brain activity. Second, the fMRI technique

they used, while advantageous in localizing the involved brain regions,

cannot portray the finer temporal features of the neural mechanisms.

Finally, their study used a correlational approach by associating certain

brain features with a behavioral index, which can be supplemented by

a predictive approach that combines neural data and machine learning

(ML) algorithms to achieve individualized predictions and uses cross-

validation techniques to ensure out-of-sample generalizability (Dubois

& Adolphs, 2016).

In the current study, we aim to explore the possibility of predicting

the level of dispositional dialectical thinking via resting-state EEG fea-

tures. To achieve this goal, we need to deal with the “curse of dimen-

sionality,” that is, the brain voltage captured by EEG is usually mea-

sured thousands of times while the number of experimental subjects is

small, posing huge challenges to traditional data analysis methods. Tra-

ditional EEG data analysis methods usually include manually extract-

ing physiological features (such as frequency, spectral power, etc.) from

EEG signals. A common problem of this manual feature selection strat-

egy is choosing the type of features. EEG data contain a complex struc-

ture thatmakes it difficult to filter useful information simply via prede-

fined features. Therefore, a data-driven prediction method capable of

auto feature selection fromthedatawhile keepingasmuch information

as possible is preferable.
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In such situations, functional data analysis (FDA) provides a useful

statistical approach for dealing with this problem. Through smoothing

and decomposing, FDA eliminates data noise and extracts principal

components representingmost of the information from data. Recently,

Zhang et al. (2020) applied the FDA method to predict working mem-

ory ability based on EEG and achieved great accuracy, demonstrating

the feasibility of this approach.

Here, we first applied FDA to extract EEG features using R (Ripley,

2001) software to provide a feature representation of individual

subjects. We then applied a set of ML methods to predict participants’

scores on the Dialectical Self Scale (DSS; Spencer-Rodgers et al.,

2004), a widely used self-reported measure of dialectical thinking.

Third, we performed a randomness test on our result to distinguish

it from random noise. Finally, using eLORETA for source analyses,

our specific aim was to test for the relevance of EEG-based resting

state activity in dACC and DLPFC for dialectical thinking. Based

on previous findings (Botvinick et al., 2004; Carter & van Veen,

2007; Egner, 2007; Wang et al., 2016), we hypothesized that the

degree of EEG-based resting state activity in the dACC (as mea-

sured using eLORETA values) is related to the degree of dialectical

thinking.

2 MATERIAL AND METHODS

2.1 Participants

A total of 37 Chinese-speaking participants were recruited from

Tsinghua University, China. Participants were healthy, had no history

of neurological disorder, normal or corrected to normal vision, and all

were right-handed. Three participants had to be excluded from fur-

ther analysis because of excessive EEG artifacts, leaving a sample of 34

participants (18 women, 18−30 years old, mean age = 23 years, stan-

dard deviation = 3.1). Informed consent was obtained from all partici-

pants prior to the experiment according to procedures approvedby the

Ethics Committee of the Department of Psychology, Tsinghua Univer-

sity and all methods were performed in accordance with the relevant

guidelines and regulations.

2.2 Measure of dispositional dialectical thinking

Dispositional dialectical thinking was assessed using the Dialectical

Self Scale (DSS)(Spencer-Rodgers et al., 2004), with the 32 items rated

on 1 (strongly disagree) to 7 (strongly agree) scale. Sample items

include “I often find that things will contradict each other,” “My world

is full of contradictions that cannot be resolved,” and “When two sides

disagree, the truth is always somewhere in the middle.” In the cross-

cultural psychological literature, DSS has been used widely and has

shown adequate reliability and validity have been confirmed in pieces

of literature (Hamamura et al., 2008; Hui et al., 2009; Spencer-Rodgers

et al., 2009). In the current study, the Cronbach’s alpha was .74, which

was comparable to previous studies (e.g. .74 for Chinese participants in

Spencer-Rodgers et al., 2009).

2.3 EEG recording

Five minutes of open-eye resting-state EEG data were recorded using

an EEG amplifier and Ag/CI electrodes through a 64-channel cap

(according to the International 10/20 system) referenced to the left

mastoid TP9. The datawere sampled at 500Hz. The impedance of each

electrode was kept under 5 kΩ. The EEG data preprocessing was per-

formed using the Fieldtrip (Oostenveld et al., 2011) toolbox for MAT-

LAB 2019b.

2.4 Data analysis

2.4.1 Data preprocessing

The EEG data collected clearly contained machine noises. The fre-

quency of machine noise is usually assumed to be above 40 Hz. In

the data preprocessing step, EEG signals were filtered by Finite

Impulse Response (FIR) to be between 1 and 40 Hz. While the signal

was collected during the eyes open state, independent component

analysis (ICA) was performed on the EEG data to remove the eye-

related component, which is assumed to be a major disturbance to the

signal.

The EEG series at the beginning time is considered to be noisy since

the participants might not have been in the required state. Since it is

hard to decide a subject-specific noisy period for each subject, the first

2.5 s, which is considered to be long enough to cover noisy periods for

all subjects, is excluded automatically. Another reason for excluding the

same EEG length for all subjects is so that the data for analysis under

the same condition, which is the requirement of the FDA theory. Sim-

ilarly, signals at the end 45.5 s were excluded (too noisy because the

participants might have failed to stay still after having been sitting too

long). An EEG series with 252 s of data was obtained for each subject’s

electrode.

The collectedEEGsignalswere analyzed in twodifferentways. First,

thewhole signal serieswas considered as a predictor for theDSS score.

In addition, the whole EEG series was segmented into consecutive

disjointed pieces of 3 s (or 1500 measurements). This segmentation

leads to 84 periods in total in chronological order with each period

treated as a separate predictor, the pth period after segmentation, 0 ≤

p ≤ 83, are consecutive and disjointed, while the 84th period denotes

the whole signal series. Following the convention of FDA theory,

the original measurement index was rescaled by Np, the number of

measurements in a single period, so that the time domain is [0,1] for

simplicity of notations and computation. For each period, electrode,

and subject, the corresponding EEG series was also centralized so that

the sum of each EEG series’ voltage across the time is equal to zero.

The purpose of the centralization is to rescale different EEG series and
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is important in the subsequent FDA procedure. After centralization,

FIR filter (with hammingwindow and the length of the filter is 400)was

applied to the signal and four types of waves are extracted: delta wave

(1−4 Hz), theta wave (4−7 Hz), alpha wave (7−13 Hz), and beta wave

(13−30Hz).

The EEG data with all the above preprocessing are denoted as

Yw,p,l,i(
j

Np
), where 1 ≤ w ≤ 4 denotes four types of waves, 0 ≤ p ≤

84 different periods, 1 ≤ l ≤ 63 different electrodes, 1 ≤ i ≤ 34

experimental subjects, and 1 ≤ j ≤ Np measurement time points

within each period.

2.4.2 Functional data analysis

FDA provides a useful statistical approach for processing high fre-

quency signal data (Ramsay & Silverman, 1997). FDA uses some basis

functions to approximate the underlying continuous process from dis-

crete observations. The basis functions can be predetermined (e.g.,

Fourier basis, B-splines) or data-driven. The introduction of the basis

function is a key step in dimension reduction, where an infinite-

dimensional function space is reduced to finite vector space. The num-

ber of reduced vector dimensions is a hyperparameter and can be

determined according to the signal characteristics. Once the basis

functions are well estimated, the signal can be approximated using a

linear combination of these basis functions, with the linear coefficients

representing the underlying characteristics of the signal data.

Another advantage of the FDA approach is its theoretical support.

The EEG data collected is usually contaminated with certain artifacts

(like muscle artifacts, electrocardiogram, etc.) which, in general, are

difficult to handle it. Fortunately, the FDA theory shows that under

certain conditions, the noise contaminating the EEG signals can be

removed in an asymptotic sense with the help of B-spline estima-

tor(Wang et al., 2020). So, in this paper, we used the FDA approach as

a tool to remove artifacts and obtain useful information from the noisy

EEG data.

For every possiblewave,w; period, p; and electrode, l; the EEG series

Yw,p,l,i(
j

Np
) of the ith subject is decomposed as

Yw,p,l,i

(
j
Np

)
= mw,p,l

(
j
Np

)
+

∞∑
k = 1

𝜉w,p,l,i,k𝜙w,p,l,k

(
j
Np

)

+ 𝜀w,p,l,i

(
j
Np

)
, 1 ≤ j ≤ Np,

where mw,p,l(⋅) is the common mean function of all subjects, 𝜙w,p,l,k (⋅)

is the kth eigenfunction, and 𝜉w,p,l,i,k is is the functional principal com-

ponent score for the ith subject, which accounts for intersubject vari-

ation in the signal. 𝜀w,p,l,i(
j

Np
) represents measurement errors. The key

step of dimension reduction is to estimate {𝜉w,p,l,i,k} k up to κ, a hyperpa-
rameter that is the smallest integer such that the largest κ eigenvalues
amount to at least 95%of the sumof all eigenvalues. Thebasis function,

𝜙w,p,l,k (⋅), and mean function, mw,p,l(⋅), are approximated by B-splines.

The order of the spline basis is chosen to be two (linear basis) and the

numberof splinebases is [c × N1∕4
p × log(Np)],where c=1.4. Theesti-

mation procedure is introduced in Appendix A.

2.4.3 Machine learning approach

After the FDA approach, the data-driven features {𝜉w,p,l,i,k}1≤i≤34,1≤k≤𝜅 ,

which are considered to represent most of information from EEG sig-

nal but has implicit physiological meaning, are obtained for each set

of wave, period, and electrode, {w, p, l}1≤w≤4,0≤p≤84,1≤l≤63. The inte-

ger 𝜅 here is the smallest number by which the data-driven features

{𝜉w,p,l,i,k}1≤i≤34,1≤k≤𝜅 is able to account for 95% variation of the data and

more detail is discussed in Appendix A. For each wave w, period p, and

electrode l, fivemachine learningmethods, denoted asm, were applied

to features {𝜉w,p,l,i,k}1≤i≤34,1≤k≤𝜅 ,which has dimension 34 × 𝜅, to predict

theDSS score. The aboveprocedure resulted totally 4 × 85 × 63 × 5 =

107,100 models. To evaluate each model’s performance, 23 subjects

were randomly sampled200 times as the training set and the rest as the

testing set. At each sampling s, themodelwas fit on the training set, and

the coefficient of determinationR2w,p,l,m,s is computed for the testing set.

We took an average of these 200 samplings’ R2w,p,l,m,s as a performance

evaluation of themodel. The definition of R2w,p,l,m,s is

R2w,p,l,m,s = 1 −

∑nt
i = 1

(
Sw,p,l,m,s,i − Ŝw,p,l,m,s,i

)2
∑nt

i = 1

(
Sw,p,l,m,s,i − S̄w,p,l,m,s

)2 ,

where Sw,p,l,m,s,i is the DSS score of subject i from the testing

set, Ŝw,p,l,m,s,i is the predicted score from model, nt is the sample size

of the testing set, and S̄w,p,l,m,s = n−1t

nt∑
i = 1

Sw,p,l,m,s,i. By the definition of

R2w,p,l,m,s, the numerator denotes the sum of squared errors of model

m, while the denominator denotes the sum of squared errors from the

baseline model, where all the subjects’ scores are predicted by their

mean. When R2w,p,l,m,s is negative, the model is considered worse than

the baselinemodel and themodel is useful if R2w,p,l,m,s > 0. To be clearer,

each step of the data analysis is shown in Figure 1.

The five machine learning methods include support vector regres-

sion (SVR)(Drucker et al., 1997), least absolute shrinkage and

selection operator (LASSO)(Tibshirani, 1996), K-nearest neighbors

(KNN)(Altman, 1992), random forest (RF)(Ho, 1995), and gradient

boosting decision tree (GBDT)(Friedman, 2001). SVR is similar to

support vector machine (SVM), which attempts to maximize the

margins of the support vector plane and is a popular classification

method. The SVR model is used in (Al Zoubi et al., 2018) to predict

age from EEG signal and is suitable for our problem. A radial basis

kernel is used in the SVR model. LASSO is a linear regression model

with absolute error regularization and is popular for feature selection

due to its sparse regression result. Linear regression is the simplest

approach for prediction or inference. Since the number of subjects is

rather small, regularization is important in the fitting model and that

is why LASSO is adopted. The regularization coefficient of the LASSO

model was set to 1. To be more flexible and not restricted in linear
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F IGURE 1 Flow chart of data analysis

relationship, KNN regression is applied due to its simple assumptions

and comprehensibility. The K was defined as 3 in KNN model. Besides

the simple learning algorithm, some ensemble learning approaches,

including bagging and boosting algorithms, were taken to compare

their performance in predicting DSS problems. RF is a type of bagging

algorithm and is flexible in dealing with high-dimensional data. The

randomness of the feature selection of RF can adjust for the noisy

EEG data and make the prediction result more stable. The number

of random trees in the RF was chosen to be 15. GBDT is a boosting

algorithm designed to iteratively remove prediction bias. Wu et al.

(2017) use GBDT to evaluate emotion from EEG signal and achieve

good performance. It is expected to perform well in our problem.

The number of boosting stages was 20 and the learning rate was 1.

From a simple linear relationship to nonlinear representation, from a

single model (SVR, LASSO, and KNN) to the model ensemble (RF and

GBDT), these five machine learning methods cover most mainstream

machine learning methods and are capable of adapting to complex

situations.

Finally, for every wave (w), period (p), electrode (l), and machine

learning method (m), the R̄2, averaged coefficient of determination

among200 samplings, is computed.Weuse subscript to distinguish dif-

ferent R̄2 from different settings and denoted them as R̄2w,p,l,m. Because

R̄2w,p,l,m is actually a random variable indicating whether the model is

useful, a thresholdof 0.1was chosen, abovewhich thepredictionmodel

was considered to be helpful (because the estimated standard error of

R̄2w,p,l,m ismuch less than0.1, this threshold is considered tobe sufficient

for detecting useful models).

To obtain a more powerful prediction model, we used the model

ensemble technique to develop a useful model. The results are shown

in the next section.

2.4.4 Randomness hypothesis test

In statistics, performingmultiple hypothesis tests simultaneously elec-

trodes to a multiple testing problem (Rupert, 2012). This is relevant

to the present study because 4 × 84 × 63 = 21,168 R̄2w,p,l,m values

were calculated for each machine learning method in the second part

of the analysis. Are these R̄2w,p,l,m > 0.1 results caused by the inherent

randomness of the multiple calculations? Some hypothesis tests
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TABLE 1 Seeds used for ROI definition

X Y Z

Left dACC −8 2 36

Right dACC 7 1 36

Left DLPFC −48 33 38

Right DLPFC 53 17 50

Abbreviations: dACC, dorsal anterior cingulate cortex; DLPFC, dorsolateral

prefrontal cortex.

determining the randomness of the result were conducted. For

a particular method, m, the null hypothesis is R̄2w,p,l,m is an iden-

tical individually independent random variable among all sets of

{w, p, l}1≤w≤4,0≤p≤83,1≤l≤63. Under the null hypothesis, the number

of results with R̄2w,p,l,m > 0.1 should be distributed uniformly across

the four types of waves. Let p be the probability of R̄2w,p,l,m > 0.1. On

the other hand, suppose another situation where the probability

of R̄2w,p,l,m > 0.1 varies across different waves, which is denoted as

pw = P(R̄2w,p,l,m > 0.1). The likelihood ratio test was then performed to

decide whether the null hypothesis should be rejected.

The reason waves other than periods were chosen to perform the

test is that there are a total of 84 periods and values of R̄2w,p,l,m > 0.1

may have a sparse distribution over these many periods, which will

cause an infinite result in themaximum likelihood estimation. The same

logic applies to the electrodes. A particular method was fixed before

the test because different methods with the same wave, period, and

electrodewill cause correlated results, which violates the independent

hypothesis.

2.4.5 Exact low-resolution brain electromagnetic
tomography analysis

Low-resolution brain electromagnetic tomography (LORETA) is a

source-analysis technique designed to estimate the location and

activity of neural generators that cause EEG activity in the scalp. It

was developed by the KEY Institute of Brain-Mind Research at the

University of Zurich (Pascual-Marqui et al., 1994) to calculate the

three-dimensional distribution of neural current density sources in

the brain. Two improvements to this method have been published,

standardized low-resolution electromagnetic tomography (sLORETA),

which uses standardized current density to calculate intracerebral

generators (Pascual-Marqui, 2002), and exact low-resolution electro-

magnetic tomography (eLORETA), which has no need for standardized

correct positioning (Pascual-Marqui, 2007) and is a more precise

locator of possible current density sources.

The current eLORETA approach uses a real headmodel (Fuchs et al.,

2002) and electrode coordinates (Tsuzuki et al., 2007). The steps to

calculate eLORETA values are as follows: (1) electrode names to coor-

dinates, (2) electrode coordinates to transformation matrix, (3) EEGs

to cross spectrum, (4) cross spectra to sLORETA, (5) ROI creation (the

dACC and DLPFC ROIs were defined using all voxels within 5 mm of

the following seeds [Table 1] [Montreal Neurological Institute coordi-

nates]) (Damasio, 1996; De Ridder et al., 2011; Song et al., 2014), and

(6) sLORETA to ROIs.

F IGURE 2 Histogram of the DSS score

TABLE 2 Results of models with R̄2 > 0

Wave Period Electrode Method R2

Alpha 84 FCz KNN 0.058

Alpha 84 Cz RF 0.053

Alpha 84 Cz KNN 0.047

Beta 84 F5 RF 0.027

Alpha 84 FCz GBDT 0.025

Alpha 84 FCz RF 0.007

Abbreviations: GBDT, gradient boosting decision tree; KNN, K-nearest

neighbors; LASSO, least absolute shrinkage and selection operator; RF, ran-

dom forest.

2.4.6 Statistical correlations

For each resting-state oscillation (delta, theta, alpha, beta) and DSS

score, one-tailed Spearman’s correlation tests were performed. To

account for themultiple correlation tests performed in this study, Bon-

ferroni correction was applied in R packages to p values of interests.

2.5 Result

2.6 Behavioral data result

The mean DSS score was 137.65, with a standard deviation of 10.71.

Figure 2 shows the histogram of the DSS scores. It can be seen the

range of theDSS score is from115 to 165.Most of the scores are about

140.

2.7 Whole EEG results (p= 84)

The results show that the whole EEG series (p = 84) is not a good pre-

dictor of theDSS score. None of themodels achieved an R̄2 higher than

0.1. The results with R̄2 higher than 0 are displayed in Table 2. Since the

R̄2 calculated here is a random variable, there is little confidence about

whether these settings are really helpful in predicting the DSS score.

The results posted here serve as a reference for future studies in this

field.
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TABLE 3 Model results with R̄2 > 0.1

Wave Period Electrode Method R2

Alpha 4 FC1 LASSO 0.376

Alpha 4 FCz LASSO 0.350

Alpha 27 CP2 LASSO 0.326

Beta 6 FC1 LASSO 0.292

Alpha 5 C5 LASSO 0.244

Alpha 27 P2 LASSO 0.237

Theta 42 AF3 LASSO 0.230

Alpha 8 FT7 LASSO 0.207

Alpha 4 FZ LASSO 0.202

Theta 69 CP4 LASSO 0.192

Alpha 27 P2 RF 0.188

Theta 11 AF7 LASSO 0.183

Beta 65 FT8 LASSO 0.179

Alpha 37 CP6 LASSO 0.179

Alpha 82 P5 LASSO 0.165

Alpha 25 FZ LASSO 0.162

Alpha 4 FC3 LASSO 0.158

Alpha 4 Cz LASSO 0.152

Alpha 8 FC3 GBDT 0.148

Alpha 63 C2 LASSO 0.142

Beta 10 TP8 RF 0.136

Alpha 4 AFz LASSO 0.135

Theta 14 FP1 LASSO 0.125

Delta 45 T7 GBDT 0.123

Alpha 4 Cz RF 0.121

Delta 71 P7 LASSO 0.120

Delta 82 T7 KNN 0.120

Alpha 32 FCz RF 0.120

Alpha 43 CP1 LASSO 0.118

Theta 69 CP2 LASSO 0.114

Delta 47 FC2 RF 0.112

Theta 13 O2 GBDT 0.108

Theta 47 P1 LASSO 0.108

Theta 47 PO4 RF 0.103

Delta 80 FZ LASSO 0.101

Abbreviations: GBDT, gradient boosting decision tree; KNN, K-nearest

neighbors; LASSO, least absolute shrinkage and selection operator; RF, ran-

dom forest.

2.8 Segmental EEG results (0 ≤ p ≤ 83)

Among the segmented periods (0 ≤ p ≤ 83), there were a total of 35

settings that achieved an R̄2 > 0.1. Table 3 lists the information of these

settings.

Two kinds of measurements were used to assess the predictive

value of different methods, waves, and periods. First, the frequency

of each setting was calculated and is shown in Table 3. A higher fre-

quency indicates a higher predictive ability. Second, all R̄2 values calcu-

lated under each setting were summed, and the summation was used

to represent their predictive value. Figure 3 shows these twomeasure-

ments fordifferent settings.Different colorsdenotedifferentmethods.

There is no SVR method in Figure 3 because no R̄2 > 0.1 results were

obtained using the SVR method. The size of points denotes the value

of the summed R̄2 values or count. Periods andwaves with no values of

R̄2 > 0.1 are not presented in the Figure 3. These two measurements

are used to compare the performance of different settings in the fol-

lowing subsections.

2.8.1 Best R2

As shown in Table 3, the highest R̄2 was 0.376, obtained with wave

alpha, period 4, and electrode FC1, which suggests a strong relation-

ship between these predictors and DSS score. Figure 4 shows a his-

togram of values of R̄2 > 0.1. While there are a few values of R̄2 ≥ 0.3,

most R̄2 values are less than 0.2.

2.8.2 Different machine learning method results

Among these 35 helpful models, the performance of different machine

learning methods was examined. As shown in Figure 3, most dots are

red in color, indicating that the LASSOmethod plays an important role

in predicting the DSS score. Figure 5 shows the histogram and sum of

R̄2 grouped by different machine learningmethods. Because there was

no SVRmodel with a value of R̄2 > 0.1, the SVRmethod is not shown in

the figure 5.Withmore than half of the results belonging to the LASSO

model, the LASSO method clearly outperformed the other four meth-

ods. Meanwhile, the R̄2 values obtained using the other four methods

were quite small and less than 0.2 in almost all the cases, while the sum

of R̄2 values obtained using the LASSOmethod ismuch larger than that

for the other methods. LASSO is thus considered to be the most suit-

ablemethod for dealing with the DSS prediction problemwith the help

of FPCA in this study.

2.8.3 Different period results

Since there were 84 periods, only periods with a value of R̄2> 0.1 are

displayed for the simplicity of visualization. Figure 6 shows the count

and R̄2 sum for each period. It can be seen from the Figure 6 that period

4 plays an important role in the prediction accuracy. In total, period 4

appears seven times, while most other periods appear only one time at

most.

Meanwhile, the sum of R̄2 values for period 4 is almost 1.5, which

far exceeds the value for other periods. On the other hand, periods

4, 5, and 6 are the only three consecutive periods that appear on the

histogram. Although some other periods also have values of R̄2 > 0.1,

there is no obvious evidence regarding how they correlate. The time
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F IGURE 3 Performance of different settings. Abbreviations: LASSO, least absolute shrinkage and selection operator; KNN, K-nearest
neighbors; RF, random forest; GBDT, gradient boosting decision tree

F IGURE 4 Histogram of values of R̄2 > 0.1
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F IGURE 5 Result of different methods with a value of R̄2 > 0.1.
Abbreviations: LASSO, least absolute shrinkage and selection
operator; KNN, K-nearest neighbors; RF, random forest; GBDT,
gradient boosting decision tree

F IGURE 6 Result of different periods with R̄2 > 0.1

represented by periods 4, 5, and 6 is assumed to be a period when the

participants were still new to the experimental environment and grad-

ually adapting to it. This result suggests that the EEG signal at the very

beginning of the experimental period may relate to the participant’s

DSS score.

2.8.4 Different waves results

Among the results with R̄2 > 0.1, the ability of different waves to pre-

dict theDSS scorewas compared. As shown in Figure 3, the alphawave

appears the most times among the results with R̄2> 0.1 as well as with

the highest sum of R̄2, which suggests that the alpha wave has the best

predictive accuracy. Figure 7 shows the distribution of R̄2grouped by

wave. The alpha wave is much more important in predicting the DSS

score than the other three waves. The delta wave’s summed R̄2 was

rather low, while the beta wave produced the least valuable models.

The thetawave served as the secondmost important predictor but still

did not have a sufficiently high R̄2.

2.8.5 Randomness test result

Since the LASSO method far exceeded the other methods, the likeli-

hood ratio test was only performed for the LASSO results. The test

F IGURE 7 Result of different waves with R̄2 > 0.1

statistic was computed to be 16.68, with a chi-square distribution with

three degrees of freedom, which suggests a p value of 0.0008. In addi-

tion, the identical individually independent distribution of R̄2 of the

other three waves was also tested (δwave, θwave, and βwave) and the
test statistic was 2.97 with a chi-square distribution of two degrees of

freedom, which suggests a p value of 0.23.

Thus, based on the randomness test result, we concluded that these

R̄2 > 0.1 results are not simply caused by randomness. The alpha wave

shows a significant difference from the other three waves, while the

null hypothesis regarding the randomness of the δ, θ, and βwave results
was not rejected.

2.8.6 Model ensemble accuracy

To further improve model accuracy, models using different predic-

tors were combined to reduce the prediction error. The results shown

above indicate the strong importanceof thealphawave, 4thperiod, and

LASSO method. It can be seen from Table 3 that these settings used

data from six electrodes, namely FC1, FCz, Fz, FC3, Cz, and AFz, with

R̄2 0.376, 0.350, 0.202, 0.158, 0.152, and 0.135 respectively. Thus, the

model obtainedwith these electrodes under the best settingswas used

to form our final predictivemodel:

Mensemble =
1
6

(MFC1 +MFCz +MFz +MFC3 +MCz +MAFz) ,

whereMlead denotes themodel predictingDSS scoreusing that particu-

lar electrode as well as the alphawave, 4th period, and LASSOmethod.

The model ensemble’s average R2 was 0.45 following 200 repetitions

of the sampling, training, and testing sets. It can be seen that themodel

ensemble outperforms every single model.

2.9 sLORETA results

We selected an area of interest from the existing literature (Damasio,

1996; De Ridder et al., 2011; Song et al., 2014). The two regions were

the right and left dACC (Figure 8a and 8b). The scatterplot of dACC

and DSS scores is displayed in Figure 9. As Figure 9 shows, there are
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F IGURE 8 Dorsal anterior cingulate cortex (dACC) exact low-resolution electromagnetic tomography (eLORETA) correlation with Dialectical
Self Scale (DSS) scores. (a) and (b) eLORETA localization of the left and right dACC (a cortical midline structure) based onMontreal Neurological
Institute coordinates from a previous study. (c) One-tailed Spearman’s correlations test between left dACC eLORETA alpha values and DSS scores.
(d) One-tailed Spearman’s correlation test between the right dACC eLORETA alpha values and DSS scores

two extreme left-dACC and right-dACC values (occurred at the left

bottom of the plot), which may have a great influence on the Pearson

correlation results. Thus, we perform the Spearman’s correlation test,

which is more robust in such an extreme value condition. Based on the

results in Section 3.3.4, Spearman’s correlation tests were performed

between the DSS score and left dACC alpha wave and the right dACC

alpha wave. In one-tailed Spearman’s correlation tests, the correlation

values for the (left dACC and right dACC) eLORETA data were as

follows: left dACC alpha, r = 0.287, p = 0.050; right dACC alpha,

r = 0.346, p = 0.022 (Figure 8c and 8d), while other frequency bands

did not significantly correlate with DSS. The p value of right dACC

alpha passed Bonferroni correction at a significance level of 0.05.

The homogeneity test and Anderson and Darling (1954) against the

normality of datawereperformed. Thepvalueof homogeneity testwas

0.095, indicating no significant difference of dACC variance in the two

areas. The p value of the normality of the left-dACC alpha value, right-

dACC alpha value, and DSS score were <0.001, <0.001, and 0.889,

respectively. The strong evidence to reject thenormality of dACCvalue
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F IGURE 9 Scatterplot of dACC alpha value andDSS scores

may due to their extreme values (as shown in Figure 9). Therefore, the

Spearman’s correlation test was considered to be more appropriate in

this study.

We also analyzed the precuneus, one of the areas with the low-

est spontaneous activity (Coito et al., 2019) as a control. The pre-

cuneus is rarely activated in the resting state of EEG, so one could

expect that it is not related to dialectical thinking in the resting-EEG.

The bilateral precuneus was located based on Montreal Neurological

Institute (MNI) coordinates (left precuneus −12, −65, 50; right pre-

cuneus 12, −65, 50)(Kraft et al., 2015). Spearman’s correlation tests

were performed between theDSS score and left/right precuneus alpha

wave. In one-tailed Spearman’s correlation tests, the correlation val-

ues for the (left precuneus and right precuneus) eLORETA data were

as follows: left precuneus alpha, r = 0.037, p = 0.417; right precuneus

alpha, r = −0.062, p = 0.364. No significant correlation was found

between the alpha value of standardized low-resolution electromag-

netic tomography activity in the left/right precuneus and dialectical

self-scale score.

3 DISCUSSION

Our results show that the whole EEG series is not a good predictor

of DSS, suggesting that a more precise analysis of data segments is

required. Among the segmented periods, periods 4−6 at the beginning

of data recording demonstrated good predictive value. Our interpre-

tation of this result is that during these periods, the participants were

still new to the experimental environment and were gradually adapt-

ing to it, and dispositional dialectical thinking was especially exerting

its effect during the disengagement from external stimuli. However,

the current resting-state design limits our ability to finely delineate

the exact events happened during the beginning phase. Future studies

might directly examine the link between dispositional dialectical think-

ing and EEG signals when there is an overt task.

Among themachine learningmethods, our results show that LASSO

was the best in this study. LASSO is a linear model with shrinkage. It

reduces the predicted variance while sacrificing a little bias so that

the total prediction error is smaller (Tibshirani, 1996). The linear rela-

tionship is a simple assumption between the response and predic-

tors, which makes it widely used in regression analysis. Because our

sample size was rather small, we were more inclined to use a sim-

ple model in our problem. On the other hand, the number of feature

dimensions after the FPCA procedure was approximately 10 for most

{w, p, l}1≤w≤4,0≤p≤84,1≤l≤63 settings, which is slightly high relative to our

sample size of 23 in the training set. While LASSO also serves as a

method of feature selection due to its sparse estimation result (Tibshi-

rani, 1996), it is reasonable to expect it to behave better after further

dimension reduction inour small sampleproblem. In contrast, theother

four machine learning methods’ (SVR, GBDT, KNN, and RF) prediction

accuracymay be affected by someFPCA scores irrelevant toDSS score

without feature subset selection.

While 4 × 84 × 63 = 21,168 R̄2 values were calculated for each

machine learning method in segmental EEG analysis, one needs to be

careful regarding results of R̄2 > 0 because false positive results occur

during a large number of trials. Thus, whether these results are sim-

ply caused by random chance needs to be determined. The random-

ness test result rejects the null hypothesis for the identical individu-

ally independent distribution of R2w,p,l,m for the LASSO method, which

provides us more confidence in the relationship between useful pre-

dictors and DSS score. The test results show that there is a significant

difference between the alpha wave and other three waves, while the

difference among the other three waves was not significant enough to
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distinguish them. However, this conclusion should be made cautiously.

The test statistic’s distribution relies on the assumption of the identical

individually independent distribution of signals from different periods

and electrodes under each wave, which may not be true in real-life sit-

uations. Thus, rejecting this hypothesis does not make much sense in

some cases. On the other hand, the true relationship between differ-

ent periods andelectrodes are too complex to characterize, not tomen-

tion to consider in a hypothesis test. However, this test result does pro-

vide some evidence regarding the predictive ability of the alpha wave

despite these limitations.

Furthermore, amodel ensemblewas used to strengthen themodel’s

predictive ability. The model ensemble is a technique combining dif-

ferent models to achieve a better accuracy than any of its constituent

models (Opitz & Maclin, 1999). In our case, the model ensemble

achieved an average R̄2 of 0.45, while the single model’s highest R̄2

was 0.376. This is due to a reduction in the error variance by averag-

ing each single model’s output. The performance of the model ensem-

ble was affected by the correlation of its constituent models. Gener-

ally speaking, the more independence among the constituent models,

the better the model ensemble will perform (Goodfellow et al., 2016).

Because our constituent models were based on electrodes FC1, FCz,

Fz, FC3, Cz, and AFz separately, they are not expected to share much

dependence, which accounts for the increased prediction accuracy of

our model ensemble. To compare with other relevant studies, Al Zoubi

et al. (2018) build a model to predict age from EEG signal and achieve

best R2 = 0.37 (the number of subjects = 500) and Zhang et al. (2020)

use EEG to predict theworkingmemory and themodel’s R2 = 0.72 (the

number of subjects = 145). Considering the fact that only 30 subjects

areused in this study,we thinkourmodel’s performance is brilliantwith

R2 = 0.45.

Finally, in the model, the electrodes that could predict the best

DSS results were basically consistent with the results of the litera-

ture review, primarily measuring signals from the dACC and DLPFC.

Consequently, an sLORETA source-analysis approach was used, which

was designed to estimate the location and activity of the neural gen-

erators that cause EEG activity in the scalp. We explored the correla-

tion between DSS and cortical sources of resting cortical EEG rhythms

(delta [1−4 Hz], theta [4−7 Hz], alpha [7−13 Hz], beta [13−30 Hz]).

In the present study, we observed a positive correlation between right

dACCresting alpha sources andDSS scores. There are several interpre-

tations for this result (Sadaghiani & Kleinschmidt, 2016). First, alpha

oscillations are associated with the inhibition of neural activity, a pro-

cess that corresponds cognitively to the internal maintenance of tonic

alertness, usually occurring during brain processes not directly related

to tasks, similarly, the resting state EEGwas used in this study. Second,

alpha oscillations are associated with the cognitive function of selec-

tive attention, that is, the associated feature selection process takes

precedence over other processes from top to bottom. Easterners with

a higher degree of dialectical thinking pay more attention to relational

situations than westerners(English & Chen, 2007) Third, alpha oscil-

lations can also achieve rapidly changing long-distance cortical coor-

dination, which can be thought of as phase adaptive control, includ-

ing the regulation of working memory. Given the dominant cultural

norms in East Asia (i.e., ingroup harmony and collective agency), these

strategies play a functionally adaptive role in everyday control exer-

tion(Park et al., 2018). And alpha waves can be well identified using a

data-driven approach (Tenke & Kayser, 2015; Tenke et al., 2017). This

showed that only the peculiar topography and frequency of cortical

resting EEG sourceswere able to roughly discriminate between dialec-

tic and nondialectical. These results are in line with previous findings

suggesting that dACCalpha rhythms are oneof the physiologicalmech-

anisms by which the associative dACC modulates conflict processing

(Nakao et al., 2013; Strauss et al., 2012).

The current study has several limitations. First, the disadvantage

of EEG is its spatial resolution. The 64 electrodes can only map a lim-

ited area of activity, and 256-electrode set-ups have a significant spa-

tial resolution improvement over their 64-electrode equivalents (Luu

et al., 2001;Wu et al., 2014). Second, on this basis, there is controversy

regarding whether spatial localization truly reflects changes in specific

brain regions, which isworth investigating. In the future, usingMRI and

magnetoencephalography to investigate spatial changes in the brain

will be aworthy research direction. Third, there are some hyperparam-

eters in these five machine learning methods (e.g., regularization coef-

ficient in LASSOmodel, number of nearest neighbors in KNN, etc.) that

can be tuned to improve model accuracy. Because we included many

{w,p,l} settings, it was impractical to tune these parameters individually.

We decided upon these hyperparameters based on our empirical expe-

rience and successfully obtained approximate results. Since there has

been no prior research on the prediction of DSS scores based on EEG

data, our results can serve as a reference for a more precise study in

the future.

4 CONCLUSION

We investigated the brain’s spontaneous activity over time using

resting EEG and linked it to dialectical thinking. There was a significant

positive correlation between the alpha wave of sLORETA activity and

DSS score in the right dACC brain region. Together with sLORETA

analysis, our machine learning results show that LASSO is the best

machine learning method, and the alpha wave is the best predictor of

DSS score in this study. With data-driven selected electrodes (FC1,

FCz, Fz, FC3, Cz, AFz), the deterministic coefficient of the prediction

model in the test set achieved an average of 0.45 among 200 rep-

etitions. In summary, the prefrontal and midline alpha oscillations

of resting EEG are good predictors of the dialectical thinking score,

possibly reflecting these brain structures’ involvement in dialectical

thinking.
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APPENDIX A: PROCEDURE OF ESTIMATING

FUNCTIONAL PRINCIPAL COMPONENT SCORE

Consider a dataset consisting of n subjects with each subject taking a

measurement every equidistant period and the total number of mea-

surements per subject is N. The measured quantity, denoted as Y, can

be any index, like notes the voltage, current, etc.Wedenote the dataset

as {Yij}1≤i≤n,1≤j≤N, where i denotes the ith subject and j denotes the

jth measurement. Without loss of generality, assume the time interval

between twomeasurements is
1

N
. We build our functional model

Yi (t) = 𝜂i (t) + 𝜀i (t) , t ∈ [0,1] , (A.1)

where 𝜂i(t) is the infeasible underlying time-varying process of the

subject i, which is the realization of stochastic process {𝜂(t), t ∈ [0,1]}

with E
1
∫
0
𝜂2(t)dt < ∞. 𝜀i(⋅) is the error term of the ith subject. The

observed data is the discretized realization of this model. Denote

the covariance function of 𝜂(⋅) as G (t, t′) = Cov(𝜂(t), 𝜂(t′)). The classi-

cal functional analysis theory assures that there exist series of values

𝜆1 ≥ 𝜆2 ≥ … ≥ 0 with
∞∑

k = 1
𝜆k < ∞ and series of orthonormal function

basis {𝜓k(⋅)}k≥1 such that G (t, t′) =
∞∑
k=1

𝜆k𝜓k(t)𝜓k(t′) , ∫ G(t, t′)𝜓k(t′)dt′ =

𝜆k𝜓k(t), where {𝜆k(⋅)}k≥1 is called eigenvalue and 𝜙k (⋅) =
√
𝜆k 𝜓k(⋅) is

called rescaled eigenfunctions of the covariance function G(t, t′). Fur-

thermore, we representmodel 1 as thewell knownKarhunen-Loève L2
form:

Yi (t) = m (t) +
∞∑

k = 1

𝜉ik𝜙k (t) + 𝜀i (t) , 0 ≤ t ≤ 1 , (A.2)

where m(⋅) is the mean function among all the subjects and 𝜂i (t) =

m(t) +
∞∑

k = 1
𝜉ik𝜙k(t).

The FPC (functional principal component) score {𝜉ik}1≤i≤n,k≥1is

series of uncorrelated random variable with mean zero and vari-

ance 1 representing the complex structure behind the data. Since the

observed data is discrete, the practical model is

Yi

(
j
N

)
= m

(
j
N

)
+

∞∑
k = 1

𝜉ik𝜙k

(
j
N

)
+ 𝜀i

(
j
N

)
, 1 ≤ j ≤ N. (A.3)

The procedure of estimating FPC score is decomposed into follow-

ing steps.

A.1 B-spline estimation

The first step is approximating theoriginal signal byB-spline basis func-

tions. B-spline basis has been widely used in function approximation

and nonparametric statistics. The B-spline approximation is quite fast

since the calculation can be done by simple matrix operation. With

predetermined hyperparameter Js, interval [0,1] is segmented into Js
equal length subinterval, denotes as {Il}

Js
l = 0

, with interior knots {tl}
Js
l = 1

,

where tl =
l

Js+1
. For any positive integer p, define some auxiliary knots

as t1−p = ⋅ ⋅ ⋅ = t0 = 0 and tJs+1 = ⋅ ⋅ ⋅ = tJs+p = 1. Following

the notation in De Boor (1978), denote the pth order B-spline basis

functions as Bl,p(x),1 ≤ l ≤ Js + p}. Then the polynomial spline space

of order p can be denoted as S(p−2) = {
Js+p∑
l=1

𝜆l,pBl,p(x)|𝜆l,p ∈ R, x ∈ [0,1]} .

The idea is to approximate 𝜂i(⋅) by the function of S(p−2). Denote

Yi = [Yi1,…… , YiN]T , then the approximated trajectory of subject i is

obtained by

𝜂i (⋅) = argming∈S(p−2)
N∑

j = 1

(
Yij − g

(
j
N

))2

(A.4)
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Since the S(p−2) space is linear combination of the spline basis,

𝜂i(⋅) can be denoted as𝜂i (⋅) = B(⋅)Tb̂i, where B(⋅) and b̂i are defined

as B (⋅) = [B1,p(⋅), B2,p(⋅),…… , BJs+p,p(⋅)]T , b̂i = [b̂i,1, …… , b̂Js+p,1]
T .

Furthermore, define a matrix B =

⎛⎜⎜⎜⎝
B1,p(

1

N
) … BJs+p,p(

1

N
)

⋮ ⋱ ⋮

B1,p(
N

N
) ⋯ BJs+p,p(

N

N
)

⎞⎟⎟⎟⎠
N×(Js+p)

, then

it can be shown that bi estimated from equation 4 is b̂i = (BTB)−1 BTYi.

The spline approximation function of 𝜂i(⋅) is 𝜂i (⋅) = B(⋅)T (BTB)−1BTYi.

A.2 Estimation of covariance functionG(t, t′)

The definition of G(t, t′) is G (t, t′) = Cov (𝜂(t), 𝜂(t′)) =

E(𝜂(t) −m(t))(𝜂(t′) −m(t′)), where m(⋅) is first estimated by

m̂ (⋅) = n−1
n∑

i = 1
𝜂i(⋅). Then the G(t, t′) can be estimated by

Ĝ (t, t′) = n−1
n∑

i = 1
(𝜂i(t) − m̂(t))(𝜂(t′) − m̂(t′)). Since the 𝜂i(t) and

m̂(t) are both spline functions, it can be shown that Ĝ (t, t′) =
Js+p∑
j=1

Js+p∑
j′=1

𝛼̂j,j′Bj,p(t)Bj′ ,p(t′) , where 𝛼̂j,j′ = n−1
n∑

i = 1
(b̂ij − n−1

n∑
i = 1

b̂ij)(b̂ij′ −

n−1
n∑

i = 1
b̂ij′ ) and b̂ij denotes the jth element of b̂i. Furthermore, denote

thematrix formed by {𝛼̂j,j′ }1≤j≤Js+p,1≤j′≤Js+pas

𝛼̂ =

⎛⎜⎜⎜⎝
𝛼̂1,1 … 𝛼̂1, Js+p

⋮ ⋱ ⋮

𝛼̂Js+p,1 ⋯ 𝛼̂Js+p, Js+p

⎞⎟⎟⎟⎠
(Js+p)×(Js+p)

.

A.3 Estimation of FPC score, eigenvector, and eigenvalues

For any positive integer k, the kth eigenvalue 𝜆k and eigenfunction cor-

responding to it satisfies equation

∫ G
(
t, t′

)
𝜓k

(
t′
)
dt′ = 𝜆k𝜓k (t) . (A.5)

Weuse Ĝ(t, t′) to replaceG(t, t′) andapproximate𝜓k(⋅) by spline func-

tions, denotedas 𝜓̂k (⋅) = B(⋅)T 𝛾̂k , where 𝛾̂k = [𝛾̂k,1,… , 𝛾̂k,Js+p]
T . Denote

spline basis functions’ inner product matrix as

H =

⎛⎜⎜⎜⎝
∫ B1,p (t)B1,p (t) dt … ∫ B1,p (t)BJs+p,p (t) dt

⋮ ⋱ ⋮

∫ BJs+p,p (t)B1,p (t) dt ⋯ ∫ BJs+p,p (t)BJs+p,p (t) dt

⎞⎟⎟⎟⎠
(Js+p)×(Js+p)

.

Then it can be shown by simple algebra that the equation A.5

is equivalent to 𝜆̂k 𝛾̂k = 𝛼̂ H𝛾̂k . The matrix H can further be decom-

posed as H = DDT by Cholesky decomposition, which electrodes to

the equationDT𝛼̂DDT 𝛾̂k = 𝜆̂kDT 𝛾̂k . Then the real value 𝜆̂k and the vec-

tor DT 𝛾̂k can be regarded as eigenvalue and eigenvector of the matrix

DT𝛼̂D and 𝜆̂k and 𝜓̂k(⋅) can be obtained therefore.

Notice that the model condition implies the equation

∫ (𝜂i(t) −m(t))𝜙k(t)dt = 𝜆k 𝜉ik . Replace with the estimated term,

one gets ∫ (Ć”i(t) − m̂(t))𝜙̂k(t)dt = 𝜆̂k 𝜉̂ik . Since Ć”i(⋅), m̂(⋅), and 𝜙̂k(⋅) are

spline functions, after some algebraic operations, the FPC score

estimation are obtained by 𝜉̂ik = 𝜆̂
−1∕2
k 𝜇Ti H𝛾̂k , where

𝜇i =
(
B′B

)−1
BT

(
Yi − n−1

n∑
i = 1

Yi

)
= b̂i − n−1

n∑
i = 1

b̂i.

Finally, the number of FPC score is chosen by the rule of thumb cri-

terion:

» = argmin1≤q≤Js+p

{(
q∑

k = 1

𝜆̂k∕

Js+p∑
k = 1

𝜆̂k

)
> 0.95

}
.

The first 𝜅 FPC score are selected, by which one is assumed to have

obtained enough information from the original signal.
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