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Summary
The integral membrane protein CD317/tetherin has been

associated with a plethora of biological processes, including

restriction of enveloped virus release, regulation of B cell

growth, and organisation of membrane microdomains.

CD317 possesses both a conventional transmembrane (TM)

domain and a glycophosphatidylinositol (GPI) anchor. We

confirm that the GPI anchor is essential for CD317 to

associate with membrane microdomains, and that the TM

domain of CD44 is unable to rescue proper microdomain

association of a DGPI-CD317 construct. Additionally, we

demonstrate that the cytosolic amino terminal region of

CD317 can function as a ‘microdomain-excluding’ motif,

when heterologously expressed as part of a reporter

construct. Finally, we show that two recently described

isoforms of CD317 do not differ in their affinity for

membrane microdomains. Together, these data help further

our understanding of the fundamental cell biology governing

membrane microdomain association of CD317.
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Introduction
Membrane microdomains (aka lipid rafts), are regions of the

plasma membrane (PM) enriched in cholesterol, sphingolipid,

and specific proteins (Simons and Ikonen, 1997; Lingwood and

Simons, 2010). Although their very existence has been

questioned (Munro, 2003), there is extensive evidence that

membrane microdomains are present in living cells, with these

domains being small and, in some cases, highly dynamic

(reviewed by Hancock, 2006; Lingwood and Simons, 2010;

Simons and Gerl, 2010). Membrane microdomains have been

implicated as being important for multiple biological processes,

including membrane trafficking, cell signalling and exocytosis

(reviewed by Simons and Toomre, 2000; Salaün et al., 2004;

Gupta and DeFranco, 2007; Jury et al., 2007; Simons and Gerl,

2010). There is also much evidence implicating membrane

microdomains as being critical for pathogen entry/egress, with,

for example, both HIV and the influenza virus known to hijack

them for virus budding (reviewed by Lafont and van der Goot,

2005; Lencer and Saslowsky, 2005; Goldston et al., 2012; Hogue

et al., 2012). Additionally, membrane microdomains have been

associated with the development of diseases, such as Alzheimer’s

and prion diseases (reviewed by Simons and Ehehalt, 2002;

Michel and Bakovic, 2007; Hicks et al., 2012).

A significant amount of research has been performed to

ascertain the features that influence the affinity of specific

proteins for membrane microdomains. Glycophosphatidylinositol

(GPI)-anchor-dependent sorting of proteins to membrane

microdomains is well-characterised, with the presence of the

long and saturated GPI motif conferring a strong affinity for

membrane microdomains upon a protein (Suzuki et al., 2007;

Lingwood and Simons, 2010). The addition, by palmitoylation, of

a C16 palmitate moiety to a cysteine residue, is another lipid

modification that can cause a protein to localise to membrane

microdomains; indeed, a recent publication suggested that

palmitoylation is required for appropriate partitioning of the

majority of integral membrane microdomain proteins (Levental

et al., 2010). Furthermore, membrane microdomain-associated

integral membrane proteins have longer TM domains than non-

membrane microdomain proteins (Alberts et al., 2008), and

glycosylation may also cause preferential association with

membrane microdomains, probably through microdomain-

localised lectins binding to glycan moieties on proteins

(Stechly et al., 2009). In addition, it has been proposed that

membrane microdomain affinity is enhanced as a microdomain-

localised protein oligomerises (Simons and Vaz, 2004).

CD317 (variously known as HM1.24 (Goto et al., 1994), Bst-2

(Ishikawa et al., 1995), tetherin (Neil et al., 2008)) is an integral

membrane protein with an unusual topology. The protein consists

of a short amino terminal cytosolic tail, a conventional

transmembrane (TM) domain, an extracellular region

containing an extended coiled-coil that causes the protein to

assemble into dimers (Hinz et al., 2010; Schubert et al., 2010;

Yang et al., 2010; Swiecki et al., 2011), and a C-terminal GPI

anchor (Kupzig et al., 2003; Elortza et al., 2006). CD317 has
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been implicated as playing a role in a variety of cellular
processes, including regulation of B cell growth and development
(Goto et al., 1994; Ishikawa et al., 1995; Ohtomo et al., 1999),

cell adhesion (Yoo et al., 2011), and antiviral response (Neil et al.,
2008; Van Damme et al., 2008). This latter role, in which CD317
restricts virus release by acting to directly tether enveloped

viruses at the surface of infected cells, inspired the protein to be
designated ‘tetherin’ (Neil et al., 2008). Although CD317 was
initially identified as an inhibitor of HIV virion release (Neil

et al., 2008; Van Damme et al., 2008), it has since been shown to
restrict the release of a diverse range of enveloped viruses
(reviewed by Le Tortorec et al., 2011).

Consistent with the presence of a GPI addition motif at the
carboxyl terminus of CD317, the protein is localised to

membrane microdomains. Biochemical studies, employing the
classical method of lysing cells in the detergent Triton X-100
prior to separation of lysates by density gradient

ultracentrifugation, have demonstrated that CD317 resides in
detergent-resistant membranes (DRMs) (Kupzig et al., 2003;
Masuyama et al., 2009; Rollason et al., 2009), which bear many

of the characteristics of membrane microdomains. Additionally,
super-resolution microscopy has shown that CD317 resides in
largely immobile clusters of 70 to 150 nm in diameter in the PM
(Lehmann et al., 2011; Hammonds et al., 2012), consistent with

localisation to membrane microdomains. Evidence from analysis
of DRMs (Kupzig et al., 2003) and super-resolution imaging
(Lehmann et al., 2011) suggests that the presence of the GPI

anchor is critical for membrane microdomain localisation of
CD317. However, work performed by Andrew et al. suggested
that, at least in some cell types, the carboxyl terminal region of

CD317 is able to function as a second TM domain, as opposed to
a GPI anchor addition sequence (Andrew et al., 2011).

We have previously demonstrated that CD317 is an organiser
of membrane microdomains (Billcliff et al., 2013). In the work
presented here, we sought to determine if a TM domain from a

heterologous protein can functionally replace the GPI anchor in
CD317, at least with regards to localising the protein to
membrane microdomains. We also present work, related to this,

which led us to conclude that the amino terminal region of
CD317 is able to act as a membrane microdomain-excluding
motif. Finally, we assessed the membrane microdomain/non-

membrane microdomain localisation of two recently described
(Cocka and Bates, 2012) isoforms of CD317 that bear cytosolic
domains of differing lengths.

Results
The GPI anchor addition motif is critical for membrane
microdomain localisation of CD317

We have previously demonstrated that CD317 is important for
membrane microdomain organisation in HeLa cells (Billcliff
et al., 2013). In order to assess the relative importance of the

various regions of CD317 in organising membrane
microdomains, a panel of CD317-based constructs was
designed (Billcliff et al., 2013) (Fig. 1A). Experiments utilising

these constructs showed that the entire domain organisation of
CD317 is critical for its capacity to organise membrane
microdomains, with no single feature of CD317 being either

sufficient or dispensable for this function (Billcliff et al., 2013).

The panel of CD317-based constructs consists of various
deletion and substitution constructs that were generated in a HA-
tagged and siRNA-resistant (SR) background (CD317-HA-SR)

(Billcliff et al., 2013) (Fig. 1A). The panel consists of a construct

that lacks the cytosolic domain of CD317 (DN-term) and one that

lacks the GPI addition motif (DGPI). In addition, two constructs

were generated in which the GPI anchor was replaced by a TM

domain from another protein. Insertion of the CD8a TM domain,

which would be predicted to lead to localisation to non-

membrane microdomain regions of the plasma membrane

(Pang et al., 2007), generated a DGPI-CD8 chimeric construct.

Similarly, a DGPI-CD44 chimera was produced by insertion of

the TM domain from CD44, a construct that was designed to be

membrane microdomain-associated, given that the TM domain of

CD44 confers a high affinity for membrane microdomains upon

CD44 (Neame et al., 1995; Perschl et al., 1995). A final

construct, designated C3A, was generated where protein

dimerisation was severely impaired by mutation of all three

extracellular cysteines to alanine residues. Thus, this group of

CD317 constructs addressed the importance of the amino

terminal cytosolic region; localisation to membrane

microdomains (and, with the DGPI-CD8/CD44 constructs, the

specific requirement for a GPI anchor, as opposed to an

alternative membrane microdomain localisation motif); and

disulphide bond mediated stabilisation of the coiled coil dimer,

for CD317’s putative role in membrane microdomain

organisation.

Sucrose density gradient experiments on HeLa cells expressing

the various CD317-HA-SR constructs demonstrated that

membrane microdomain localisation of CD317 is not

dependent upon protein dimerisation or the presence of the

amino terminal cytosolic domain (Billcliff et al., 2013).

However, as anticipated, the GPI anchor was critical for the

partitioning of CD317 into membrane microdomains, and neither

the CD8 nor the CD44 TM domains could functionally replace

the GPI anchor, with regard to partitioning CD317 into

membrane microdomains (Billcliff et al., 2013). These data

contrast with work published by Andrew et al., which suggested

that replacement of the GPI addition motif with the TM domains

of either the membrane microdomain-associated protein CD40 or

the non-membrane microdomain proteins CD45 or the TfR had

no effect on the membrane microdomain localisation of CD317

(Andrew et al., 2011). A possible reason for the discrepancy

between the findings of Andrew et al. and our previously

published data is that Andrew et al. examined membrane

microdomain localisation of the CD317 constructs in HEK293-

T cells (Andrew et al., 2011), whilst our previous work (Billcliff

et al., 2013) utilised HeLa cells. Given that CD317 is not

expressed in unstimulated HEK293-T cells, but is expressed in

HeLa cells (Neil et al., 2008), it is conceivable that hetero-

dimerisation with endogenous CD317 could explain the differing

results that have been seen. Consequently, the distribution of our

panel of CD317-based constructs on sucrose gradients was

examined in HEK293-T cells (Fig. 1B,C). No significant

differences in protein partitioning into membrane microdomains

were seen between HEK293-T cells and HeLa cells (Billcliff

et al., 2013), with neither the CD8 nor the CD44 TM domains

being able to restore membrane microdomain localisation of a

CD317 construct that lacked the GPI addition sequence. The

inability of the CD44 TM domain to confer a high affinity for

membrane microdomains on DGPI-CD44 CD317-HA-SR led us

to question whether additional regions of CD44 might be

required in order to restore efficient membrane microdomain
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partitioning upon a CD317 protein that lacks the GPI addition

motif.

The addition of a cytosolic tail sequence causes aberrant

processing of CD317-DGPI-CD44

Research published in 2006 (Thankamony and Knudson, 2006),

in which HEK293-T cells were stably transfected with a

construct encoding CD44, demonstrated that, in addition to the

TM domain of CD44, palmitoylation of specific residues is

essential for it to localise to membrane microdomains (as assayed

by lysis of samples in Triton X-100 followed by sucrose density

gradient ultracentrifugation). Palmitoylation of two cysteine

residues, C286 located within the TM domain, and C295 in the

cytoplasmic tail at the carboxyl terminal end of the protein, was

required for targeting of CD44 to membrane microdomains.

Given that the CD317 DGPI-CD44 construct contains only the

TM domain-localised C286 from CD44 (but not C295), it is

possible that partitioning of the chimeric protein into membrane

microdomains is impaired in the absence of the additional

palmitoylation site provided by residue C295. To investigate this

possibility, a second DGPI-CD44 chimeric construct was

generated, identical to the original construct except for the

addition of the ten amino acids of the cytoplasmic tail that are

directly C-terminal to the TM domain (this includes C295). The

new construct, designated DGPI-CD44P, is depicted in Fig. 2A,

alongside DGPI-CD44. Two other, related, constructs, were also

designed, in which the CD317 amino terminal region was

removed from the two DGPI-CD44 constructs, to generate

constructs designated DN-term-DGPI-CD44 and DN-term-DGPI-

CD44P (Fig. 2A).

Surprisingly, the DGPI-CD44P protein, when expressed in

HeLa cells, appeared as a single species with a molecular weight

of about 26 kDa (or, as several species, where the predominant

one was 26 kDa – Fig. 2B, left panel). The size of this species is

Fig. 1. The CD44 transmembrane domain

does not restore membrane microdomain

association of a CD317 construct lacking the

GPI anchor. (A) Schematic of CD317
constructs. See main text for details. Rounded
rectangles represent TM domains (dark blue –
tetherin; green – CD8; cyan – CD44); yellow
triangles, GPI anchor; orange bars, HA tag; red

lines, actin cytoskeleton. (B) DRM/non DRM
localisation of CD317 constructs. Immunoblot
analysis of fractions from sucrose-density-
gradient separation of HEK293-T cell lysates
from cells transfected with the indicated
CD317 constructs. Fractions were taken from
the top of the gradient (i.e. fraction 1 is the

most buoyant), and blots were probed with
HA, flotillin-2 and CD99 antibodies, as
indicated. (C) DRM localisation (protein in
flotillin-2 positive fractions) was quantified by
densitometry, with values given as protein
localised to DRM as a percentage of total

protein, 6 s.e.m. (n52).
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Fig. 2. The addition of a cytosolic tail sequence causes aberrant processing of CD317-DGPI-CD44. (A) Schematic of CD317-DGPI-CD44 constructs. Rounded

rectangles represent TM domains (dark blue – CD317; cyan – CD44); yellow triangles, GPI anchor; orange bars, HA tag; red lines, actin cytoskeleton. Beneath
schematic, the sequences of the DGPI-CD44 and DGPI-CD44P constructs after the end of the CD317 region. CD44 TM domain in cyan; cytosolic tail in pale blue;
palmitoylation sites in black, underlined. Numbers above sequences are residue numbers in CD44 transcript variant 4. Purple, motif to ensure constructs are delivered
to the cell surface (Jackson et al., 1990). See main text, and Materials and Methods, for details. (B) Cell lysates from HeLa cells transiently co-transfected with siRNA
targeting CD317 and the indicated CD317-HA-SR constructs were prepared in sample buffer, separated by SDS-PAGE and immunoblotted with antibodies specific to
HA, b-actin or a-tubulin. Molecular mass markers are indicated in kilodaltons. (C) HeLa cells were co-transfected with siRNA targeting CD317 and the indicated

CD317-HA-SR constructs and, 48 hours later, permeabilised by methanol fixation followed by immunofluorescence detection of the HA epitope to visualise whole
cell localisation of CD317. (D,E) HeLa cells were co-transfected with siRNA targeting CD317 and the indicated CD317-HA-SR constructs and, 48 hours later,
incubated with an antibody specific to HA to look at protein expression, before surface expression was monitored by flow cytometry in the PE channel. Quantification
of CD317-HA-SR surface expression. Values indicate total fluorescence of transfected cells. (E) HEK293-T cells were transfected with the indicated CD317-HA-SR
constructs and, 24 hours later, incubated with an anti-HA antibody before surface expression was monitored by flow cytometry in the PE channel. Values indicate
total fluorescence of transfected cells. Data represent mean (6 s.e.m.) from two independent experiments. Scale bars: 10 mm.
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consistent with the immature, unglycosylated form of CD317
(Andrew et al., 2009), suggesting the DGPI-CD44P construct is

not being processed properly, and as a result is being trapped in
the ER. Consistent with this theory, a high proportion of DGPI-
CD44P-expressing HeLa cells displayed a bright perinuclear ring
of immunofluorescence, indicative of localisation to the ER,

when examined by immunofluorescence confocal microscopy
(Fig. 2C). Additionally, flow cytometry analysis illustrated that
that there was a greater than 50% reduction in total cell surface

protein levels of DGPI-CD44P, relative to DGPI-CD44 (Fig. 2D).
Together, these data demonstrate that, in HeLa cells, the addition
of the cytoplasmic tail of CD44 to the DGPI-CD44 chimeric

construct causes aberrant processing of the resultant construct.
Although impairment in delivery of the DGPI-CD44P construct
to the plasma membrane was also seen in HEK293-T cells, this
effect was far subtler than that seen in HeLa cells, with only a

20% reduction in total cell surface protein levels seen (Fig. 2E).
In accordance with this, immunoblot (supplementary material
Fig. S1A) and immunofluorescence analysis of methanol-fixed

cells (supplementary material Fig. S1B) illustrated that the DGPI-
CD44P construct was processed far more efficiently in HEK293-
T cells than in HeLa cells, with the majority of the protein being

both properly glycosylated, and transported from the ER. In sharp
contrast to the DGPI-CD44P construct, both the DN-term-DGPI-
CD44 and DN-term-DGPI-CD44P proteins largely reflect the

DGPI-CD44 construct with regards to appearance on immuno-
blots, localisation in methanol-fixed cells, and delivery to the
PM. This was the case in both HeLa and HEK293-T cells (Fig. 2;
supplementary material Fig. S1).

Deletion of the CD317 N-terminus increases the partitioning of
DGPI-CD44 into membrane microdomains in HEK293-T cells

To establish whether addition of the second palmitoylation site of
CD44 to the DGPI-CD44 construct, or the removal of the CD317
N-terminal cytosolic region from the DGPI-CD44 chimeric

proteins, impacted upon their partitioning into membrane
microdomains, HeLa and HEK293-T cells were transiently
transfected with each DGPI-CD44 construct, and subsequently
lysed in Triton X-100 before samples were separated by

ultracentrifugation on a sucrose density gradient. Neither the
addition of the cytosolic tail of CD44 to, nor the removal of the
CD317 N-terminal region from, DGPI-CD44 affected the

localisation of the DGPI-CD44 chimera to DRMs in HeLa cells

(Fig. 3A; see supplementary material Fig. S2A for immunoblots).
In HEK29-T cells, however, the results were more complicated

(Fig. 3B; see supplementary material Fig. S2B for immunoblots).
Whilst approximately two-fold less DGPI-CD44 was present in
DRMs compared to WT CD317-HA-SR, even less (just over 10%
of total protein, or under 25% relative to the WT protein) of the

DGPI-CD44P construct was present in DRMs. With regards to
the DN-term-DGPI-CD44 constructs, the removal of the cytosolic
terminal domain of CD317 resulted in an increase in the

proportion of both the DN-term-DGPI-CD44 constructs that were
present in DRMs of HEK293-T cells. The increases were only
small, resulting in about 30% more of both DN-term-DGPI-CD44

and DN-term-DGPI-CD44P partitioning into membrane micro-
domains, relative to DGPI-CD44 and DGPI-CD44P, respectively
(Fig. 3). Thus, there was 50% of DN-term-DGPI-CD44 in DRMs
relative to WT. However, the greater propensity of the DN-term-

DGPI-CD44 constructs to reside in DRMs (as compared to the
equivalent DGPI-CD44 constructs) indicates that, at least in
HEK293-T cells, the removal of the N-terminal region of CD317

is enough to increase the DRM localisation of a CD317 construct
in which the GPI anchor has been replaced by the TM domain of
CD44.

DGPI-CD44 CD317 constructs are not palmitoylated when
expressed in HEK293-T cells

The greatly reduced partitioning into membrane microdomains in
HEK293-T cells of both the DGPI-CD44 and DGPI-CD44P
constructs, relative to WT CD317-HA-SR, suggests that the TM
domain of CD44 is unable to functionally replace the GPI anchor

of CD317, with respect to localising CD317 to membrane
microdomains. This is particularly surprising in the case of the
DGPI-CD44P construct, given that it contains both of the

palmitoylation sites that are essential for membrane
microdomain localisation of CD44 (Thankamony and Knudson,
2006). We therefore questioned whether the DGPI-CD44 and/or

DGPI-CD44P constructs were efficiently palmitoylated.
HEK293-T cells were transfected with each of the WT, DGPI-
CD8, DGPI-CD44, or DGPI-CD44P CD317-HA-SR constructs,
or an HA-tagged form of the palmitoyl acyl transferase DHHC3

(which is known to undergo auto-palmitoylation (Fukata et al.,
2006)) as a positive control. Transfected cells were incubated
with 3H-labelled palmitic acid, and incorporation of 3H-palmitate

measured (as outlined in Materials and Methods). A clearly

Fig. 3. The deletion of the CD317 amino

terminus leads to greater partitioning of

CD317 DGPI-CD44 into HEK293-T cell

membrane microdomains. DRM/non-DRM
localisation of CD317 DGPI-CD44
constructs. HeLa (A) or HEK293-T cells (B)
transfected with the indicated construct were
lysed and DRMs prepared as described in

Materials and Methods. DRM localisation
(protein in flotillin-2 positive fractions) was
quantified by densitometry, with values given
as protein localised to DRMs as a percentage
of total protein, 6 s.e.m. (n52).
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distinguishable 3H-labelled band was detected in lysates from

cells expressing DHHC3 (Fig. 4A); this was of the same

molecular weight as the predominant band visible in the

corresponding immunoblot probed with an anti-HA antibody

(Fig. 4B). However, only background 3H-labelled bands were

detected in the samples from cells transfected with the CD317-

HA-SR constructs, despite the constructs being expressed to a

similar degree to the DHHC3 construct, as illustrated in the anti-

HA immunoblot (Fig. 4B). Thus, the lack of any detectable

palmitoylation of either of the DGPI-CD44 or DGPI-CD44P

constructs provides one possible explanation for their reduced

partitioning into membrane microdomains in HEK293-T cells, in

comparison to the WT construct.

The N-terminus of CD317 reduces the affinity of membrane

proteins for membrane microdomains when heterologously

expressed

The increased affinity for membrane microdomain of both the

DGPI-CD44 and DGPI-CD44P constructs for DRMs in HEK293-

T cells following the removal of the cytosolic domain of CD317

(Fig. 3) raised the possibility that the CD317 cytosolic domain

might reduce the affinity of membrane proteins for membrane

microdomains when heterologously expressed. To test this

theory, artificial tetherin (Art-Teth) was used as the host

protein. Art-Teth is an entirely synthetic protein construct that

consists of the N-terminus, TM domain and part of the

extracellular stalk of the Transferrin receptor (TfR), the

extracellular coiled coil region of dystrophia myotonica protein

kinase (DMPK), and the GPI anchor addition motif of urokinase

plasminogen activator receptor (uPAR) (Perez-Caballero et al.,

2009). Thus, despite an absence of any sequence homology, Art-

Teth assumes the same overall topology as CD317 (Fig. 5A). To

address the importance of the cytosolic domain of CD317 for

protein localisation to membrane microdomains, the cytosolic

region of Art-Teth was replaced by the cytosolic region of

CD317, to produce a chimeric construct that was designated WT

N-ArtTeth (Fig. 5A). Both the Art-Teth and WT N-ArtTeth

constructs were expressed and efficiently transported to the cell

surface in transiently transfected HeLa and HEK293-T cells

(Fig. 5B,C). It is notable that, whilst the Art-Teth protein fails to

display a juxtanuclear pool of protein when expressed in HeLa

cells, the WT N-ArtTeth chimera does do so, and is comparable

to WT CD317-HA-SR in this respect (Fig. 5D).

HeLa and HEK293-T cells were transiently transfected with

plasmids encoding either WT CD317-HA-SR or one of the

artificial tetherin constructs, and subsequently lysed in Triton X-

100 and samples separated by ultracentrifugation on sucrose

density gradients. Art-Teth partitioned into DRMs in HeLa cells,

although there was an approximately five-fold reduction in the

proportion of protein that was DRM associated, in comparison to

WT CD317-HA-SR (Fig. 5E; see supplementary material Fig.

S3A for immunoblots). In contrast, the WT N-ArtTeth chimera

was excluded entirely from DRMs of HeLa cells (Fig. 5E;

supplementary material Fig. S3). Additionally, whilst the Art-

Teth construct partitioned into DRMs in HEK293-T cells with

similar efficiency to WT CD317-HA-SR, the affinity of the WT

N-ArtTeth chimera for DRMs was significantly reduced,

although not completely abrogated (Fig. 5F; see supplementary

material Fig. S3B for immunoblots). These data indicate that the

CD317 cytosolic domain reduces the affinity of Art-Teth for

DRMs, and are consistent with the theory that the cytosolic

domain of CD317 acts as a ‘membrane microdomain-exclusion’

motif.

The long and short isoforms of CD317 do not differ in their
affinity for membrane microdomains

In a recent publication (Cocka and Bates, 2012), expression of

two distinct isoforms of CD317 was described for the first time.

The two isoforms, designated long (l-CD317) and short (s-

CD317), are produced through alternative translation initiation

Fig. 4. Palmitoylation of the DGPI-CD44 constructs is undetectable by 3H-palimtate labelling. HEK293-T cells were transfected with the indicated CD317-HA-

SR construct, or DHHC3. Twenty-four hours later, cells were labelled for 3 hours with [3H]palmitate. Samples were separated by SDS-PAGE, and duplicate
membranes transferred onto nitrocellulose for visualisation of the 3H signal with the aid of an intensifier screen (A), or for immunoblotting with an anti-HA antibody
(B). Molecular mass markers are indicated in kilodaltons.
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from two methionine residues within the cytosolic domain of

CD317. Whilst the l-CD317 isoform is generated via initiation at

the methionine residue at position 1, translation initiation at a

downstream methionine (at position 13) results in production of

the s-CD317 isoform, which is thus twelve amino acids shorter

than the l-CD317 isoform (Cocka and Bates, 2012) (Fig. 6A).

The two isoforms of CD317 differ significantly in their biological

properties. Whilst l-CD317 is sensitive to HIV-1 Vpu-mediated

downregulation and potently activates the NF-kB pathway, s-

CD317 is highly resistant to HIV-1 Vpu-mediated

downregulation, and does not activate NF-kB (Cocka and

Bates, 2012). Given these divergent properties, and given also

that our data indicate that the full cytosolic domain of CD317

behaves as a ‘membrane microdomain-exclusion’ motif (Figs 3,

5), we reasoned that the two isoforms of CD317 might also differ

in their affinity for membrane microdomains, and that this might

explain their divergent properties. We therefore generated the

two isoforms in the CD317-HA-SR backbone (Fig. 6A).

Exclusive generation of l-CD317 was achieved by mutating the

M13 residue to an isoleucine (M13I); this mutation has

previously been shown to prevent production of the s-CD317

isoform (Cocka and Bates, 2012). To produce an s-CD317

isoform construct, the first twelve amino acids were removed

from the cytosolic domain of CD317-HA-SR, resulting in the

methionine at position 13 being the site of translation initiation.

Cocka and Bates used HeLa and HEK293-T cells for their

studies, in addition to HT1080 cells (Cocka and Bates, 2012).

Consequently, we also employed both HeLa and HEK293-T

cells. Both l-CD317 and s-CD317 were expressed and delivered

to the cell surface with an efficiency that was similar to that of

WT CD317-HA-SR in transiently transfected HeLa and

HEK293-T cells (Fig. 6B–E; supplementary material Fig. S4).

Subsequently, the membrane microdomain localisation of the two

isoforms was examined by transient transfection of HeLa or

Fig. 5. The cytosolic domain of CD317

reduces the affinity of artificial tetherin for

membrane microdomains. (A) Left:
schematic of artificial tetherin constructs. See
main text, and Materials and Methods, for
details. Rounded rectangles represent TM
domains (dark blue – CD317; red – TfR);

triangles, GPI anchor; orange bars, HA tag;
smaller rounder rectangles coiled coil
domains. Right: amino terminal cytosolic
region of artificial tetherin constructs.
(B,C) Cell lysates from HeLa cells (B) or
HEK293-T cells (C) transiently transfected
with the indicated artificial tetherin

constructs, or WT CD317-HA-SR, were
prepared in sample buffer, separated by SDS-
PAGE and immunoblotted with antibodies
specific to TfR or HA. Molecular mass
markers are indicated in kilodaltons.
Presumed degradation products of the Art-

Teth constructs are indicated by arrowheads.
(D) HeLa cells were transfected with the
indicated artificial tetherin construct, or WT
CD317-HA-SR, and, 48 hours later,
permeabilised by methanol fixation followed
by immunofluorescence detection of the HA
epitope to visualise whole cell localisation of

protein. (E,F) DRM/non-DRM localisation of
artificial tetherin constructs. HeLa (E) or
HEK293-T cells (F) transfected with the
indicated construct were lysed and DRMs
prepared as described in Materials and
Methods. DRM localisation (protein in

flotillin-2 positive fractions) was quantified
by densitometry, with values given as protein
localised to DRM as a percentage of total
protein, 6 s.e.m. (n52). Scale bars: 10 mm.
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HEK293-T cells followed by lysis in Triton X-100 and separation

of samples by ultracentrifugation on sucrose density gradients. The

DRM affinity of both the long and short CD317 isoforms was

similar to WT CD317-HA-SR, in HeLa and HEK293-T cells

(Fig. 6F,G; see supplementary material Fig. S5 for immunoblots).

This indicates that the DRM affinity of the two CD317 isoforms is

similar, and that the removal of the first twelve amino acids of the

cytosolic domain of CD317 does not significantly impact upon the

partitioning of CD317 into membrane microdomains.

The long and short isoforms of CD317 differentially activate the
NF-kB pathway despite the fact that both are localised to
membrane microdomains with similar efficiency

Membrane microdomains have been implicated in NF-kB

signalling (Oakley et al., 2009; Waterfield et al., 2010; Huang

et al., 2011), and so a protein’s relative affinity for such

microdomains could impact upon that protein’s capacity to

activate NF-kB. Thus, given that the affinity of the long and short

isoforms of CD317 for membrane microdomains did not differ

significantly from one another, it might have been expected that

the two proteins would also activate the NF-kB pathway to a

similar degree. However, and consistent with previous

observations (Cocka and Bates, 2012), the two isoforms

differed markedly in their ability to activate NF-kB (Fig. 7).

Whilst the l-CD317 isoform potently activated the NF-kB

pathway, to a level almost two-fold greater than that of WT

CD317, s-CD317 was a poor activator of the pathway. Indeed,

the s-CD317 isoform was only slightly more effective at

activating NF-kB than a CD317 construct lacking the entirety

of the cytosolic domain (DN-term, Fig. 7).

Fig. 6. The long and short isoforms of

CD317 do not differ in their affinity for

membrane microdomains. (A) Amino
terminal cytosolic region of WT, l-, and s-

CD317 constructs. (B) Cell lysates from
HeLa cells transiently transfected with the
indicated CD317-HA-SR constructs were
prepared in sample buffer, separated by SDS-
PAGE and immunoblotted with antibodies
specific to a-tubulin or HA. Molecular mass
markers are indicated in kilodaltons.

(C) HeLa cells were transfected with the
indicated CD317-HA-SR construct and,
48 hours later, permeabilised by methanol
fixation followed by immunofluorescence
detection of the HA epitope to visualise
whole cell localisation of CD317. (D) HeLa

cells were co-transfected with siRNA
targeting CD317 and the indicated CD317-
HA-SR constructs and, 48 hours later,
incubated with an antibody specific to HA to
look at protein expression, before surface
expression was monitored by flow cytometry
in the PE channel. Quantification of CD317-

HA-SR surface expression. Values indicate
total fluorescence of transfected cells.
(E) HEK293-T cells were transfected with the
indicated CD317-HA-SR constructs and,
24 hours later, incubated with an anti-HA
antibody before surface expression was

monitored by flow cytometry in the PE
channel. Values indicate total fluorescence of
transfected cells. (F,G) DRM/non-DRM
localisation of CD317-HA-SR constructs.
HeLa (F) or HEK293-T cells (G) transfected
with the indicated construct were lysed and
DRMs prepared as described in Materials and

Methods. DRM localisation (protein in
flotillin-2 positive fractions) was quantified
by densitometry, with values given as protein
localised to DRM as a percentage of total
protein. Data represent mean (6 s.e.m.) from
two independent experiments. Scale bars:

10 mm.
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Discussion
The data presented herein further our understanding of both the

association of GPI-anchored proteins generally, and CD317

specifically, with membrane microdomains. The GPI anchor is

essential for membrane microdomain association of CD317, and

the heterologous expression of the TM domain of CD44 in DGPI-

CD317 is unable to restore CD317’s partitioning into membrane

microdomains. For the first time, the relative affinity for

membrane microdomains of two recently described isoforms of

CD317 is examined, and our data indicate that the two isoforms

maintain a similar affinity for membrane microdomains.

Furthermore, we present the first evidence, to our knowledge,

of a protein ‘membrane microdomain-exclusion’ signal, with the

heterologous expression of the cytosolic region of CD317

reducing the membrane microdomain association of Art-Teth.

It is of note that whilst addition of the cytosolic tail of CD317 to

Art-Teth reduced membrane microdomain association of Art-

Teth, its removal from WT CD317 had little effect on the

association of the molecule with DRMs. This is consistent with

there being a hierarchy of ‘membrane microdomain-association’

and ‘membrane microdomain-exclusion’ motifs/signals in

CD317 (and in other proteins) and that, in the case of WT

CD317, the N-terminal cytosolic domain is insufficient to over-

ride the microdomain-association characteristics, whereas in the

case of Art-Teth it is able to do so.

The requirement of the GPI addition motif for membrane

microdomain partitioning of CD317 in HEK293-T cells, as

illustrated herein (Fig. 1) is entirely consistent with our previous

findings in HeLa cells (Billcliff et al., 2013). In addition, other

research has shown that the GPI anchor is required for CD317 to

associate with DRMs (Kupzig et al., 2003; Masuyama et al.,

2009; Rollason et al., 2009). Furthermore, the GPI anchor is

required for clustering of CD317 molecules on the cell surface

(Lehmann et al., 2011). Although our data suggest an absolute

requirement for the GPI anchor for membrane microdomain

association of CD317, with the TM domains of neither CD8 nor

CD44 effectively restoring membrane microdomain association

of CD317-HA-SR DGPI (Fig. 1) (Billcliff et al., 2013),

contradictory data are provided in the work of Andrew et al.

(Andrew et al., 2011). In this paper (Andrew et al., 2011), the

group found that the addition of the TM domain of CD40 – which

has previously been shown to be required for membrane

microdomain localisation of CD40 (Vidalain et al., 2000; Bock

and Gulbins, 2003) – was sufficient to partition the resultant

DGPI-CD40 chimera into membrane microdomains (Andrew

et al., 2011). More surprisingly, two other chimeric constructs,

DGPI-CD45 and DGPI-TfR, containing the TM domains of the

non-membrane microdomain proteins CD45 (Cheng et al., 1999)

and the TfR (Sakane et al., 2010), respectively, also localized to

membrane microdomains with similar efficiency to the DGPI-

CD40 protein (Andrew et al., 2011). In sharp contrast, the DGPI-

CD8 construct used here, containing the non-membrane

microdomain TM domain of CD8a (Pang et al., 2007), is

excluded from DRMs. It is hard to reconcile the contrasting

membrane microdomain affinities of the CD317 DGPI chimeric

constructs we have generated and those described by Andrew

et al. However, given that the DGPI-CD44 and DGPI-CD44P

constructs we have generated are not efficiently palmitoylated in

HEK293-T cells (Fig. 4), it is conceivable that improper post-

translational modification of these constructs may underlie their

impaired partitioning into membrane microdomains, relative to

both WT CD317-HA-SR (Fig. 1) (Billcliff et al., 2013) and the

DGPI-CD40 construct employed in the work of Andrew et al.

(Andrew et al., 2011). Based on their findings, including data that

suggested that the C-terminal region of CD317 protrudes into the

cytoplasm, Andrew et al. concluded that human CD317 contains

a second TM domain rather than a GPI addition sequence.

However, it is of note that proteomics analysis has independently

identified CD317 as a GPI-anchored protein (Elortza et al.,

2006). Thus, it is possible that CD317 can exist with either a C-

terminal GPI anchor or a C-terminal TM domain.

The s-CD317 isoform, lacking the first twelve amino acids at

the amino terminus of the protein, is impaired in its ability to

activate the NF-kB pathway, but also more resistant to HIV-1

Vpu-mediated downregulation, relative to the l-CD317 isoform

(Cocka and Bates, 2012). However, the relative affinities of the

two isoforms for membrane microdomains are similar in both

HeLa and HEK293-T cells (Fig. 6). This suggests that the first

twelve amino acids of CD317 are not important for membrane

microdomain association of the protein. Nevertheless, the

cytosolic region, as a whole, functions in determining protein

membrane microdomain association, given that the inclusion of

the cytosolic tail of CD317 in a heterologous protein, Art-Teth,

reduces the resultant protein’s affinity for membrane

microdomains (Fig. 5). Consistent with the N-terminal domain

of CD317 behaving as a ‘membrane microdomain-exclusion’

signal, the removal of this region from the DGPI-CD44 CD317-

HA-SR construct leads to an increase in membrane microdomain

association of that protein in HEK293-T cells (Fig. 3). The

observation that the cytosolic region of a protein can act to

Fig. 7. The long and short isoforms of CD317 differentially

activate the NF-kB pathway. HEK293-T cells were transfected

with reporter plasmids (50 ng of pNF-kB-Luc, 12.5 ng of pRL-
SV40) and 50 ng of experimental plasmids encoding WT
CD317-HA-SR or, for a negative control, HA-tagged placental
alkaline phosphatase (HuPLAP-HA). Twenty-four hours later,
cells were lysed, and Firefly and Renilla luciferase activities
measured, and then standardised for differences in protein
expression by flow cytometry. Flow cytometry on each construct

was performed in duplicate 12 well plates contemporaneously
with the luciferase experiments, each treatment of which was
performed in octuplicate. Data are presented as Firefly:Renilla
activity ratios normalised to FACS protein surface expression
data. Data represent the mean (6 s.e.m.) from two
independent experiments.
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restrict or exclude a normally membrane microdomain-associated

protein, is certainly worthy of further study.

Materials and Methods
CD317 expression construct and plasmids
The previously described (Rollason et al., 2009) hairpin siRNA oligonucleotide 59-
CCAGGTCTTAAGCGTGAGA-39 (corresponding to base pairs 432–450 of the
human CD317 sequence) was used to knockdown CD317. The creation of WT, DN-
term, DGPI, DGPI-CD8, DGPI-CD44 and C3A constructs in the siRNA-resistant,
HA-tagged CD317 background was described previously (Billcliff et al., 2013). The
DGPI-CD44P construct was generated in an identical manner to the DGPI-CD44
construct, using complementary overlapping primers, except that residues 266 to 300
(rather than 266 to 290) of CD44 transcript variant 4 were incorporated into the
chimeric construct. This added a second palmitoylation site, C295, to the resultant
protein. The DNt-term-DGPI-CD44 and DNt-term-DGPI-CD44P constructs, in
which the sequence encoding the first twenty amino acids of CD317 was deleted
from the protein, were generated using pcr3.1-DGPI-CD44 and pcr3.1-DGPI-CD44P
plasmids as templates, respectively, and PCR primers to the relevant sequences.

The ‘artificial tetherin’ construct, consisting of part of the transferrin receptor
(TfR) cytosolic domain, its TM region and part of the extracellular stalk, the coiled-
coil of DMPK (dystrophia myotonica protein kinase), an HA epitope tag and the C-
terminus (including GPI addition motif) of uPAR (urokinase plasminogen activator
receptor) ligated together to form a protein that mimics tetherin’s topology, has been
described previously (Perez-Caballero et al., 2009), and was a gift from Paul
Bieniasz (Rockefeller University, New York, NY, USA). A chimeric human CD317
artificial tetherin construct, designated WT N-ArtTeth, consisting of the amino
terminal cytosolic region of human CD317 attached to the amino terminus of
artificial tetherin, was generated by annealing a DNA sequence encoding the entirety
of the human CD317 cytosolic region (amino acid residues 1–20) to an ‘artificial
tetherin’ PCR product designed to begin at the transmembrane domain of the TfR
(therefore lacking the twenty cytosolic amino acids of the TfR found in the original
artificial tetherin construct) using complementary overlapping primers.

Imaging
Immunofluorescence confocal microscopy was performed as described previously
(Billcliff et al., 2013). Briefly, HeLa cells grown on cover slips were co-transfected
with CD317 siRNA and CD317-HA-siRNA resistant expression constructs (X-
tremeGENE; Roche) and cultured for a further 48 hours before processing for
immunofluorescence analysis. Cells were then immediately fixed and
permeabilised in methanol to allow detection of whole-cell distribution of
protein, incubated with the primary anti-HA antibody (Covance) for 1 hr, washed
with PBS and then incubated with Alexa-Fluor 488-conjugated secondary donkey
anti-mouse antibody for 1 hr. To assay protein delivery to the cell surface, cells
were instead incubated with the primary anti-HA antibody for 20 minutes on ice
prior to fixation in 3% formaldehyde, washed with PBS, and incubated with the
same Alexa-Fluor 488-conjugated secondary antibody for 1 hr. Labelled cells were
imaged using a confocal laser-scanning microscope (AOBS SP2; Leica) equipped
with Ar (458, 476, 488, 496, 514 nm lines) and 405 nm diode lasers attached to an
inverted epifluorescence microscope (DMRBE2; Leica). Images were collected
using a 636 NA 1.4 oil immersion objective and processed with Leica and
Photoshop (Adobe) software.

Detergent resistant membrane isolation
Cells were grown in 10 cm plates to 50% confluency, transfected with siRNA and/
or plasmid and incubated for a further 48 hours. On ice, cells were scraped into
2 mls of TNE + 1% Triton X-100 and passed 8 times through a 21 g needle. After
30 mins incubation on ice the lysate was bought up to 40% sucrose by addition of
2 mls of 80% sucrose in TNE in a 12 ml centrifuge tube. Five mls of 35% sucrose
in TNE was layered on top followed by 1 ml each of 15% sucrose, 1% sucrose and
TNE. The gradients were spun at 34 000 rpm in a Sorval TH.641 swing out rotor
for 18 hours at 4 C̊. One ml fractions were taken and the protein precipitated by
addition of 0.25 volume of 100% TCA (Trichloroacetic Acid). Fractions were
resuspended in sample buffer (10% sodiumdodecyl sulphate, 10% b-
mercaptoethanol).

Protein localisation to DRMs was quantified using Photoshop CS2 (Adobe).
Immunoblots were converted to gray-scale images and inverted. Protein bands
were selected using the lasso tool copied to a new layer, and mean pixel intensity
determined for both total protein (protein from all eleven fractions of the gradient)
and for DRM-localised protein (protein in the flotillin-2-positive fractions). Excel
2007 (Microsoft) was used to generate bar charts, representing the percentage of
total protein localised to DRMs.

Luciferase reporter assay
Luciferase assays were performed in 96 well plates as described previously
(Billcliff et al., 2013). Briefly, in each well of a black 96-well plate (Greiner),
16104 293-T cells were seeded and, 24 hours later, transfected with 50 ng of

CD317 or control plasmid together with 50 ng of reporter plasmid and 12.5 ng of
transfection control plasmid, using 0.4 ml Genejuice (Merck Chemicals); total
DNA levels were equalised with sheared salmon sperm DNA (Sigma). Twenty-
four hours post-transfection, cells were harvested and assayed using the Dual-Glo
Luciferase System (Promega), according to the manufacturer’s instructions. The
reporter plasmid, pNF-kB-Luc, contains Firefly luciferase downstream of an NF-
kB responsive promoter; the transfection control plasmid, pRL-SV40 (Promega),
contains Renilla luciferase downstream of the constitutive SV40 promoter.
Negative and positive controls were performed using pGL3, where Firefly
luciferase is under the control of no promoter, and pFC-MEKK (Stratagene),
respectively. Each treatment was carried out in octuplicate.

To take protein expression variations into account, flow cytometry was
performed contemporaneously with the luciferase assay. In each well of a 12
well plate, 1.276105 293-T cells were seeded and, 24 hours later, transfected with
the same mixture of plasmids as were the 96 well plates, except that each well of a
12 well plate was treated with 12.7 times the amount of transfection mixture used
for a well of a 96 well plate. Twenty-four hours post-transfection, cells were
washed in PBS and resuspended in PBSA (PBS, 1% BSA) containing primary anti-
HA antibody, and incubated for 1 hour. Cells were then washed once in ice-cold
PBS, and incubated with PE conjugated anti-mouse secondary antibodies for
1 hour at 4 C̊. Fluorescence signals were measured using a FACS CantoII-F60
machine (BD Biosciences, Oxford, UK). Data were analyzed using Flowjo 7.2.5
software (Flowjo, Ashland, OR, USA). Each treatment was performed in duplicate.
Subsequent to data analysis, luciferase data were normalised to mean PE
fluorescence signals.
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