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Ratio‑based multi‑level resistive 
memory cells
Miguel Angel Lastras‑Montaño  1*, Osvaldo Del Pozo‑Zamudio  1, Lev Glebsky  1, 
Meiran Zhao  2, Huaqiang Wu  2 & Kwang‑Ting Cheng  3*

Ratio-based encoding has recently been proposed for single-level resistive memory cells, in which 
the resistance ratio of a pair of resistance-switching devices, rather than the resistance of a single 
device (i.e. resistance-based encoding), is used for encoding single-bit information, which significantly 
reduces the bit error probability. Generalizing this concept for multi-level cells, we propose a ratio-
based information encoding mechanism and demonstrate its advantages over the resistance-based 
encoding for designing multi-level memory systems. We derive a closed-form expression for the bit 
error probability of ratio-based and resistance-based encodings as a function of the number of levels 
of the memory cell, the variance of the distribution of the resistive states, and the ON/OFF ratio of the 
resistive device, from which we prove that for a multi-level memory system using resistance-based 
encoding with bit error probability x, its corresponding bit error probability using ratio-based encoding 
will be reduced to x2 at the best case and x

√
2 at the worst case. We experimentally validated these 

findings on multiple resistance-switching devices and show that, compared to the resistance-based 
encoding on the same resistive devices, our approach achieves up to 3 orders of magnitude lower 
bit error probability, or alternatively it could reduce the cell’s programming time and programming 
energy by up 5–10× , while achieving the same bit error probability.

Resistive random-access memory (ReRAM) is a promising non-volatile memory technology for the next genera-
tion of high-performance and large capacity memories1. A ReRAM device encodes information by modulating 
the electrical resistance of a thin oxide layer that is sandwiched between two electrodes. The physical resistance-
switching mechanism in ReRAM devices have been described by the partial formation and destruction of a con-
ductive filament (CF) in the oxide layer2–4, and multiple resistance levels have been experimentally observed5–9, 
which opens up the possibility of multi-level cells (MLC) as well as analog-based computing9–14.

A major hurdle of this technology has been the large device-to-device and cycle-to-cycle variations7,9,15, that 
are due to the intrinsic stochasticity in the formation and destruction of the CF16. Such variations manifest in 
a large resistance distribution of the memory states, which is particularly problematic for MLC memories that 
require tight state distributions to reliably pack as many levels as possible into a memory cell. Extensive efforts 
have been made to address ReRAM device variations through multiple approaches, spanning from device and 
circuit improvements17–21, the use of a current compliance during the formation and destruction of the CF22–24, 
to higher level write-verify programming schemes based on iterative algorithms to achieve high-precision state 
tuning6,7,9,25.

To address the variability of MLC ReRAM devices, our proposal generalizes the idea in26 which uses the 
ratio of two devices’ resistances, rather than one device’s absolute resistance (Fig. 1a), to encode information. 
Specifically, we use two serially-connected resistance-switching devices configured as a voltage divider (Fig. 1b). 
The state of the memory cell is determined by applying a non-destructive read voltage Vread across the voltage 
divider and comparing the voltage at the mid-point ( Vstate ) to a reference voltage Vref  . The proposed solution is 
orthogonal to the mentioned device and circuit solutions, and in fact it greatly benefits from any improvements 
due to these sources.

To illustrate the potential of our ratio-based encoding (RatioBE) against the traditional resistance-based 
encoding (ReBE) in terms of the bit error probability (BEP), we first use a two-level resistance-switching device. 
Assume that the lowest ( Ron ) and highest ( Roff  ) resistance states of the device are log-normally distributed and 
centered in 1 k� (logic ‘1’) and 100 k� (logic ‘0’), respectively (Fig. 1c). Further defining a resistance reference 
Rref  , we estimate the BEP by deriving the probabilities Pr(Ron > Rref) and Pr(Roff < Rref) . Figure 1d shows with 
dashed lines such probabilities and with a solid line their sum, as a function of Rref  . The variances of the Ron and 
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Roff state distributions were assumed identical and so chosen to produce a minimum BEP of 10−3 and 10−4 for the 
black and red lines, respectively. If we connect two such devices ( R1 and R2 ) as a voltage divider (Fig. 1b) where 
one device is in Ron and the other device is in Roff  (i.e. either in a Ron|Roff  or Roff|Ron configuration), the distribu-
tions of the normalized output of the voltage divider ( Vstate/Vread ) becomes much tighter (Fig. 1e), and thus are 
significantly more robust for information encoding. Note that using the RatioBE not only reduces the BEP (e.g. 
10−5 vs 10−3 for ReBE), but also the reduction would be more significant as the device quality improves (e.g. as 
the variances of Ron and Roff  states reduce). For example, if a device improvement achieves a 10× BEP reduction 
from 10−3 to 10−4 under ReBE, the same level of device improvement will lead to 100× improvement from 10−5 
to 10−7 under RatioBE (compare solid lines in Fig. 1d and f). The lower BEP achieved by RatioBE should be 
intuitive as, under RatioBE, an error occurs only when the resistance of the Ron device becomes larger than that 
of the Roff  device in the voltage divider. The probability of such an event is much lower than the probability of a 
Ron (or Roff  ) device’s resistance to be higher (or lower) than Rref  , for which an error occurs under ReBE.

Multi‑level memory cells
A MLC is capable of storing multiple bits of information in a memory cell, effectively increasing the memory’s 
storage capacity without proportionately increasing the memory’s die area27. Regardless of the physical mecha-
nism used to encode the information, an n-level cell can encode log2(n) bits per cell, and needs n− 1 references 
to distinguish the n levels.

For a resistance-based MLC, the information is encoded based on the resistance of a single device (i.e. ReBE), 
as such, the resistance values of the levels and their references are relatively straightforward to determine. For 
example, if the device has the same variance across all targeted resistance values, the optimal values for the n levels 
and their optimal references would be uniformly distributed between the minimum and maximum resistance 
values (see for instance Fig. 2a). This is not true, however, for a ratio-based MLC which consists of two devices 
per cell, namely R1 and R2 . When determining the target mean resistance values of these two devices for an 

Figure 1.   Memory encoding comparison in a two-level cell. (a) Configuration used to encode and read a 
cell using ReBE. (b) Voltage divider configuration used to encode and read a cell using RatioBE. (c) State 
distribution of the lowest ( Ron ) and highest ( Roff ) resistance states. d, BEP using the traditional resistance-based 
approach as a function of the reference in ohms. (e) State distribution under RatioBE. (f) BEP for the RatioBE as 
a function of the normalized reference. For both (d) and (f) the dashed lines represent the expected individual 
bit error probabilities for logic ‘1’ and logic ‘0’ (assuming equal probability of storing a logic ‘1’ and a logic ‘0’), 
whereas the solid lines the total BEP. The black and red set of lines assumes a device variability that produces a 
minimum BEP of 10−3 and 10−4 , respectively.
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optimized MLC, the objective is to maximize the separation of the resulting n ratio-based states while minimiz-
ing the variances of these n states. Since the probability distribution of a state s under RatioBE depends on the 
distributions of R1 and R2 according to s = R2/(R1 + R2) , the n states would have different variances, even when 
R1 and R2 have the same variance for any target resistance value they are programed to (compare Fig. 2a and b), 
which makes the search for optimal references ( τi and τ ′i  in Fig. 2b) a non-trivial problem.

We focus our analysis on three figures of merit: (1) The probability � of erroneously encoding a bit (BEP), (2) 
the memory capacity, which is proportional to the number of levels n per memory cell, and (3) the programming 
effort or PE, which is a measure of the amount of energy and/or time employed to program the devices in the 
memory cells. Assuming an iterative write-verify programming scheme, the PE is proportional to the number 
of iterations used to program the device, but inversely proportional to the variability of the device’s resulting 
state, i.e., a higher PE increases the programming time and/or energy, but results in sharper distributions of the 
device’s states28.

Given a set of physical device parameters, such as the device’s lowest and highest resistance values ( Ron and 
Roff  ), their ratio (i.e. ON/OFF ratio) α , and their intrinsic variability (represented as the standard deviation σ of 
the states of the device), we need to address a series of design issues and tune specific parameters for designing 
an optimized ratio-based MLC system. In particular, we need to decide (1) whether to dynamically program 
R1 and R2 , or only one of them, (2) the mean values µ1 and µ2 for R1 and R2 , respectively, for each ratio-based 
state, (3) the target level of effective variability σe needed for the devices, which is a function of the PE, and (4) 
the references for differentiating the ratio-based states.

Our approach can systematically and optimally determine these key physical and design parameters, obtain-
ing an optimal configuration with respect to a given figure of merit. For instance, for a target � , maximize n; 
for a given n, minimize � ; or for a given n and target � , minimize the PE. We employ a rigorous mathematical 
approach that results in a compact model for � that enables (1) a quantitative comparison of how much better 
the proposed RatioBE is against the traditional ReBE, and (2) the effect assessment that each parameter has on 
the BEP, and the relationship among them. Our model reveals that under log-normally distributed resistance 
states, for a given � and PE, a ratio-based MLC can achieve 20–40% higher memory capacity compared to a 
resistance-based MLC. Alternatively, for a given memory capacity and PE, the probability �Ratio of a ratio-based 
MLC will be significantly lower than �Re in a resistance-based MLC: If �Re = 10−x , then �Ratio is guaranteed 
to be between 10−

√
2x and 10−2x for a MLC system based on the same devices. To determine the effect of the 

PE, we fabricated an array of 1T1R hafnium-oxide devices and measured the effective variability of the encoded 
resistance states as a function of the number of programming iterations. We observed that a ratio-based MLC 
can reduce the programming time by 10× , compared to a resistance-based MLC, under the same n and BEP.

Figure 2.   State distribution and threshold location for a multilevel memory. (a) Resistance-based states, 
using a single log-normally distributed resistive device to encode information. (b) Ratio-based states, using 
a pair of devices to encode information. The shape of the distributions is produced using equations (SM. 1.2) 
and (SM.1.4) (located in Supplementary Note 1) with optimal parameters located in Supplementary Note 3.
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Assumptions and memory state encoding definition
We establish the following assumptions for resistance-switching devices used for both ReBE and RatioBE: 

1.	 The resistance of a device can be set to any value within the range [Ron,Roff] in which Ron is the nominal 
lowest resistance, and Roff  the nominal highest resistance. Due to device variations, the resistance of a device 
may fall outside this nominal range.

2.	 The devices are programmed through an iterative write-verify mechanism, therefore their state can be set to 
any targeted value between Ron and Roff  and within any specified tolerance range of the target value.

3.	 The ON/OFF ratio of the device, defined as α = Roff/Ron , is a direct measure of the dynamic range of the 
state of the device.

For ReBE MLC memories, the state of a memory cell is defined as the electrical resistance of a single device, 
regardless of the mechanism used to retrieve its state (e.g. by applying a voltage across the device and sensing 
the resulting current, or by letting a current flow through the device and sensing the resulting voltage across it).

A RatioBE MLC uses two of such devices, namely R1 and R2 , configured as a voltage divider to encode infor-
mation (Fig. 1b). We define the normalized state s of the memory cell as the normalized output of the voltage 
divider:

which is bound to the range (0, 1). Assuming that the resistance of R1 and R2 can be programmed to any value 
in the range [Ron,Roff] , we propose two encoding scenarios. In the first, we permanently fix one of the devices’ 
resistance, say R2 , and program R1 to values in [Ron,Roff] . Under such a scenario, the maximum difference 
between the minimum and maximum memory state values (i.e. the maximum dynamic range) is 

√
α−1√
α+1

 , which 
occurs when R2 is set at Ron

√
α . If we allow both devices to be dynamically programmed (the second type of 

encoding), we can potentially double the dynamic range, while the exact improvement depends on the ON/OFF 
ratio α . To analyze the dynamic range under this encoding scenario, we split the range of memory states in two 
halves. In the first half, R2 is fixed to Ron and R1 is programmed to values in [Roff,Ron] , resulting in an output in 
the range ( 1

α+1 , 0.5) . In the second half, R1 is fixed to Ron and R2 is programmed to values in [Ron,Roff] , with an 
output falling within the range (0.5, α

α+1 ) . Thus, the minimum and maximum state values for this second type 
of encoding would be 1

α+1 and α
α+1 , respectively, resulting in a dynamic range of α−1

α+1 . Note that the ratio between 
the dynamic ranges of the second and first encodings is 1+ 2

√
α

1+α
 , revealing that the dynamic range of the second 

type of encoding is always greater (up to 2 × ) than that of the first type. For a small ON/OFF ratio, the range 
increase is large (e.g. 1.75× for α = 5 ). For larger ON/OFF ratios, the increase is smaller (1.28× for α = 50 , and 
1.09× for α = 500 ). For the rest of our study, we focus on the second type of encoding, nevertheless, we note that 
whereas the first type results in a smaller dynamic range, it only programs a single device, instead of two, per 
memory write and thus incurs lower PE, which could be a preferred choice for devices with a greater ON/OFF 
ratio (e.g. > 500) where the benefit of increased dynamic range achieved by the second type of encoding becomes 
marginal.

Bit error probability of multi‑level memory cells
To design an n-level memory cell, either using ReBE or RatioBE, the choices of the n memory states and their 
corresponding n− 1 decision thresholds for differentiating neighboring states are crucial for minimizing the 
BEP of the memory cell. In the following, we assume that after programming of a device to a targeted resistance, 
the probability distribution of the resulting resistance of the device is log-normally distributed and described by 
its mean µ = logµ∗ and standard deviation σ = log σ ∗ , where µ∗ and σ ∗ are their geometric or multiplicative 
mean and standard deviation, respectively.

Under the traditional ReBE, each state si for i ∈ {1 · · · n} is solely determined by the resistance of the device 
itself, thus the states can be characterized by the pairs (µ∗

i , σ
∗
i ) , as shown in Fig. 2a. Being log-normally distrib-

uted, each state si is centered on µ∗
i  (not µi ). While µ∗

i  has units of electrical resistance, σ ∗
i  is a dimensionless 

multiplicative factor that measures the spread of the distribution of the state.
We further define tj for j ∈ {1 · · · n− 1} as the resistance threshold between states sj and sj+1 , therefore, 

µ∗
j < tj < µ∗

j+1 (see Fig. 2a). By design, the first state s1 is set to the lowest resistance Ron while the last state sn is 
set to the highest resistance Roff  , that is, µ∗

1 = µ∗
on = Ron and µ∗

n = µ∗
off = Roff .

Under the proposed RatioBE, where each state si is encoded in a R1|R2 configuration using Eq. (1), R1 and R2 
still follow the same log-normal distributions as of the ReBE, albeit with potentially different targeted resistance 
values. To avoid confusion, the geometric mean and geometric standard deviation of the resistance values used 
in this encoding are now denoted by ν∗i  and ς∗

i  , respectively. The distribution of each state si and normalized 
thresholds τi are illustrated in Fig. 2b. Due to the symmetry of the encoding, for every state ν∗i |µ∗

on in the first 
half of the state range, there is a mirror state µ∗

on|ν∗i  in the second half. Similarly, each normalized threshold 
in the second half τ ′i  corresponds to 1− τi , where τi is the i-th threshold in the first half. If n is odd, there will 
be a state s(n+1)/2 centered at 12 with the pair µ∗

on|µ∗
on , as shown with a dashed curve in Fig. 2b. This state is not 

present if n is even. By design, the first and last states ( s1 and sn ) are given by µ∗
off|µ

∗
on and µ∗

on|µ∗
off  , respectively.

Taking Fig. 2 as reference, if all n memory levels have the same probability of occurring, then the probability 
of encoding an error in a memory cell (BEP) can be expressed as:

(1)s =
Vstate

Vread
=

R2

R1 + R2
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where Ti is the i-th decision threshold (either ti or τi ), and Fi(T) is the cumulative distribution function (CDF) 
of state si evaluated at threshold T. That is, Fi(T) is the probability that state si will be less than or equal to T, 
whereas, 1− Fi(T) is the probability that si will be greater than T. Details on how to compute Fi for ReBE and 
RatioBE are given in Supplementary Note 1. We use the BEP instead of more common reliability metrics, such 
as the bit error rate (BER), as the former exclusively involves errors due to the encoding itself, whereas the latter 
depends on the encoding and on additional aspects of the memory, such as the number of memory accesses per 
unit of time, the read/write ratio, and the read and supply voltages, among others.

The task is then to find the parameters that minimize function (2) for RatioBE ( �Ratio ) and ReBE ( �Re ). These 
parameters can be roughly split into two categories. The first category includes the physical device properties, 
such as the Ron and Roff  values, the ON/OFF ratio α , and the intrinsic variability of the devices (characterized 
by σ ∗

i  and ς∗
i  ). The second category includes architectural design parameters, such as the number of levels n, 

the mean resistance values for the states ( µ∗
i  and ν∗i  ), and decision thresholds ( ti and τi ). Given a set of physical 

device parameters, Supplementary Table 1 summarizes the total number of architectural design parameters for 
an n-level memory. To enable thorough analysis and fair comparison, we assume that a device’s resistance after 
programming has an identical standard deviation across all targeted resistance values, thus σ ∗

i = ς∗
i = σ ∗ . Hav-

ing an identical standard deviation for different resistance states is a desired property of any resistance-based 
memory technology to be practically applicable, thus making this a valid assumption.

If the distribution of the device’s resistance follows a log-normal distribution with identical standard devia-
tion, then function (2) is minimized when parameters µ∗

i  and ti (for �Re ) and ν∗i  and τi (for �Ratio ), are such that 
the probability of encoding an error is identical for every state si , as we mathematically prove in Supplementary 
Note 2. The optimal parameters for ReBE and RatioBE are given in Supplementary Note 3. Substituting these 
optimal parameters into Eq. (2) (see Supplementary Note 4 for details) results in:

where erfc is the complementary error function29.

Discussion and comparison
Equations (3) and (4) are almost identical except for an additional 

√
2 factor in the denominator of the 

error function in �Re . This factor can actually be intuitively explained through a simple mathematical 
transformation described as follows. Recall that for a ratio-based MLC, a state s depends on R1 and R2 as 
s = R2/(R1 + R2) = 1/(1+ R1/R2) . Let us consider the transformation x → 1/(1+ x) where x is R1/R2 . If the 
probability distribution of R1 and R2 are independent log-normal distributions with the same variance σ , then 
it can be proved that R1/R2 is log-normally distributed with variance 

√
2σ . On the other hand, if the dynamic 

range of Ri is α = Roff/Ron (for both i = 1 and 2) then the dynamic range of R1/R2 would be α2 . Since the distri-
bution of x is log-normal, which is exactly the same as that for ReBE except using new σ ′ =

√
2σ and α′ = α2 , 

following the transformation s = 1/(1+ x) we can deduce Eq. (4) from Eq. (3). Note that �Ratio is proportional 
to erfc( logα

′

σ ′ ) = erfc(
√
2 logα
σ

) , which is 
√
2 times larger than the argument of the error function of �Re.

Equations (3) and (4) offer insights into the relationship between our figures of merit: BEP ( � ), memory 
capacity (n) and programming effort (PE as a function of σ ∗ ). In particular, taking Fig. 3 as reference, we observe 
that for a target memory configuration (i.e. for given n, α and σ ∗ ) then: 

1.	 The additional 
√
2 factor in �Re results in a significant lower �Ratio compared to �Re (check erfc(x) v. 

erfc(
√
2x) in Fig. 3a). In fact, deriving the ratio �Re/�Ratio reveals that �Ratio = �

β
Re where β is within 

(
√
2, 2) . In practice, β will be closer to 2 than to 

√
2 . For instance, for �Re being 10−3 , �Ratio would be less 

than 10−5 and thus β > 1.8 , whereas for �Re = 10−8 (achieved, for example, by increasing the PE), �Ratio 
will be less than 10−15 and thus β > 1.9.

2.	 For a given BEP, a memory cell using RatioBE can store ∼20–40% more bits compared to a memory cell 
using ReBE. For instance, in Fig. 3b–d, �Re with n = 3 (yellow, dashed line) is approximately the same as 
�Ratio with n = 4 (green, solid line), which represents a 33% increase in the number of bits per cell.

3.	 To achieve the same BEP as ReBE, RatioBE can allow higher device variability σ ∗
√
2 , instead of σ ∗ for ReBE, 

and thus effectively reduce the PE. Note that even if the increase in σ ∗ is small (e.g. from 5 to 7%, or from 
10 to 14%), the reduction in PE could be significant as the difficulty, time- and energy-wise, for reducing a 
device’s effective variability increases as we increment the number of device programming iterations28.

4.	 For both encoding schemes, changing the ON/OFF ratio from α to αk (e.g. by using a different device) pro-
duces a similar effect on the BEP as modifying the number of memory levels from n to 1+ (n− 1)/k , while 
keeping the same PE (i.e. fixed σ ∗ ). This means if we increase α from 10 to 102 (or 103 ) while fixing the PE, 
we can increase n from 2 to 3 (or 4) without affecting the BEP (see grey bars in Fig. 3b). Alternatively, with 
a fixed n, the change α → αk has equivalent effect on BEP as the change of device’s variability σ ∗ → k

√
σ ∗ . 

For instance, for n = 8 and σ ∗ = 10% in Fig. 3c, changing α from 10 to 100 (i.e. k = 2 ) results in the same 

(2)� =
1

n

[

n
∑

i=2

Fi(Ti−1)+
n−1
∑

i=1

(1− Fi(Ti))

]

(3)�Re =
n− 1

n
erfc

[

logα

2
√
2(n− 1) log σ ∗

]

(4)�Ratio =
n− 1

n
erfc

[

logα

2(n− 1) log σ ∗

]
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reduction as that caused by decreasing σ ∗ from 10 to 5% (because 
√
1.10 ≈ 1.05 ) when keeping α = 10 

(Fig. 3d).
5.	 Even if the developed model assumes uniform resistance-based distributions across the resistance range, we 

can delimit the BEP of a non-uniform state distribution within a range using two uniform resistance distri-
butions (as shown in Supplementary Figure 1), for which we can fully describe with the proposed model.

To visualize the effects of n, α and σ ∗ , Fig. 4a–d illustrate the memory state distributions and locations of the 
optimal thresholds ti and τi as a function of α and σ ∗ for 2–8 levels. Note that even with identical device variances 
across its resistance range, the ratio-based states are not equally distributed, with wider distributions towards 
the center of the ratio-based state range. While the optimal decision thresholds ti for ReBE are logarithmically 
uniformly distributed, the ratio-based thresholds τi are not. The degree of this non-uniformity is a function of 
α . For a smaller ON/OFF ratio (e.g. α = 5 ) the ratio-based states are compressed towards the center and more 
similar to each other, whereas for a higher ratio (e.g. α = 20 ) the distributions of the first and last states are 
sharper, compared to the ones near the center. As a reference, Fig. 4e compares the resistance-based and ratio-
based CDFs that we could expect if we implemented a MLC memory with the four configurations marked with a 
† (i.e. the right-top configurations) in Fig. 4a–d. Note that, for the shown scale (BEP at 10−8 ), there is an overlap 
between states for ReBE, not present for RatioBE.

Figure 3.   Bit error probability under different parameters. (a) Error function complement with a log-normal 
scale. (b–d) BEP for a geometric standard deviation of 20%, 10% and 5%, respectively, for 2, 3, 4 and 8 levels. 
Note that since σ ∗ is a multiplicative factor, a value of X% can be implicitly understood as 1+ X (e.g for 
σ ∗ = 10% we use σ ∗ = 1.10).
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Experimental evaluation
To validate the proposed multi-level encoding mechanism, we experimentally compared the BEP performance 
of RatioBE and ReBE under various parameter settings, including number of levels, ON/OFF ratio α , and pro-
gramming effort PE, based on three different types of devices: a 1T1R hafnium-based array, a set of commercially 
available tungsten-based devices, and a set of titanium-based devices.

1T1R array.  To estimate the effect of the PE on the effective variability of the resistive devices, we conducted 
experiments on a 1 Kb 1T1R array (Fig. 5a) of TiN/TaOx/HfOx/TiN (Fig. 5b) ReRAM devices (see “Methods” 
for more details). A train of pulses with different number of pulses was applied to program the devices at four 
levels centered at 1, 3, 5 and 7 µA (read voltage of 100 mV). The distribution of these four states was used to esti-
mate the BEP that we would obtain under the RatioBE and ReBE with these devices as a function of the number 
of programming pulses. Figure 5c–f show the histograms and truncated normal fits (to avoid negative conduct-
ance) for each state using 5 and 100 programming pulses. Figure 5g summarizes the distribution of the four 
states using 5, 30 and 100 pulses. The bit error probabilities �Re and �Ratio were computed based on Eq. (2) using 
the parameters listed in Supplementary Table 2 and Supplementary Note 5. Figure 5h shows �Re and �Ratio as a 
function of the number of programming pulses. Note that RatioBE can achieve 1000× reduction in BEP, com-
pared to ReBE. Alternatively, we can reduce the PE by a factor of 10 (from 100 to 10 programming pulses) thus 
significantly decrease the programming time and programming energy while achieving similar BEP. Also note 
that while the experimental data was modeled assuming normally distributed current-based states, the experi-
mental results are congruent with our log-normally resistance-based modeling (compare Figs. 3b–d with 5h) 
from which we observe that varying the ON/OFF ratio α has roughly a similar effect on BEP as varying the num-
ber of programming pulses. We used normal distributions, as opposed to log-normal distributions, to model 
the current-based states as it is commonly done in the literature30,31. We found that the estimation of the BEP 
assuming normally distributed states was within ±25% of the estimated BEP assuming log-normally distributed 
states. As a visual aid, Fig. 5h includes such an error band of ±25%. Supplementary Figure 2 visually compares 
the effect of a normal fit with a log-normal fit of the four current-based states. Supplementary Figure 3 shows 
that the error introduced on the BEP due to the truncation of the normally distributed states is less than 7%. In 

Figure 4.   Multi-level state distribution under different parameters. (a) Two-level cell with α in [2, 10] and σ ∗ 
in [20%, 100%] . (b) Three-level cell with α in [5, 20] and σ ∗ in [15%, 65%] . (c) Four-level cell with α in [5, 20] 
and σ ∗ in [10%, 50%] . (d) Eight-level cell with α in [10, 40] and σ ∗ in [5%, 20%] . e, Cumulative distribution 
function (CDF) of the states for configurations marked with a † in (a–d) (in the right-top corners). In all cases, 
the optimal thresholds between states are marked with dashed vertical lines, and for a given configuration of n, α 
and σ ∗ , the top part uses ReBE and the bottom part RatioBE (on a grey background).
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Figure 5.   1T1R hafnium-oxide devices and their state distribution. (a) Microscope image of a section of 
the 1 Kb array of 1T1R hafnium-oxide devices (scale bar, 100 µm), and a detail of one ReRAM device. (b) 
TEM image of the TiN/TaOx/HfOx/TiN stack for the ReRAM devices (scale bar, 10 nm). (c–f) Histograms 
and normal fits for states centered at 1, 3, 5 and 7 µA (read voltage of 100 mV), respectively, using 5 and 100 
programming pulses. Each histogram uses a sample size of at least 480 programming cycles. (g) Probability 
density function fits of the four states, using 5, 30 and 100 programming pulses. (h) Estimated BEP for ReBE (in 
red) and RatioBE (in black). In both cases, as a visual aid, we included a tendency fit with dashed lines and an 
error band of ±25% was added on the estimation of the BEP to due the uncertainty introduced on the modeling 
of the distributions (normal vs. log-normal). (i–n) Second experiment using the same 1T1R array but from a 
different batch. Figures (i) and (l) were experimentally obtained, whereas Figures (j,k,m,n) were estimated based 
on the experimental data measured for figures (i) and (l).
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Fig. 5i–n we performed additional experiments on the same 1T1R array but from a different fabrication batch. 
We compare the BER of a 3-level ReBE (Fig. 5i) with a 3- and a 4-level RatioBE (Fig. 5j,k, respectively) using 5 
and 10 programming pulses (Fig. 5l–n), respectively. In accordance to the mathematical model, we observed that 
�Ratio of a 4-level cell is comparable to �Re of a 3-level cell (compare Fig. 5k vs. Fig. 5i and Fig. 5n vs. Fig. 5l).

Commercially available devices.  We also compared both encodings using tungsten-based devices from 
Knowm32. Figure 6a–f summarize the results obtained based on these devices using a smaller ON/OFF ratio 
α = 2.2 (compared to α = 7 in the 1T1R array) and under different numbers of programming pulses (15, 30 
and 45). Instead of modeling the distributions of the states to estimate the BEP (as done with the 1T1R array), 
we report the BEP by directly counting the number of encoding errors. We observed the same trend as before in 
which higher PE (i.e. more programming pulses) results in not only narrower state distributions for both encod-
ings, but also that the relative reduction of �Ratio with respect to �Re is greater as the PE increases (see that the 
increase from 9 × to 30× in Fig. 6a–f is consistent with the trend shown in Fig. 3).

Titanium‑based devices.  Finally, to evaluate MLC memories with more levels and under different PE, 
we compared the encodings using a multi-level titanium-based device33. Figure  6g–j show the experimental 
results for 2–6 levels, and with 40 and 200 programming pulses (Fig. 6g–j, respectively). Since the state distribu-
tions were significantly sharper, the number of encoding errors was zero for most cases under the limited test 
time. Instead of using BEP as the evaluation metric, we report the size of the normalized eye window or margin 
between adjacent states, which is also a direct, and commonly used, measure of the reliability of the memory 
encoding. Rather than mapping a given margin to a BEP value, we used the data to compare the reliability among 
different cases. Consistent with Fig. 5h for the 1T1R array, we found that a RatioBE can yield about the same reli-
ability as a ReBE, while using only 20% (40 vs. 200 programming pulses) of the time and energy to program the 
devices (observe the similar margins in Fig. 6h,i). The similar BEP between a 3-level ReBE and a 4-level RatioBE 
predicted by our aforementioned model was also observed in these devices (compare their similar margins indi-
cated by the two-sided arrow between Fig. 6g and h, and between Fig. 6i and j).

Concluding remarks
We present a general mechanism to encode multi-bit information on resistance-switching devices that results 
in significant improvement to the bit error probability (BEP), and/or drastic reduction of the energy or time 
needed for programming the devices. The proposed ratio-based encoding (RatioBE) uses the resistance ratio 
of two devices, as opposed to the resistance of a single device employed in the traditional resistance-based 
encoding (ReBE), to store information. Our experimental data on multiple types of ReRAM devices suggests 
that, compared to ReBE, our RatioBE can offer (1) a reduction of 5–10× in the programming time and energy 
while maintaining the same BEP, or (2) a reduction of up to 1000× in the BEP while consuming the same pro-
gramming time/energy, or (3) a combination of both: 3 × time-energy reduction and 10× BEP reduction. Note 
that this encoding mechanism should not be exclusive to ReRAM devices; it could also be applicable to other 
resistance-switching devices, such as phase change memory (PCM).

To gain insights into the fundamental advantages of RatioBE over ReBE, we derived a closed-form expres-
sion to estimate the BEP for both encodings. Assuming log-normally distributed resistances on the states of the 
devices, we found that the main reason why RatioBE is superior to ReBE is that the argument in the error function 
of the RatioBE expression is 

√
2 times larger than that for ReBE. For practical applications, this factor means 

that for a multi-level resistance-based memory cell, such as a 1T1R cell, with a BEP of 10−x , we can construct a 
ratio-based 1T2R memory cell with similar memory footprint (since the transistor typically dominates the size 
of the cell) but with a BEP that is close to 10−2x . Alternatively, if we fix the BEP, we could increase the number 
of bits per cell by 20–40%, or significantly reduce the time and/or energy employed to program the devices. 
Whereas the actual reduction in programming time or energy would be device-dependent, and thus harder to 
generalize, the observed 5–10× reduction in our experimental data demonstrate that the proposed idea works 
and is promising. We believe that this type of multi-level RatioBE will be essential to tackle the intrinsic vari-
ability of ReRAM and other resistance-switching devices, and thus an important enabler for the next generation 
of high-performance and high-capacity non-volatile memories.

Methods
The ReRAM devices (Fig. 5a) were integrated on top of an array of transistors using the transistor’s drain as 
contact point. The array contains 128 rows and 8 columns, from which we used the high-voltage (5 V) columns 
7 and 8. The transistor, which is fabricated in a 130 nm CMOS technology node, is designed to accurately con-
trol the compliance current of the ReRAM devices. The ReRAM device under test is a TiN/TaOx/HfOx/TiN 
stack (Fig. 5b). The HfOx is a switching layer, and the oxygen-deficient TaOx is a capping layer to store oxygen 
and modulate the local temperature during the resistive switching process. Based on these high performance 
devices, a series of exploratory experiments were developed to implement 3 or 4 resistance levels with a cus-
tomized array-test platform. For each level, a train of pulses with different number of pulses were applied with 
fixed pulse width (50 ns) and fixed amplitude to obtain a relatively tight conductance distribution. The same 
train was applied at least 48 times to 5 different devices during a RESET operation, and another similar set of 
pulses during a SET operation, for a total of 480 programming cycles. For different levels, amplitudes of drain 
voltage in SET operation varied from 1.3 to 3.0 V with gate voltage from 1.6 to 2.0 V. The amplitudes of source 
voltage in RESET operation varied from 1.5 to 3.0 V with gate voltage at 5.0 V. We defined four levels centered 
at 1, 3, 5 and 7 µA with a read voltage of 100 mV. Since the states were uniformly distributed in current (not in 
resistance), each state was modeled based on the conductance of the device and as a normal distribution whose 
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variance depends on the number of programming pulses. The employed programming mechanism produced 
nonuniform variances on the states’ conductances, particularly for the first state (centered at 1 µA ) which had a 
standard deviation of (on average) 4 times smaller than that of the other three levels. As expected, for all cases, 
we observed a clear reduction in the variance of each state as we increased the number of programming pulses 

Figure 6.   Additional experimental evaluation. (a–f) Multilevel programming on tungsten-based commercially 
available devices from Knowm, using a small ON/OFF ratio of α = 2.2 . (g–j) Multilevel programming of 2–6 
levels using higher-resolution titanium-based devices. Instead of the BEP previously used, here we employed the 
size of the window between adjacent states to compare the reliability between resistance-based and ratio-based 
encodings.
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(see Supplementary Table 2 for details). We used these measurement data to predict and compare the BEP in a 
4-level resistance-based and ratio-based MLCs. Whereas in the former we directly encoded information on the 
four levels that we experimentally measured (1, 3, 5 and 7 µA ), in the latter we had to interpolate the dataset 
to estimate the variance that a device would have if programmed to a value other than the ones we measured. 
Supplementary Note 5 provides details on the parameters used for each state in both MLCs. For the second 
experiment on the 1T1R devices, due to a limitation on the test equipment, while performing a RatioBE write, we 
could not simultaneously measure the output of the voltage divider while programming the devices. Instead, we 
measured the individual resistance of the devices R1 and R2 using and predicted the normalized ratio-based state 
using Eq. (1). We measured the quality of estimating the output voltage by measuring the individual resistances in 
Supplementary Figure 4 using the titanium-based devices, in which we compared the estimated normalized state 
with the actual measurement of the voltage divider. We found a very high correlation between both experiments 
(Pearson correlation coefficient of 0.999). For the tungsten-based and we employed a similar iterative program-
ming algorithm, but we were able to simultaneously measure the resistance-based and ratio-based states. We 
used a read voltage of 20 mV and centered the resistance-based states at 1.5, 2.1, 2.7 and 3.3 µA . The intermediate 
resistance-based state used for the ratio-based encoding was centered at 2.4 µA . For the titanium-based devices 
we used the same programming algorithm as with tungsten-based devices, but with a read voltage of 100 mV 
and a current range from 2 to 20 µA.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding authors upon reasonable request.
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