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Abstract
Objective: Adipose derived stem cells (ASCs) secrete numerous neurotrophic factors and cytokines in conditioned medium 
(CM), which protect neurons by its antioxidative and trophic effects. This research assesses the neuroprotective effect of ASC-
CM on neurotrophins genes expressions and tyrosine hydroxylase positive (TH+) cell density in male Wistar rats lesioned by 
6-hydroxydopamine (6-OHDA). 
Materials and Methods: In this experimental study, the groups consisted of lesioned and sham rats with unilateral 
injections of 20 µg of 6-OHDA neurotoxin and phosphate buffered saline (PBS) into the striatum, respectively. Another 
groups  received intravenous injections of 3×106 cells (ASCs group), 500 µl of CM (ASC-CM group) or medium [α-minimal 
essential medium (α-MEM) group)]. All rats underwent evaluations with the rotarod and apomorphine-induced rotation 
tests at 2, 4, 6, and 8 weeks post-injection. At 8 weeks we sacrificed some of the animals for real-time polymerase chain 
reaction (PCR) analysis, and evaluation of TH+ cell counts.   
Results: We observed a significant decrease in contralateral turns to the lesions in the ASCs and ASC-CM groups 
compared to the neurotoxin lesioned or α-MEM groups at 8 weeks post transplantation. Cell and CM- injected rats 
showed a significant increase of staying on the rotarod compared to the lesion or α-MEM groups. Cell and CM-treated 
rats showed significant increases in the NGF and NT3 genes, respectively, compared with the lesion group. Both 
treated groups showed significant increases in BDNF gene expression and TH+ cell density.                   
Conclusion: The results suggested that ASCs and ASC-CM protected dopaminergic neurons through the expressions 
of neurotrophin genes.   
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Introduction
Motor disorders of parkinson’s disease (PD) are caused 

by dopamine loss of corpus striatum as the result of 
nigrostriatal pathway degeneration (1, 2). Adult stem 
cells have been used to treat neurodegenerative diseases 
such as PD over the past few years. Transplanted cells 
have the capability to differentiate into neural cells or 
secret neurotrophic factors and create an appropriate 
microenvironment to protect residual dopaminergic 
neurons of the substantia nigra (SN) pars compacta. 

Adipose derived stem cells (ASCs) are a population 
of mesenchymal stem cells in the stromal or non-
adipocyte compartment of adipose tissues. Intrastriatal 
transplantation of ASCs has been shown to protect against 
6-hydroxydopamine (6-OHDA)-induced experimental 
PD in mice (3). Secreted neurotrophins, which modulate 
oxidative stress in the injured SN after cell therapy, are 
more effective than neural differentiation of transplanted 
cells to repair the nigrostriatal pathway (3, 4). The survival 
of transplanted cells increased when accompanied with 
nerve growth factor (NGF) injection. NGF played an 
antioxidative role to protect neurons (5). 

Human ASC transplantation stimulated angiogenesis 
and neurogenesis by secreting vascular endothelial 

growth factor (VEGF) and transforming growth factor-
beta (TGF-β) (6). According to low survival and 
tumorigenesis of transplanted cells, another therapeutic 
application of stem cell is the use of cultured ASCs 
conditioned medium (ASC-CM) to protect surviving 
neurons or stimulate renewal of axonal sprouting. The 
secretory factors of cultured stem cells are called the 
secretome, microvesicles, or exosome; the medium is CM 
(7). Numerous studies showed that stem cells secreted 
various growth factors into the CM, which had therapeutic 
effects on various diseases (6-14). 

The neuroprotective effect of ASC-CM has been 
reported in an in vitro model of neuronal apoptosis 
(3). In addition, recent studies reported that secretory 
factors of stem cells might result in tissue repair and 
induce neurite outgrowth of PC12 cells in vitro (15). 
In this study, the degeneration of DAergic neurons of 
PD was the result of oxidative stress after 6-OHDA 
injection. CM could protect neurons from oxidative 
stress (16). Here, we intended to compare the effects of 
intravenous injection of ASCs and ASC-CM on motor 
impairment in a rat model; BDNF, NGF and NT3 gene 
expressions; tyrosine hydroxylase positive (TH+) cell 
density at the injured sites.  
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Materials and Methods
In this experimental study, adult male Wistar 

rats that weighed 220-280 g were purchased from 
Pasteur Institute of Iran. They were kept in standard 
cages in a temperature- and climate-controlled room 
under a 12/12 hour light/dark cycle and had ad 
libitum access to water and food. The Research and 
Ethics Committee of Damghan University approved 
this experimental protocol. Animals were deeply 
anesthetized by an intramuscular injection of a 
mixture of ketamine hydrochloride and xylazine, and 
then placed in a stereotaxic frame. A total of 20 μg 
of 6-OHDA hydrobromide (Sigma-Aldrich, USA) 
in 4 µl of sterile saline that contained 0.2% ascorbic 
acid was injected into the right striatum by a 26-gauge 
Hamilton syringe (Hamilton, France) at a flow rate of 
1 μl/minute. Stereotaxic coordinates from the bregma 
were: anteroposterior (AP)=-1.2 mm, mediolateral 
(ML)=-3.9 mm, and dorsoventral (DV)=-5 mm (17). 
The syringe was left in place for 5 minutes after the 
injection and then removed slowly to optimize toxin 
diffusion.

Preparation and culture of rat adipose derived stem 
cells 

Fat tissues from the backs of the rats were cut under 
sterile conditions. The tissues were digested mechanically 
and enzymatically with 0.2% collagenase (Gibco, 
USA) (18). ASCs were extracted by adherence to the 
plastic flasks. We cultured the isolated cells with 10% 
fetal bovine serum (FBS, Gibco, USA) that contained 
α-minimal essential medium (α-MEM, Gibco, USA) and 
1% penicillin/streptomycin (Gibco, USA). The cells were 
incubated at 37˚C in air with 5% CO2. The culture medium 
was changed after the first 48 hours and every 3-4 days 
to remove any floating cells. When the culture reached 
80% confluency (usually within a week), the cells were 
harvested by incubation with 0.25% trypsin and 0.02% 
EDTA (Merck) at 37˚C for 3-4 minutes. Once harvested, 
the cells were sub-cultured (19).

Collection of adipose derived stem cell-conditioned 
medium

ASCs were cultured in α-MEM that contained 10% 
FBS. After four passages, 5×105 plastic-adherent cells 
were washed three times with PBS, and cultured in 
serum-free medium for 72 hours to allow secretion 
of neurotrophic factors. ASC-CM was then collected, 
centrifuged at 2000 rpm for 5 minutes, filtered 
through a 0.22 mm syringe filter, and stored in a -80˚C 
refrigerator (4, 16, 20). 

Treatment with adipose derived stem cells, ASC-
conditioned medium and α-minimal essential medium 

At one week after the 6-OHDA lesion (18), the rats were 
anesthetized with a mixture of ketamine hydrochloride and 
xylazine. The ASCs (3×106  cells, n=7) (21), ASC-CM (500 

µl in four stages over  a  2-month  period, n=7) (22, 23), or 
α-MEM (500 µl in four stages over  a  2-month  period, n=7) 
were injected into the tail veins of the PD rats.

Apomorphine-induced rotation test
We used the apomorphine-induced rotational test 

to determine the extent of the retrograde nigrostriatal 
lesion. The animals received intraperitoneal injection 
of 0.5 mg/kg apomorphine hydrochloride (Sigma-
Aldrich, Germany) dissolved in 1% ascorbic acid, and 
0.9% NaCl. The animals were placed on a cylinder 
(diameter: 28 cm) to monitor rotational asymmetry 
for 5 minutes. The net rotation asymmetry score 
was calculated by subtracting the total number of 
contralateral turns to the lesion from the total number 
of ipsilateral turns to the lesion prior to transplantation 
(1 week after the 6-OHDA injection) as well as at 2, 
4, 6, and 8 weeks after transplantation (or equivalent 
times in the other groups). We chose only rats that 
exhibited at least 4 net rotations/minute (24, 25).

Rotarod test
Motor performance was evaluated on a Rotarod 

equipment (Hugo Basil, Biological Research Apparatus, 
Italy) with an accelerating protocol (26). The first 3 days 
of testing served as the training period. The animals 
underwent a 4 trial test under an accelerating protocol that 
went from 4 rpm to 40 rpm in 5 minutes, with a rest period 
for at least 20 minutes between trials. On the fourth day, 
using the same protocol, we recorded the latency to fall 
(24, 27).

Immunohistochemical staining
After 8 weeks, all animals underwent perfusion 

through the ascending aorta with 150 ml of 0.9% 
NaCl, followed by 500 ml of 4% paraformaldehyde in 
100 mM phosphate buffer. The animals’ brains were 
extracted, post-fixed, and paraffinized. Next, they 
were cut at a thickness of 7 µm, starting at 12.3-13.7 
mm and 7.9-9.3 mm from the anterior pole of the brain 
for the SN and striatum, respectively. A total number 
of six coronal sections per rat were obtained. Sections 
were deparaffinized and incubated in 0.1% Triton 
X-100 (Merck, Germany) for 10 minutes followed by 
5% goat serum for 30 minutes at room temperature. 

The sections were then incubated with the primary 
antibody anti-TH (1:200, Millipore-AB152, USA) for 
24 hours in a wet box at 4˚C and then for 1 hour with 
goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology, 
Germany) as the secondary antibody. The sections were 
washed twice with phosphate buffered saline (PBS) for 
10 minutes after each step. When the staining reaction 
was completed, the tissue sections were sealed after 
washing and dehydration. The density of TH+ neurons 
of SN was measured with ImageJ software (28). All 
data were represented as mean ± SEM values with 
statistical significance set at P<0.05.
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Real-time polymerase chain reaction

After 8 weeks,  all animals were killed and we 
removed their brains. The ipsilateral and contralateral 
striata (with respect to the lesion) were isolated 
for BDNF, NT3, and NGF mRNA evaluation. The 
noninjected side of each rat was used as the control. 
The samples were placed in RNX-plus (Cinnagen, 
Iran). Total RNA was isolated according  to  the  
manufacturer’s  instructions. RNA quality was assessed 
by using a density ratio of 28S to 18S rRNA bands 
(29). A total of 1 µg total RNA was transcribed into 
cDNA according to the Thermo Scientific kit. Real-
time polymerase chain reaction (PCR) was carried 
out with the Quantitect SYBR Green PCR kit (Jena 
Bioscience, Germany). Total reactions were done by 
using a Rotor GeneTM 6000 (Corbett, India) Detection 
System. The no template control (NTC) was used as the 
negative control. The specificity of PCR products was 
confirmed by both melting curve analysis and agarose 
gel electrophoresis (19). The primers used in this study 
and  β-actin as the house-keeping (internal control) 
gene were listed (Table 1). The PCR conditions were 
as follows:  initial activation at 95˚C for 2 minutes, 
denaturation at 95˚C for 15 seconds, annealing at 57˚C 
for 30 seconds (BDNF), 62˚C for 20 seconds (β-actin), 
and 55˚C for 30 seconds (NT3 and NGF), extension at 
72˚C for 60 seconds, and amplification for 40 cycles. 
PCR reactions were run in duplicate using the reaction 
mixture that contained 1 µl cDNA, 0.5 µl forward 
primer (10 pM), 0.5 µl reverse primer (10 pM), 5 µl 
qPCR Green Master with low ROX (2x), and 3 µl 
RNAse-free water. Real time-PCR was performed in 
duplicate for  each  sample  primer  set. 

The  mean  of  the three experiments was used as the 
relative quantification value. Relative gene expression 
was analyzed using the comparative Ct method, 2-ΔΔCt. All 
samples were normalized to the level of β-actin, which 
was used as the internal control gene. A control cDNA was 

selected with the appropriate concentration. Successive 
dilutions of 4 different concentrations were used to draw 
a standard curve. PCR efficiency was determined for each 
gene according to the standard curves according to Rotor 
gene software. Amplification efficiencies (amplification 
curve) of all the genes were determined for each of the 
primers. Analyses were made per comparison of different 
samples’ Ct values (19).

Statistical analysis
We used SPSS software version 16, for data analysis 

(SPSS Inc., Chicago). Differences between groups were 
assessed by one-way ANOVA followed by the Tukey 
and LSD, least significant difference tests. P<0.05 was 
considered statistically significant. All values were 
expressed as mean ± SEM.

Results

Passage-4 of adipose derived stem cells with spindle-
shaped morphology

Analysis of the cultured cells by inverted 
microscope showed fibroblast and spindle-like shaped 
passage-4 ASCs. In addition, we observed colonies of 
proliferative cells.

Intravenous administration of adipose derived 
stem cells and ASC-conditioned medium reduced 
rotational behavior of parkinson’s disease rats

We did not detect any changes in the numbers of 
contralateral rotations between groups before, and 2 
and 4 weeks after transplantation. At 6 weeks after 
transplantation, only the ASC-CM group showed a 
significant decrease in rotations compared to the α-MEM 
and lesion groups (P=0.01). In contrast, there was a 
significant lower number of net rotations in the ASC and 
ASC-CM groups compared to both the lesion (P=0.02) and 
α-MEM (P=0.01) groups at 8 weeks post-transplantation 
(Fig.1).

Table 1: Primers used in the real-time polymerase chain reaction experiments

ReferenceAmplicon length (bp)Primer sizePrimer sequence (5ˊ-3ˊ)Gene

(30)14721F: GATTACTGCTCTGGCTCCTAG
R: GACTCATCGTACTCCTGCTTG

β-actin 

(31)40520F: GCCCAACGAAGAAAACCATA
R: GATTGGGTAGTTCGGCATTG

BDNF 

(31)18120
17

F: AGGTCAGAATTCCAGCCGAT
R: GTTTCCTCCGTGATGTT

NT3  

(31)16419F: CCTCTTCGGACACTCTGGA
R: CGTGGCTGTGGTCTTATCT      

NGF 
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 Fig.1: Number of apomorphine-induced rotation, before and after
 transplantation. *; P<0.05, asterisk denote significant difference from
 lesion and α-MEM groups. Data were expressed as mean ± SEM.
 ASCs; Adipose derived stem cells, CM; Conditioned medium, and α-MEM;
α-minimal essential medium.

Intravenous administration of adipose derived stem 
cells and ASC-conditioned medium significantiy 
improved motor coordination on the rotarod test 

There was a significant decrease in time spent on the 
spinning rods of the rotarod in the lesion and α-MEM 
groups compared to the sham group (P=0.000). The ASCs 
and ASC-CM groups showed significant increases in time 
spent on the spinning rod compared to the lesion (P=0.001) 
and α-MEM (P=0.01) groups. The ASCs and ASC-CM 
groups showed no significant difference compared to the 

sham group at 8 weeks post-transplantation (Fig.2). 

 Fig.2: Effect of intravenous injection of ASCs and ASC-CM on motor
 behavior at 8 weeks after transplantation. ###; P<0.000, ##; P<0.001 versus
 the lesion and α-MEM groups, ***; P<0.000 versus the sham group. Data
 were expressed as mean ± SEM. ASCs; Adipose derived stem cells, CM;
Conditioned medium, and α-MEM; α-minimal essential medium.

Rats with adipose derived stem cells and ASC-conditioned 
medium transplantation showed better preservation of 
TH+ neuron density in the substantia nigra

Immunohistochemical images of TH immunopositive 
neurons were shown (Fig.3A-E). There was a significant 
decrease in TH+ neuron density in the SN of the lesion 
and α-MEM groups compared to the sham group. We 
observed no significant difference between the treated and 
sham groups. The density of TH+ neurons in the ASCs and 
ASC-CM groups was significantly higher than the lesion 
and α-MEM groups  (Fig.3F).

Fig.3: Immunohistochemical images of TH immunopositive neurons were shown. A. TH immunoreactivity in the SN of sham rats  and B. Rats unilaterally 
lesioned  with 6-OHDA alone, C. Rats treated with CM, or D. ASCs, or E. α-MEM (scale bar=100 µm). Small boxes in the corner of images indicates 
magnification of the SN region that shows dopaminergic neurons and their neuritis (×40), and F. The density of TH-positive neurons in SN of  all groups. ***; 

P<0.000 versus the sham group and ###; P<0.000 versus the Lesion and α-MEM groups. Data were expressed as mean ± SEM.
 TH; Tyrosine hydroxylase, SN; Substantia nigra, 6-OHDA; 6-hydroxydopamine, ASCs; Adipose derived stem cells, CM; Conditioned medium, and α-MEM;
α-minimal essential medium.
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Neurotrophin gene expressions of the striatum 
All groups showed a significant decrease in BDNF gene 

expression in the striatum compared to the sham group. ASCs 
and ASC-CM groups showed a significant increase in gene 
expression compared to the lesion (P=0.05) and α-MEM 
(P=0.02) groups. There was no significant difference between 
the ASCs and ASC-CM groups. There was a significant 
increase in expressions of the NGF and NT3 genes in the ASCs 
and ASC-CM groups compared to the lesion group (Fig.4).

 

Fig.4: Effects of ASCs and ASC-CM injection on neurotrophin genes expression 
of the striatum of parkinsonian rats. all groups showed a significant decrease 
of BDNF gene expression in the striatum as compared to the sham group. ASCs 
and ASC-CM groups showed a significant increase of BDNF gene expression 
as compared to lesion and α-MEM groups (**; P<0.01, ***; P<0.001) versus 
the sham group. A. #; P<0.05 versus the lesion and α-MEM groups. NT3 gene 
expression in lesion and α-MEM groups significantly decreased as compared 
to sham group, and in ASC-CM group significantly increased as compared to 
lesion and α-MEM groups, B. *; P<0.05, **; P<0.001 versus the sham group, 
#; P<0.05 versus the lesion and α-MEM groups, and C. NGF gene expression 
in all groups significantly decreased as compared to sham group, and  NGF 
gene expression in ASCs group significantly increased as compared to lesion 
and α-MEM groups, ***; P<0.001 versus the sham group, ##; P<0.01 versus 
the lesion and α-MEM groups. Data were expressed as mean ± SEM. ASCs; 
Adipose derived stem cells and CM; Conditioned medium, and α-MEM; 
α-minimal essential medium.

Discussion
In this study, we observed that intravenous 

administration of ASCs and ASC-CM of benefit and 
reduced apomorphine-induced rotations, as well as 
preserved TH-immunoreactive neurons. McCoy et 
al. (18) reported that the neuroprotective property of 
ASCs following transplantation was not related to its in 
vivo differentiation into neurons; instead, infused cells 
caused high amounts of neurotrophic factors (BDNF, 
GDNF, and NGF) mRNAs at the lesioned site. These 
factors have trophic and neuroprotective effects on 
nigral dopaminergic neurons (30, 31). Gu et al. (16) 
demonstrated that mesencephalic and cerebellar granule 
neurons could be protected against 6-OHDA-induced 
neurotoxicity by ASC-CM. This effect might be related 
to the neurotrophic factors of CM secreted by ASCs. The 
use of CM has several advantages compared to stem cells. 
CM can be manufactured, freeze-dried, packaged, and 
transported more easily. CM contains no cells; therefore, 
there is no need to match the donor and the recipient to 
avoid rejection problems. CM contains various growth 
factors and tissue regenerative agents, which are secreted 
by stem cells. However, intravenous injection of cells 
results in poor cell viability when passing through a thin 
syringe into the tail vein. 

In the mature nervous system, neurotrophic factors play 
a major role in neuronal protection and the maintenance 
of cellular homeostasis; therefore, any change in their 
expression can be associated with neurodegeneration 
(32). Neurotrophic factors have been shown to activate 
receptor tyrosine kinases. Within neural precursors and 
neurons, the pathways regulated by tyrosine kinases 
include proliferation and survival, axonal and dendritic 
growth and remodeling, assembly of the cytoskeleton, 
membrane trafficking and fusion, and synapse formation 
and function. Recently, many studies on the neurotrophic 
factors have shown that they regulate each of these 
functions (33).

BDNF is a neurotrophic factor for dopaminergic 
neurons of the SN, the region affected by PD (30). 
Reduced expression of BDNF within the SN has been 
shown to cause the  loss  of  dopaminergic neurons in PD. 
Indeed, postmortem studies of PD patients showed that 
a reduction in BDNF accompanied PD and BDNF was 
required to preserve neurons of the SN pars compacta (34). 
In this study, we assessed BDNF gene expression by real-
time PCR. There was a significant decrese in BDNF gene 
expression in the striatal region of all groups compared 
to the sham group. However, ASCs and ASC-CM treated 
rats showed significant incereases in the mentioned gene 
expression compared to the lesion and α-MEM groups. 

The expressions of NGF and NT3 genes increased 
significantly in the ASCs and ASC-CM groups compared 
with the lesion group. It was suggested that transplanted 
cells that crossed the blood brain barrier (BBB) migrated 
into the lesioned zone and induced NGF gene expression. 
However, CM that contained NGF did not pass through 
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the BBB. Although all treated groups showed behavioral 
improvement, maybe the cell or CM injection repaired the 
injured site by another mechanism such as induction of 
angiogenesis or neural differentiation. 

Possibly transplanted ASCs need adequate time to 
migrate from the peripheral vasculature into the damaged 
area to protect and restore destroyed dopaminergic 
neurons. Salinas reported that in PD, NGF like an 
antioxidant reduced ROS induced cell death due to 
6-OHDA (35). It has been revealed that high sensitivity 
of dopaminergic cells to toxins or free radicals related to 
glutathione reduction, which was known as an intracellular 
antioxidant (36, 37). 

As a result, we observed motor improvement. This 
treatment slows neurodegeneration progression. These 
reports have suggested that soluble factors of CM activate 
endogenous restorative and preserve the level of BDNF 
and NT3 genes expressions and TH+ cells after a PD 
injury. The CM used in this experiment consisted of 
a serum-free media of the cultured cells  for 72 hours. 
Therefore, it consisted of only the factors secreted by the 
cells. This strongly implied that the mechanism which 
underlies the observed protection was the presence 
of secreted neurotrophic factors. Hence, by changing 
the transplantation procedure, such as cell therapy 
accompanied by a CM injection, will reduce cell death 
and increase survival of the grafted cells. However, A 
more effective method should be designed to improve 
viability and provide an injected scaffold that protects 
cells from the damaging injection process. 

Conclusion
The  present  data  provided  evidence that neuroprotection 

by ASC-CM was associated with stimulation of BDNF 
and NT3 genes expression and TH+ neurons  preservation. 
BDNF might be at least partly involved in neuroprotective 
effects. The significance of this study was that we first 
demonstrated which ASC-CM equally with ASCs 
could exert  neuroprotection for 6-OHDA-exposed 
dopaminergic  neurons in vivo. Secretome that contained 
CM has several advantages compared to stem cells 
and intravenous administration which would decrease 
damage to the patient. Clinical application of intravenous 
administration of  ASC-CM for  PD  patients  might  be  
considered,  although new methods are necessary.
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