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Abstract

DNA methylation is an important epigenetic modification regulating gene expression, geno-

mic imprinting, transposon silencing and chromatin structure in plants and plays an impor-

tant role in leaf senescence. However, the DNA methylation pattern during Gossypium

hirsutum L. cotyledon senescence is poorly understood. In this study, global DNA methyla-

tion patterns were compared between two cotyledon development stages, young (J1) and

senescence (J2), using methylated DNA immunoprecipitation (MeDIP-Seq). Methylated

cytosine occurred mostly in repeat elements, especially LTR/Gypsy in both J1 and J2.

When comparing J1 against J2, there were 1222 down-methylated genes and 623 up-meth-

ylated genes. Methylated genes were significantly enriched in carbohydrate metabolism,

biosynthesis of other secondary metabolites and amino acid metabolism pathways. The

global DNA methylation level decreased from J1 to J2, especially in gene promoters, tran-

scriptional termination regions and regions around CpG islands. We further investigated the

expression patterns of 9 DNA methyltransferase-associated genes and 2 DNA demethyl-

transferase-associated genes from young to senescent cotyledons, which were down-regu-

lated during cotyledon development. In this paper, we first reported that senescent cotton

cotyledons exhibited lower DNA methylation levels, primarily due to decreased DNA methyl-

transferase activity and which also play important role in regulating secondary metabolite

process.

Background

DNA methylation is a critical epigenetic modification that is wide spread in plants. It main-

tains chromatin structure, DNA conformation, and DNA stability and alters DNA-protein

interactions [1].

There are currently three approaches for DNA methylation analysis; one depends on DNA

base conversion, such as bisulfite-sequencing PCR (BSP) [2]. The other approaches, using

methylation-sensitive amplified polymorphism (MSAP) [3] and methylation DNA-enriched
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sequencing (MeDIP-Seq), are independent of DNA conversion [4]. DNA base conversion

methods require extensive work, and MeDIP-Seq is a comparable cost-effective and efficient

method to investigate genome-wide DNA methylation. MeDIP-seq uses a 5-methylcytosine

antibody to enrich for DNA fragments containing this modification, and the enriched DNA

fragments are then sequenced using high-throughput methods.

In plants, during the methylation process, the receptor acquires a methyl group from the

corresponding methyl donor S-adenosylmethionine (SAM) during methyltransferase cataly-

sis, which constitutes the primary form of 5-methylcytosine methylation receptors. DNA

methylation occurs at different genetic components and has different functions regulating

gene expression. In some cases, DNA methylation occurs in the promoter, the first exon and

the transcriptional termination region and usually results in gene silencing [5–7]. However,

understanding how modification occurring elsewhere in the gene body control expression is

complex [8]. Therefore, plants could control gene expression through methylation and

demethylation with temporal and spatial patterns during development.

Recent studies have reported that DNA methylation is one of the most important epigenetic

modifications regulating plant senescence [9]. Zhu and co-workers [10] reported that silencing

SlELP2L (an elongator complex protein 2-like gene) in tomatoes inhibits leaf growth and accel-

erates leaf and sepal senescence by increasing DNA methyltransferase gene expression. Geno-

mic DNA methylation analysis during the reinvigoration of Pinus radiata indicated that DNA

methylation decreased as the degree of reinvigoration increased in meristematic areas [11].

DNA methylation increased with maturation and conversely decreased with rejuvenation at

the shoot tips and apical meristems in Eucalyptus, determined using high-performance liquid

chromatography (HPLC) methods [12]. Total genomic DNA methylation rates in Moso bam-
boo were significantly different at different chronological ages, and increased genomic DNA

methylation rate correlated with an increase in chronological age [13]. HPLC analyses in Aca-
cia mangium Willd observed increased DNA methylation in microshoots with juvenile leaf

morphology than in the mature phyllode morphology [14]. A decrease in viability during

Quercus robur seed aging highly correlated with a global decline in the levels of 5-methylcoty-

sine in genomic DNA. Therefore, this decrease in methylation might represent a typical

response to aging and senescence in recalcitrant seeds [15]. DNA methylation increased in

some plant tissues with age, whereas it decreased in others. However, the global DNA methyla-

tion patterns from young to senescent G. hirsutum L.cotyledons remain unknown.

Leaf senescence is the last stage of plant development and can be characterized by material

degradation and recycling, leading to plant death and causing tissue aging due to environmen-

tal stresses or internal factors [16]. Early senescence is also known as premature senescence,

and short-season cotton is usually accompanied by premature senescence [17]. Premature

senescence of cotton resulted in a reduction in cotton fiber yield and quality [18]. Cotton is

one of the most important economic crops and premature senescence of cotton is one of the

most important restricted factors in China [19]. Therefore, it is important to study the mecha-

nism of cotton leaf senescence.

While DNA methylation is one of the most important epigenetic modifications, there are

few reports about DNA methylation in cotton [20]. Osabe et al. [21] investigated DNA methyl-

ation in various tissues from G. hirsutum L. and G. barbadense L. cotton plants and found that

the differences in DNA methylation were more pronounced than genetic differences between

the genotypes. Silencing of the REPRESSOR OF SILENCING 1 (ROS1) gene promoted DNA

methylation and significantly repressed fiber elongation in August in G. hirsutum L. cv.

Xuzhou 142 [22]. Min and co-workers speculated that increased histone methylation might

compensate for the low levels of DNA methylation level in G. hirsutum L. cv. H05 (sensitive to

high temperature) under high temperatures [23]. However, more work in cotton is required.

DNA methylation in young (J1) and senescent (J2) Gossypium hirsutum L. cotyledons by MeDIP-Seq
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In this study, we compared DNA methylation patterns between young (J1) and senescent

cotyledons (J2) by MeDIP-seq. DNA methylation-associated significantly enriched biochemi-

cal pathway analysis revealed that DNA methylation is involved in regulating carbohydrate

metabolism, biosynthesis of other secondary metabolites and amino acid metabolism pathways

during the cotyledon senescent process. DNA methylation levels decreased from young to

senescent cotyledons, which was likely due to their decreased expression of DNA methylation-

associated genes as DNA methyltransferase-associated gene expression was down-regulated

from young to senescent cotyledons.

Results

Overview of MeDIP-Seq data in young and senescent G. hirsutum L.

cotyledons

To analyze genome-wide DNA methylation in young and senescent cotton cotyledons (Fig 1),

we generated 81,632,654 reads from young cotyledon samples (J1) and senescent cotyledon

samples (J2) using paired-end, 49-bp methods. A total of 95.68% and 95.65% of the total read

mapped to the J1 and J2 reference genomes, respectively, of which 69.49% and 69.74% mapped

to specific regions of the G. hirsutum L. genome (Table 1). Genome coverage analysis of the

three 5-methylcytosine forms CG, CHG and CHH (H indicates A, T or G) sites negatively cor-

related with sequencing depth. A large number of regions showed low depth coverage, whereas

a small proportion of regions exhibited high sequencing depth coverage, and the percentages

of CpGs and CHG in J1 were higher than in J2 (S1 Table). As shown in S2 Table, most of the

reads tended to cluster in regions with low numbers of CpGs, which ranged from 5 to 35 in

both J1 and J2.

The MeDIP-Seq reads were distributed across all 26 chromosomes and 9127 scaffolds and

were broadly spread throughout most chromosomal regions. We counted read number step-

wise using 10 kb/window on each chromosome and physically visualized the reads on chromo-

somes with line graphs (Fig 2), which also reflects read enrichment on every chromosome

without obvious preference or deficiency. Analysis of the genome coverage distribution across

Fig 1. Plant phenotypes at four developmental stages.

https://doi.org/10.1371/journal.pone.0179141.g001

Table 1. Data generated by MeDIP-Seq analysis of young (J1) and senescent cotyledons (J2).

Sample Total reads Mapped reads Mapping rate (%) Effective Chain Depth Unique Mapped reads Unique Mapping Rate (%)

J1 81,632,654 78,104,228 95.68 1.78 56,724,818 69.49

J2 81,632,654 78,078,167 95.65 1.78 56,934,550 69.74

https://doi.org/10.1371/journal.pone.0179141.t001
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sequencing depth showed that sequencing depth�1 makes up more than 44% of the genome

of J1 and J2 (S3 Table).

We used uniquely mapped reads to analyze repetitive elements annotated in the G. hirsu-
tum L. genome [24]. Repetitive elements showed very high DNA methylation proportions,

with more than half of the uniquely mapped reads localizing to repetitive elements. We also

Fig 2. Distribution of MeDIP-Seq reads and the density of different methylated genes on each chromosome between J1 and J2. Orange

lines indicate reads distributions in J1; purple lines indicate reads distribution in J2. The green dots indicate down-methylated genes in J2

compared to J1, whereas the red dots indicate up-methylated genes. At and Dt indicate subgenomes of allotetraploid G. hirsutum L,. respectively.

https://doi.org/10.1371/journal.pone.0179141.g002
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found that different repeat elements had different DNA methylation levels (Table 2). LTR/

Gypsy and LTR/Copia were the most widely methylated DNA repetitive elements in both J1

and J2. There were 59.75% LTR/Gypsy and 7.32% LTR/Copia in J1 and 58.72% LTR/Gypsy

and 7.59% LTR/Copia in J2. According to the results, 5-methylcytosine primarily occurred in

repeat elements of G. hirsutum L. cotyledons.

However, only a small proportion of uniquely mapped MeDIP-seq reads mapped to differ-

ent gene elements, including CpG islands, 2k upstream, 5’- UTR, CDS, intron, 3’- UTR, and

2k downstream (S3 Table). The uniquely mapped MeDIP-seq reads were primarily distributed

in the 2k upstream and 2k downstream regions, followed by the gene body.

Characterization of MeDIP-seq reads around the gene body and CpG

islands

We compared the DNA methylation levels between young (J1) and senescent cotyledons (J2)

around the gene body. The DNA methylation level in both young (J1) and senescent cotyle-

dons (J2) dramatically increased 2000 bp upstream of the transcription start site (TSS). Intra-

genic regions showed the lowest DNA methylation levels in both young (J1) and senescent

cotyledons (J2). Moreover, we observed that regardless of cotyledon age, methylation levels

increased after transcription terminal sites (TTSs) and then slightly decreased (Fig 3a). How-

ever, J1 cotyledons showed significantly higher DNA methylation levels in regions before TSSs

and after TTSs than J2 (Fig 3a).

DNA methylation levels in both young (J1) and senescent (J2) cotyledons sharply increased

at 2k upstream of CpG islands. Regardless of cotyledon age, the CpG islands demonstrated the

highest methylation levels, which dramatically decreased the 2000 bp downstream of CpG

Table 2. Distribution of reads in repetitive elements in J1 and J2.

Repetitive_elements J1 J2

LTR/Gypsy 59.75 58.72

LTR/Copia 7.32 7.59

LTR 4.83 4.74

LINE/L1 1.83 2.06

TRF 0.87 0.91

DNA/MuDR 0.82 0.81

Unknown 0.42 0.44

DNA/CMC-EnSpm 0.27 0.28

Simple_repeat 0.26 0.26

DNA/MULE-MuDR 0.25 0.24

DNA/En-Spm 0.19 0.19

DNA/hAT-Ac 0.14 0.14

DNA/Harbinger 0.12 0.13

DNA/PIF-Harbinger 0.1 0.1

DNA 0.1 0.1

LTR/Caulimovirus 0.09 0.1

DNA/hAT-Tip100 0.07 0.07

LINE/Penelope 0.07 0.08

RC/Helitron 0.05 0.05

DNA/hAT-Tag1 0.04 0.05

Satellite 0.04 0.04

https://doi.org/10.1371/journal.pone.0179141.t002
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islands (Fig 3b). However, the CpG islands in J1 showed higher methylation levels than those

in J2.

Distribution of highly methylated regions in J1 and J2

There were 136,640 and 128,182 HMRs in J1 and J2, respectively. The mean HMR length was

approximately 1400 bp, and the HMR coverage sizes were 8.97% of the genome in J1 and

8.53% in the J2 stage (Table 3). The chromosome location and enriched HMR tags in J1 and J2

are listed in S4 and S5 Tables, respectively. Considering the important role of CpG in DNA

methylation, we calculated that 5–40 is the most abundant CpG number for HMRs in J1 and

J2 (S6 Table). Analysis of HMR coverage for different genome components showed that

genome coverage in coding sequences (CDS) accounted for a considerable proportion (S7

Table). Comparison of the gene methylation status showed that there were a total of 1940 dif-

ferent methylation regions (DMRs) (S8 Table), and comparison of J1 with J2 showed 625, 1,

80, 92, 2 and 422 genes down-methylated in the upstream 2k region, 5’- UTR, CDS, intron, 3’-

UTR and downstream 2k region, respectively. When we compared the DMRs in J1 to J2, there

were 278, 0, 81, 64, 0 and 200 genes up-methylated in the upstream 2k region, 5’- UTR, CDS,

intron, 3’- UTR and downstream 2k region, respectively (Fig 4).

Characterization of DNA methylation in CpG islands

Considering the large difference in reads distribution around CpG island regions between J1

and J2 (Fig 3b), we analyzed CpG islands in G. hirsutum L. and compared methylated CpG

island distribution between J1 and J2. In total, 85,562 CpG islands were identified in the G. hir-
sutum L. genome (S9 Table). We performed BLAST analysis of the MeDIP-seq reads against

the genome CpG islands and identified 65,962 and 65,752 methylated CpG islands in J1 and

J2, respectively. We then calculated the MeDIP-seq reads mapped percentage and depth for

each CpG island (S10 Table). To further analyze the methylation status of CpG islands between

Fig 3. Distribution of reads around the gene body (a) and CpG islands (b). The x-axis indicates position around the gene body (a)

and CpG island (b); the y-axis indicates the normalized read depth. The figure reflects methylation levels around the gene body and CpG

islands.

https://doi.org/10.1371/journal.pone.0179141.g003

Table 3. Information for HMRs.

Sample Total Peaks Peak Mean Length Peak Median Length Peak Total Length Peak Covered Size In Genome(%)

J1 136,640 1411.81 1239 192,910,390 8.97

J2 128,182 1430.95 1257 183,422,168 8.53

https://doi.org/10.1371/journal.pone.0179141.t003
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young (J1) and senescent cotyledons (J2), we classified CpG islands into two classes, methyl-

ated CpG islands and unmethylated CpG islands. We considered CpG islands containing

methylated peaks to be methylated, and the rest were considered unmethylated. Most of the

methylated CpG islands were located within intergenic regions. Within the gene body, CDSs

contained more methylated CpG islands than UTRs and introns. Moreover, when we classified

methylated CpG islands according to their sizes, there were more methylated CpG islands in

the 200- to 299-bp range (Fig 5). There were more unmethylated CpG islands than methylated

CpG islands in each size. The CpG island size and density increased in the CDS, upstream 2k

and downstream2k.

MeDIP-seq data validation by bisulfite sequencing

Bisulfite sequence PCR was performed to validate the MeDIP-Seq results from young (J1)

and senescent cotyledons (J2) (S11 Table). Randomly selected two down-methylated

genes (CotAD_14795 and CotAD_48340) upstream 2k and three up-methylated genes

(CotAD_27532,CotAD_44113, and CotAD_39214) up-stream 2k and a senescence-associated

gene (CotAD_20715,GhSAG101) were used to check DNA methylation patterns with the

bisulfite sequence method. The methylation patterns of all five genes were the same as the

DNA methylation patterns obtained with the MeDIP-seq data, indicating that the MeDIP-

seq method is a reliable technique to compare methylation levels between young (J1) and

senescent (J2) cotyledons.

GO analysis

According to the agriGO analysis of methylated genes against the Gossypium background GO

annotation data could be clustered into three categories: biological process, cellular component

and molecular function. There were 5115 down-methylated genes and 1541 up-methylated

genes in the cellular component data, primarily focused on cell part, cell, intracellular, intracel-

lular part and intracellular organelle; 3648 down-methylated genes and 765 up-methylated

genes in molecular function, primarily focused on binding, catalytic activity, nucleic acid bind-

ing, and hydrolase activity; and 8274 down-methylated genes and 1739 up-methylated genes

in biological process, primarily enriched for cellular process, metabolic process, primary

Fig 4. Number of genes in each specific gene element. The x-axis indicates different gene elements, and

the y-axis indicates the different methylated gene numbers in each specific gene element. Different

methylated gene elements were concentrated in the upstream 2k and downstream 2k.

https://doi.org/10.1371/journal.pone.0179141.g004
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metabolic process, cellular metabolic process, macromolecule metabolic process, cellular mac-

romolecule metabolic process (Fig 6). Detailed information is provided in S14 Table.

Methylated genes are significantly enriched for the biochemical pathway

DNA methylation in the CDS, downstream 2k, intron, and upstream 2k usually has different

effects on gene expression. Therefore, we analyzed the biochemical pathways of all gene ele-

ments. We used the KAAS (KEGG Automatic Annotation Server) and pathway enrichment

analysis tool of OmicShare software for all DMR-related gene elements to determine the func-

tional pathways involved. According to the pathway enrichment analysis there were only 2 sig-

nificantly enriched pathways in the downstream 2k and 6 significantly enriched pathways in

the upstream 2k, and most of the pathways belonged to carbohydrate metabolism, biosynthesis

of other secondary metabolites, amino acid metabolism, signal transduction, lipid metabolism

and metabolism of terpenoids and polyketides pathways (Table 4). These data suggest that

DNA methylation plays an important role in regulating secondary metabolites in cotyledon

senescence.

Fig 5. Genomic distribution of methylated and unmethylated CpG islands. We subdivided the CpG islands into methylated and unmethylated islands

and categorized them into different bins according to their size. The number of CpG islands in a particular bin was calculated in different regions and was

subsequently normalized to the total number of CpG islands in that bin.

https://doi.org/10.1371/journal.pone.0179141.g005
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Fig 6. GO category analysis of down-methylated and up-methylated genes at J1 and J2 cotyledon stages. The green indicates down-

methylated genes, and the red indicates up-methylated genes, which were defined with the FDR <0.05 and at least a 2.0-fold-change in read number.

The results indicate GO annotations with p values less than 0.05.

https://doi.org/10.1371/journal.pone.0179141.g006
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DNA methylation-associated gene expression analysis

There are two mechanisms influencing the methylation of cytosine: DNA methylation and

DNA demethylation. DNA methyltransferase genes such as GhCMT3, GhDRM1/2, GhDRM3,

GhMET1 and GhDDM1 function in the maintenance or de novo generation of DNA 5-methyl-

cytosine. GhNERD, GhNRPD, GhSAHH1a, and GhSAHH1b encode proteins that are also

required for DNA methylation. However, DNA demethyltransferases such as ROS1 and DME

remove methyl groups from 5-methylcytosine In the G. hirsutum L. genome sequence, we

identified a total of 13 DNA methyltransferase genes and 4 DNA demethyltransferase genes

(S12 Table).

Is the mechanism causing DNA methylation levels to decrease from young to senescent

cotyledons due to DNA methylation or DNA demethylation? DNA methyltransferase-associ-

ated genes and DNA demethyltransferase-associated genes were selected for assessment by

qRT-PCR in young and senescent cotyledons. According to the qRT-PCR results, both DNA

methylation-associated and DNA demethylation-associated genes showed decreased expres-

sion values with increased senescence (Fig 7), suggesting that senescent cotyledons exhibit

lower DNA methylation levels than young cotyledons due to decreased expression of methyl-

transferase-associated genes.

Discussion

DNA methylation is widely involved in G. hirsutum L. cotyledon

development

Leaf development from youth to senescence involves changes to gene expression, protein

translation and modification, cellular structure, metabolic pathways, and plant hormone levels,

among others. In recent years, DNA methylation has been reported as an important epigenetic

modification regulating the leaf senescence process [25].

In this study, we used MeDIP-Seq methods to sequence young (J1) and senescent (J2)

cotyledons in cotton. We produced 4G reads from both J1 and J2. These reads were widely

spread on each chromosome (Fig 2). The read distribution along a gene indicated that young

cotyledons exhibit more DNA methylation in both 2k upstream and 2k downstream sites than

senescent cotyledons, and the read distribution around CpG islands indicated that young coty-

ledons show higher DNA methylation levels in CpG islands than senescent cotyledons. By

comparing methylated gene components 2k upstream, CDS, introns, and 2k downstream, we

identified 1940 DMR-related genes between young (J1) and senescent (J2) cotton cotyledons.

According to the results, senescent leaves (J2) have lower DNA methylation levels than young

cotton leaves (J1). With the same sequence depth, the CpG percentage and CHH were higher

in J1 than J2. There were more HMRs overlapping with genetic elements in J1 than in J2,

Table 4. Significantly enriched pathways in different gene elements.

Gene elements Pathway P-value Q-value Pathway ID

downstream2k Plant hormone signal transduction 0.004571 0.0402011 ko04075

downstream2k Arachidonic acid metabolism 0.0013919 0.04593376 ko00590

upstream2k Pentose and glucuronate interconversions 0.005209 0.03901366 ko00040

upstream2k Glycine, serine and threonine metabolism 0.0032251 0.0322513 ko00260

upstream2k Starch and sucrose metabolism 0.0027532 0.0322513 ko00500

upstream2k Limonene and pinene degradation 0.0016161 0.03636263 ko00903

upstream2k Flavonoid biosynthesis 0.003721 0.01275 ko00941

upstream2k Stilbenoid, diarylheptanoid and gingerol biosynthesis 0.0013143 0.03636263 ko00945

https://doi.org/10.1371/journal.pone.0179141.t004
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suggesting that there were more methylated DNA regions on gene elements in young (J1) cot-

yledons. In young (J1) cotyledons, methylation was higher around the gene body and CpG

islands than in senescent cotyledons (J2). In J1, the upstream 2k region showed higher DNA

methylation levels than J2, and CpG islands also showed higher DNA methylation levels than

J2, which usually occurs at promoter regions to control gene expression [26].

Read distribution around gene body and CpG islands revealed that young cotyledons (J1)

show higher DNA methylation levels at regions 2k upstream, 2k downstream and at CpG

islands than senescent cotyledons (J2). According to HMR-related genes analysis, as plants

progress from young to senescent cotyledons, there are more HMR-covered genes down-

methylated, indicating that as cotyledons age, DNA methylation levels decrease in cotton,

which is consistent with previous studies in P. radiata [11] and Q. robur seeds [15]. In Arabi-
dopsis, several senescence-associated genes (SAGs) are regulated by DNA methylation.

AtSAG24(At1G66580), AtSAG113(At5G59220), AtSAG14(At5G20230), AtSAG1(At2G43820),

AtSAG20(AT3G10985), AtSAG102(AT3G63210), AtSAG15(AT5G51070), AtSAG101
(AT5G14930), AtSAG13(AT2G29350), and AtSAG18(AT1G71190) all have methylated cyto-

sines that were identified with a single-base resolution method [27]. In cotton, we used bisul-

fite sequencing PCR and found that GhSAG101 (CotAD_20715) can be methylated on gene

body with the DNA methylation level decreased from J1 to J2 (S13 Table).

Fig 7. Relative expression of DNA methylation-associated genes at the four developmental stages. In the X-axis, 1, 2, 3 and 4 indicate the four

cotyledon development stages from young to senescent. The y-axis indicates relative expression values of qRT-PCR compared with the first stage. The

bars show the standard deviation of three technical replications. * indicates significant difference at P<0.05 level, ** indicates extremely significant

difference at P<0.01 level.

https://doi.org/10.1371/journal.pone.0179141.g007
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From young to senescent, the metabolic shift is important for nutrient mobilization, and

some studies have demonstrated that secondary metabolites could reflect the leaf senescence

process. Leaf senescence increased, the ratio of Gly/Ser was high with low photosynthesis

activity; and plant senescence usually accompanied proteolysis [28]. In leaves, starch and

sucrose metabolism could affect the level of sugar; however, their role in leaf senescence is

still controversial [28]. At the cellular level, leaf senescence is accompanied by chloroplast

degradation, decreased chlorophyll content and arginine levels, free amino acid accumula-

tion, membrane lipid peroxidation, increased putrescine acid content, and enzyme activity,

etc. In our work, GO and nr annotation analysis revealed that differentially methylated genes

between young (J1) and senescent cotyledons (J2) broadly participate in cellular components,

biological processes and molecular functions (Fig 6). These differentially methylated genes

were significantly enriched in several biochemical pathways, especially secondary metabolite

processes (Table 4). There are some studies about the epigenetic regulation of secondary

metabolite biosynthesis in fungi but few studies about the epigenetic regulation on plant

secondary metabolites. According to our results, we can conclude that DNA methylation

is a very important epigenetic modification that is highly regulated during cotyledon

development.

In this study, we used MeDIP-seq to comprehensively analyze DNA methylation in young

(J1) and senescent (J2) cotyledons. Above all, DNA methylation is one of the most important

epigenetic modifications in regulating the plant senescence process. DNA methylation levels

decreased during the cotton cotyledon senescence process, which affected the expression of

many genes and some biochemical pathways involved, particularly those regulating secondary

metabolite processes (Table 4).

DNA methylation of repeat elements and CpG islands involved in G.

hirsutum L. cotyledon senescence

Repeat elements showed very high DNA methylation proportions in both J1 and J2 which indi-

cated that DNA methylation in repeat elements is very important in G. hirsutum L. G. hirsutum
L. is allotetraploid cotton with a large genome size; repeat elements make up 66% of the G. hir-
sutum L. genome, and LTR/Gypsy and LTR/Copia are the most predominant repeat elements

[24]. In this work, repeat elements exhibited a larger proportion of methylated elements than

genes, which agrees with previous work of DNA methylation analysis in cotton fiber develop-

ment and DNA methylation of horse MeDIP-seq [22,29]. In some other plant species, gene ele-

ments make up a larger proportion than repeat elements, such as DNA methylation which

occurs frequently in Arabidopsis, and methylcytosine, which occurs in repeat elements to help

protect genomic structure and affect gene expression [30]. Loss of DNA methylation to SINEs

in A. thaliana ectopically activates expression of FWA (FLOWERING WAGENINGEN) and

results in late flowering [31]. DNA methylation patterns are different in different tissues and

different developmental stages [32].

Compared with T. cacao and A. thaliana, more repeat elements were inserted near (within

1 kb) genes in cotton [33], and repeat elements were more likely to be methylated [34]. CpG

islands are usually located near gene promoters and can also appear within or at the 3’- end of

genes in the human genome [5]. Promoters containing repeat elements exhibited higher DNA

methylation level than gene, 5’- UTR, CDS and 3’- UTR in A.thaliana [35]. Read distribution

around CpG islands showed that CpG islands have higher DNA methylation than the up- or

downstream 2k. Comparing repeat elements and CpG islands to the gene body, it seems rea-

sonable that the upstream and downstream 2k show higher methylation levels than gene body

based on the DNA methylated read distribution around the gene body.
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DNA methylation modified repeat elements and CpG islands, which could regulate gene

expression to regulate cotton cotyledon senescence. Also, it has reported that DNA methyla-

tion could mediate gene and repeat element expression to enhance the transition from epider-

mal to fiber cells during ovule and seed development in cotton [34].

Senescent cotton cotyledons (J2) show lower DNA methylation levels

than young cotyledons (J1)

DNA methylation is a highly regulated process. In plants, three DNA methylation mecha-

nisms, DNA methylation maintenance, de novo DNA methylation and DNA demethylation

balance DNA methylation levels. There are three types of cytosines that can be methylated,

CHH, CHG and CG. In Arabidopsis, CHROMOMETHYLASE 3 (CMT3) is a plant-specific

DNA MTase that maintains CHG and CHH DNA methylation [36]. DNA METHYLTRANS-

FERASE 1 (MET1) functions in the maintenance and DNA methylation of CG sites [37]. In

higher plants, domains rearranged methylase 1/2 (DRM1/2) shows de novo methylation activ-

ity in all sequence contexts and acts redundantly with CMT3 to maintain methylcytosine [38].

DRM3 functions in the maintenance of non-CG DNA methylation and the establishment of

RNA-directed DNA methylation triggered by repeat sequences and the accumulation of

repeat-associated small RNAs [39]. DNA methyltransferases place a methyl-group on the cyto-

sine of DNA, during which the S-adenosylhomocysteine hydrolase1 (SAHH1) provides the

substrate. DNA methylation also requires the NEED FOR RDR2-INDEPENDENT DNA

METHYLATION (NERD) and NUCLEAR RNA POLYMERASE D1B (NRPD1B) genes,

which play critical roles in methyl homeostasis [40]. In A.thaliana, the DNA glycosylase gene

family, which consists of DME, ROS1 (also known as DML1), DML2 and DML3, regulates

DNA demethylation by removing methyl groups from 5-methylcytosine [41].

During the leaf senescence process, chlorophyll, protein, nucleic acids and some macromol-

ecules are degraded and the leaf becomes yellow, which is the recession and death process [42].

In Fig 1, we observed that the color of J1 is a healthy green; however, the margin is yellow and

the center is yellowish-green in J2. With the growing days and phenotypes of J1 and J2, we

judged that J2 cotyledons represent senescence. According to qRT-PCR analysis, both DNA

methylation-associated and DNA demethylation-associated genes showed relatively decreased

expression levels (Fig 7) from young to senescent cotyledons, which might explain the DNA

methylation level decrease in young to senescent cotyledons because DNA methylation associ-

ated genes decrease in expression with the aging process.

Conclusion

In this study, we compared global DNA methylation between young (J1) and senescent (J2)

cotyledons in G. hirsutum L. by MeDIP-Seq. We concluded that young cotyledons have higher

DNA methylation levels than senescent cotyledons. The methylated sequences were broadly

distributed across all 26 chromosomes, and DNA methylation-associated genes were signifi-

cantly involved in secondary metabolites. We investigated the expression patterns of 9 DNA

methyltransferase-associated genes and 2 DNA demethyltransferase-associated genes from

young to senescent cotyledons and found that they were down-regulated during senescence,

suggesting that senescent cotyledons have lower DNA methylation levels because of decreased

DNA methylation activity. This work comprehensively compared global DNA methylation

levels between young and senescent cotyledons. Considering the shortcomings of MeDIP, a

single-base resolution DNA methylation map should be defined in the future.
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Methods

Plant materials

In this work, we used cotyledons of Liao4086 to perform a global analysis of DNA methylation

in young and senescent Gossypium hirsutum L. by MeDIP-Seq, because cotyledons grow

quickly and could be well controlled without being damaged by disease and insects. Healthy

and uniform Liao4086 cotton seeds were grown in a greenhouse at the Cotton Research Insti-

tute of Chinese Academy of Agricultural Sciences, Anyang, Henan Province. Under 30˚C

light/22˚C dark and 16 h light/8 h dark conditions, the seeds were strictly germinated at the

same depth of soil to ensure that the cotton seeds broke through the soil at the same time

[43,44]. The materials were collected in triplicate every two weeks from the first stage when the

cotyledons flattened, and four time-points were collected in total. The first and fourth samples

were used as the young cotyledon (J1) and senescent samples (J2), respectively. Chlorophyll

color changed from green to yellow during the aging process (Fig 1).

DNA extraction and preparation for MeDIP-seq

Genomic DNA was extracted from J1 and J2 samples using cetyl trimethylammonium bro-

mide (CTAB) method [45]. Genomic DNA was treated with the following steps: sonication

to generate DNA fragments of 300–500 bp, DNA-end repair, 3’-dA overhang, ligation of

sequencing adaptors, denaturation of double-stranded DNA, immunoprecipitation by 5-mC

antibody, real-time PCR validation, PCR amplification and size selection (usually 200–300

bp). Insert size was strictly controlled to be approximately 250 bp, and all of these processes

were qualified with an Agilent 2100 Bioanalyzer and agarose gel electrophoresis [4]. Following

PCR validation, DNA libraries were sequenced on an Illumina HiSeq 2000 (Illumina, CA,

USA) to generate paired-end 49-bp reads by the Beijing Genomics Institute (BGI, China). The

MeDIP-Seq data from this study was submitted to the NCBI Sequence Read Archive (SRA),

and the accession number of J1 and J2 is SRP066408.

Bioinformatics analysis

The raw reads obtained from Illumina sequencing were filtered to remove adaptor sequences,

sequences containing N more than 10% reads and low-quality reads [46]. The clean data were

stored in fastq format. The filtered reads were mapped to the G. hirsutum L. reference genome

[24] with SOAPaligner v2.21, and reads with no more than 2 mismatches were considered for

further analysis [47]. The uniquely mapped reads were used to analyze reads distribution in

the G. hirsutum L. genome and the distributions of different components.

To evaluate our MeDIP-Seq data, we analyzed cytosine base (C) coverage. The methylated

cytosine bases in the eukaryote genome are generally one of three forms: CG, CHG or CHH

(H indicates A, Tor C). Therefore, it is necessary to analyze genome-wide coverage of the three

forms at cytosine sites using different sequencing depths on the Crick strand, the Watson

strand, and both strands to evaluate the sequence strategy. Because of the high DNA methyla-

tion frequency, we analyzed CpG density in specific regions. We divided the genome into 1000

bp windows and calculated the distribution of CpG density. To characterize MeDIP-seq reads

around the gene body and CpG islands, we divided both the upstream and downstream 2 kb

of the gene body into 20 equal regions each to generate 40 equal regions. We calculated the

normalized number of reads for each region and used the same method of read distribution

around the gene body to calculate the read distribution around CpG islands. Analysis of MeD-

IP-Seq data was conducted in the R environment by MEDIPS package [48] and.a flow chart of

analysis process could be found in S15 Table.
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CpG Island Searcher (http://cpgislands.usc.edu/) was used to identify CpG islands (CGIs)

according to the following criteria: DNA sequence length of more than 200 bp, GC content

�50%, CpG observed/expected (o/e) ratio�0.6 and the gap between adjacent islands should

be more than 100 bp. CpG islands overlapping with the methylated peaks were considered

methylated [49,50].

Uniquely mapped reads were used to analyze highly methylated regions (HMRs), also

known as peaks, based on a defined analysis model from MACS 1.4.0 software, and peaks with

a p value less than 1e-5 were used for further analysis. The peaks of J1 and J2 were merged as

candidate DMRs, and the number of normalized reads of each peak was tested by Chi-square

with p-value <0.01. For each candidate, DMR was deemed differentially methylated between

J1 and J2 with a false discovery rate (FDR) <0.01 and at least a 2.0-fold-change in read number

[51]. DMR analysis was performed in R package (http://www.r-project.org). We calculated the

HMR coverage by dividing the total length of regions in a specific element covered by HMRs

by the total element length.

We defined methylated genes as HMRs that overlapped the gene element by more than

50% [8]. Methylated genes were used for GO annotation enrichment in biological process, cel-

lular component and molecular function analysis using the online software agriGO (http://

bioinfo.cau.edu.cn/agriGO/analysis.php), and the statistical test method of GO annotation was

Fisher [52]. The KAAS online software (http://www.genome.jp/tools/kaas/) was used to iden-

tify the Ko number of methylated genes. Furthermore, according to the Ko numbers, pathway

enrichment analysis was performed using OmicShare tools (http://www.omicshare.com/tools/

Home/Soft/pathwaygsea), methylated genes were used to identify biochemical pathways sig-

nificantly enriched in young (J1) and senescent cotyledons (J2), and p-values and corrected

p-values (q-value) less than 0.05 were considered statistically significant [53].

Bisulfite sequencing PCR analysis

Genomic DNA samples of J1 and J2 were extracted according to CTAB methods. The genomic

DNA samples from J1 and J2 were treated with a DNA bisulfite conversion kit (Tiangen,

China). MethPrimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) was used

to predict CpG islands. Primers were designed using MethPrimer and Oligo 7 software (S13

Table). MightyAmp DNA Polymerase Ver. 2 (TAKARA, Japan) was used to perform BS-PCR.

PCR was performed in 50 μl reaction mixtures with 25 μl of MightyAmp Buffer Ver. 2, 1 μl of

MightyAmp DNA Polymerase (1.25 U/μl), 2 μl of forward primers, 2 μl of reverse primers,

16 μl of ddH2O and 4 μl of modified DNA samples. The reaction was performed with the fol-

lowing program: 98˚C for 2 min, followed by 40 cycles of denaturation at 98˚C for 10 s, anneal-

ing at 60˚C for 15 s and extension at 68˚C for 40 s, and a final extension at 72˚C for 10 min.

The PCR product was purified using a TaKaRa Agarose Gel DNA Purification Kit, Ver. 2.0

(TAKARA, Japan). Purified DNA fragments were subcloned into the pMD18 T-vector

(TAKARA, Japan), and 10 single clones were picked for each gene for sequencing (GENEWIZ,

America) from J1 and J2 modified DNA samples. BIQ Analyzer software (http://biq-analyzer.

bioinf.mpi-inf.mpg.de/) was used to measure the DNA methylation status of the selected genes

with young and senescent cotyledons.

We randomly selected 5 genes with DNA methylation in their upstream 2k region and a

senescence-associated gene (CotAD_20715,GhSAG101) (S10 Table) and used the MethPrimer

program to predict CpG islands in the upstream 2k regions. We analyzed the sequenced data

using BIQ Analyzer software (http://biq-analyzer.bioinf.mpi-inf.mpg.de/). For each sample,

we analyzed methylation data by calculating the percentage of methylated CpGs from the total

number of CpGs.
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RNA extraction and preparation for qRT-PCR

Triplicate cotyledon samples for each time-point were mixed in equal parts and used to extract

total mRNA with a polysaccharides- and polyphenolics-rich RNAprep pure plant kit according

to the manufacturer’s instructions (Tiangen, China). RNA integrity was measured with aga-

rose gel electrophoresis, and the concentration was measured with a NanoDrop 2000/2000c

(Thermo Scientific, USA). We downloaded DNA methyltransferase and demethyltransferase

protein sequences of A. thaliana, which were used as query sequences for local BLASTp against

the G.hirsutum L. genome protein sequence with 1e-30 to retrieve DNA methyltransferase and

demethyltransferase genes in G.hirsutum L. [22, 34, 54]. A first-strand cDNA synthesis kit

(TOYOBO, Japan) was used to synthesize cDNA. The PCR reaction contained 2 μg RNA, 4 μl

5×RT Master mix, and sterile ddH2O for a total volume of 20 μl. Synthesized cDNA samples

were diluted 10-fold and then used for qRT-PCR. qPCR was performed on an ABI7500 system

(Applied Biosystems, USA) with three technical repeats. For each 20 μl reaction, 10 μl 2×SYBR

Green I Master Mix, 7.2 μl distilled H2O, 0.8 μl primers (final concentration 0.4 μM) and 2 μl

cDNA templates were added. Amplification reactions were initiated with a pre-denaturing

step (95˚C, 10 min), followed by denaturing (95˚C, 10 s), annealing (60˚C, 30 s) and extension

(72˚C, 30 s) for 40 cycles [54]. Two reference genes were used to normalize the target genes,

and the primers are listed in S16 Table. The relative gene expression level were calculated by

the 2-ΔΔCtmethod [55].
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