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ABSTRACT
Epithelial-Mesenchymal Transition (EMT) and angiogenesis are crucial events for development of
aggressive and often fatal Oral Squamous Cell Carcinomas (OSCCs). Both promote cancer progression and
metastasis development, but while the former induces the loss of E-cadherin expression and, hence
cadherin switching; the latter produces haematic blood vessel neo-formation and contribute to OSCC cell
growth, tumor mass development, and dissemination. Cyclooxygenase-2 (COX-2) has an important role,
not only in angiogenic mechanisms, but also in favoring cancer invasion. Indeed it decreases the
expression of E-cadherin and leads to phenotypic changes in epithelial cells (EMT) enhancing their
carcinogenic potential. Our aim is to evaluate the interplay between E-cadherin cytoplasmic
delocalization, COX-2 up-regulation and COX-2 induced neo-angiogenesis in 120 cases of OSCC. We have
analyzed the distribution and the number of neo-formed endothelial buds surrounding infiltrating cells
that express COX-2, as well as the neo-formed vessels in chronic inflammatory infiltrate, which surround
the tumor. A double immunostaining method was employed in order to verify co-localization of
endothelial cell marker (CD34) and COX-2. IHC has also been used to assess E-cadherin expression. Our
data demonstrate that the OSCC cells, which lose membranous E-cadherin staining, acquiring a
cytoplasmic delocalization, overexpress COX-2. Moreover, we find a new CD34C vessel formation
(sprouting angiogenesis). Only basaloid type of OSCC showes low level of COX-2 expression together with
very low level of neo-angiogenesis and consequent tumor necrosis. The well-known anti-metastatic effect
of certain COX-2 inhibitors suggests that these molecules might have clinical utility in the management of
advanced cancers.
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Introduction

Oral Squamous Cell Carcinoma (OSCC), the sixth most frequent
malignant tumor, with its distinct patterns of presentation and its
complex and heterogeneous behaviors, can be considered one of
the most greater public health problems in the world.1

Epithelial-Mesenchymal Transition (EMT) is a key-event
in promoting neoplastic progression and metastasis develop-
ment. Loss of E-cadherin expression and, hence, cadherin
switching are 2 crucial events involved in EMT phenome-
non.2 In malignant tumors the mechanisms of E-cadherin
down-regulation are numerous and different: inherited and
somatic mutations, loss of heterozygosity (LOH), aberrant
protein processing, epigenetic silencing, increased endocyto-
sis and proteolysis. We have previously showed that low

E–Cadherin expression and/or its delocalization from mem-
brane to cytoplasm, likely due to the hypermethylation of
CDH1 promoter or to the increased expression of EGFR, is
a negative prognostic factor in OSCC.3

The induction of transcriptional repressors, such as Snail,
SLUG and ZEB family members, by certain microRNAs
(miR-200 and miR-205), is able to determine EMT and the
enrolment/action of “mesenchymal” cadherins.4 Above all
that, other mechanisms are involved in E-cadherin downre-
gulation during EMT. It is plausible that local environmen-
tal factors (such as hypoxia and local inflammatory changes
mediated by tumor–stromal interactions), extracellular mol-
ecules, cytokines or soluble growth factors can affect the
expression of transcriptional E-cadherin repressors and
induce EMT.5-7

CONTACT Marina Di Domenico didomenico.marina@gmail.com
yCo-authors.
© 2018 Taylor & Francis Group, LLC

https://doi.org/10.1080/15384047.2015.1071741

CANCER BIOLOGY & THERAPY
2020, VOL. 21, NO. 8, 667–674

https://crossmark.crossref.org/dialog/?doi=10.1080/15384047.2015.1071741&domain=pdf&date_stamp=2018-05-23
mailto:didomenico.marina@gmail.com
https://doi.org/10.1080/15384047.2015.1071741
http://www.tandfonline.com


Prostaglandin endoperoxide synthase 2, also known as cyclo-
oxygenase 2 (COX-2), a key enzyme inducible in response to
proinflammatory cytokines and growth factors, catalyzes the con-
version of arachidonic acid to prostaglandins (including prosta-
glandin E2 (PGE2)) and other eicosanoids. COX2 has been found
over-expressed in a great variety of human malignancies, includ-
ing OSCC.8-11 At molecular level COX-2 participates in cancer
invasion and metastasis by decreasing the expression of E-cad-
herin and leading to phenotypic changes in epithelial cells that
could enhance their carcinogenic potential.11

It is also well known that COX-2 plays an important angio-
genic role in the tumor microenvironment, regulating both neo-
plastic and endothelial cell biology. In particular, it can impact
on neo-angiogenesis in different ways: (a) releasing active proan-
giogenic proteins; (b) producing molecule as TXA2, PGI2, PGE2
that directly stimulate endothelial cell migration and angiogene-
sis in vivo; (c) determining the inhibition of endothelial cell apo-
ptosis and enhancing tumor cell survival, by Bcl-2 stimulation or
PI3K-Akt activation. The versatile contribution of COX-2 in the
angiogenic pathway makes it an ideal target for pharmacological
selective inhibitors. Interestingly, COX-2 inhihitors has been suc-
cessfully used in modulation of E-cadherin expression with sig-
nificant down-regulation of angiogenetic factors and microvessel
density in solid tumors over-expressing COX-2. Given the safety,
the tolerability and the potent anti-angiogenic properties of
COX-2 inhibitors, the combination of these molecules with stan-
dard chemotherapy and radiation therapy leads up additive ben-
efit in clinical patient management.12-13

The relationship between cyclooxygenase-2 (COX-2) and
angiogenesis, as determination of microvessel density (MVD),
has been also investigated in OSCC.14 Our previous report has
shown a statistical association between COX-2 and prognostic
characteristics of OSCC.15

We will evaluate the interplay between E-cadherin cytoplasmic
delocalization, COX-2 upregulation and COX-2 induced neo-
angiogenesis in 120 cases of OSCCs included in a Tissue
Microarray (TMA), focusing on the distribution and the number
of neo-formed endothelial buds surrounding COX-2 expressing
infiltrating cells, as well as the neo-formed vessels in chronic
inflammatory infiltrate accompanying the tumor. A double immu-
nostaining method was employed in order to verify co-localization
of endothelial cell marker (CD34) and COX-2.

We have chosen the sialomucin CD34 as endothelial cell
marker because it stains endothelial cells in human tumor
stroma;16 in particular, it stains cells with migration capability;17

furthermore, it is also a marker of lymphatic angiogenesis in
human tumors.18

Results

Tumor samples from 120 patients affected by OSCCs were ana-
lyzed and the clinic-pathological characteristics of the studied
population were reported in Table 1.

Tumor dimension (as evaluated in TNM staging)
and deep invasion

There was positive statistical correlation between large size
of tumors (T) and degree of deep invasion as evaluated by means

§ SD of distances in mm measured between surface layer and
deeper infiltrating cancerous cells, as shown in Table 2. In particu-
lar, at 2 extremes of tumor size of TNM classification T1 cases
had a mean value of 9.21 § 3.72 mm in depth while T4 tumors
reached 13.5§ 5.73 mm (pD.02). This positive correlation is con-
firmed by Pearson’s test performed on tumor dimension and deep
invasion (p< .001; Pearson’s R:C.44).

E-cadherin expression in OSCC

The immunoreactivity of E-cadherin was examined in all OSCCs
and in the corresponding normal oral epithelium of the oral cav-
ity. As already reported in our previous work performed using
whole sections of OSCCs normal epithelium showed strong

Table 1. Clinico-pathological data of the studied population (120 cases).

N. %

Sex M 85 70,8
F 35 29.2

Age Mean 67.3 § 11.0
Range 31–92

Tumor localization Tongue 59 49.2
Floor of Mouth 14 11.7
Trigonus 10 8.3
Gingiva 7 5.8
Lip 3 2.5
Mascella 3 2.5
Oral cavity n.s. 3 2.5
Mandibula 2 1.7
Tongue and Floor 2 1.7
Posterior tongue, floor

of the
mouth and
trigonous

1 0.8

Monoblocco 1 0.8
n.s. 15 12.5

Histologic classification
of tumors

Conventional
keratinizing OSCC

110

Verrucous SCC 9
Basaloid non

keratinizing OSCC
1

Rxt and/or Chm Rxt 70 58.3
Chm 28 23.3
Rxt C Chm 70 58.3
No Therapy 15 12.5
n.s. 35 29.2

Grade G1 23 19.2
G2 61 50.8
G3 29 24.2
G1/G2 1 0.8
G2/G3 4 3.3
n.s. 2 1.7

Tumor dimension Mean 2.73 § 1.26 cm
Range 0.3–6.0 cm

Deep invasion Mean 11.17 § 4.73 mm
Range 0.9–24 mm

Abbreviations: n.: number of cases; n.s.: not specified.

Table 2. Tumor dimension (as evaluated in TNM staging) and deep invasion (with
post-hoc Scheff�e test for all pairwise comparisons)

Group N
Deep invasion
(mean § SD) CI 95% Min Max

Different
(P<0,05) from factor

T1 21 9.21 § 3.72 7.622–10.807 2.0 16.0 T4
T2 52 10.69 § 4.37 9.502–11.879 0.9 24.0
T3 20 12.1 § 4.78 10.006–14.194 5.0 20.0
T4 20 13.5 § 5.73 10.990–16.010 4.0 22.0 T1

Abbreviations: SD–standard deviation. All values are in millimeters.
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membranous E-cadherin expression;3 on the other hand, hetero-
geneous areas of immunoreactivity varying in percentage value,
intensity and/or subcellular localization were observed in tumor
tissues. In tumor cells there were a loss of membranous staining
and an increase of E-cadherin cytoplasm levels, especially in
poorly differentiated, aggressive and proliferative areas, on the
other hand well differentiated tumors kept the membranous
E-cadherin staining.3 In the whole, we prevalently observed a
cytoplasmic E-cadherin delocalization, that was statistically sig-
nificant compared to the membrane localization of correspond-
ing normal peritumoural oral epithelium (p < 0.05).
Immunohistochemical results were statistically correlated with
the clinico-pathological findings (sex, age, tumor maximum size,
inflammatory infiltrate surrounding the tumor mass, tumor infil-
tration of surgical margins, tumor stage and histological differen-
tiation) and evaluated by univariate analysis.

E-cadherin and clinic-pathological parameters

First of all, we noted a significant correlation between sex and
E-cadherin delocalization, in deep (P D .006) and in superficial
level of invasion (P D .011). In particular, men have higher
cytoplasmic expression of E-cadherin than women (Table 3).

Moreover, we observed

� a positive correlation between tumor dimension and E-cad-
herin delocalized cytoplasmic expression, both in deep and
in superficial margin of invasion (Spearman’s R: C .156;
p< .05 in deep invasion; Spearman’s R:C.186; pD .032);

� a positive correlation between E-cadherin delocalized
cytoplasmic expression and disease-related exitus (Pear-
son’s R: C.283; p D .011).

COX-2 expression in OSCC

We observed an overall over-expression of COX-2 in OSCCs
(Table 4), with a mean percentage of 63.63%, a mean intensity
of 1.64 and a score of 120.21. Furthermore, OSCCs often
showed a discrete number of neo-formed vessels (CD34-posi-
tive) surrounding cord of cancerous cells overexpressing COX-
2 with evidence of new vessels formation from pre-existing ves-
sels (sprouting angiogenesis) (Fig. 1).

Only a case of basaloid type of OSCCs showed low level of
COX-2 expression together with very low level of neoangiogen-
esis and consequent tumor necrosis (Fig. 3).

No evidence of linear correlation between COX-2 and deep
invasion of tumor (p > .05; Pearson’s R) has been reported.

COX-2 and CD34 relationship in phlogistic infiltrates
accompanying tumor invasion

Phlogistic cells in OSCCs expressed high level of COX-2
and were observed closely spaced to CD34 positive

endothelial cells in micro-areas of deep invasion, in this
way contributing to neoplastic neoangiogenesis (Fig. 2).

COX-2 and CD34 relationship in deep infiltrating OSCC

Large microvessels expressed CD34 with a mean percentage of
4.61; higher level of CD34 stained endothelial cells have been
observed in small microvessels (32.79%) (Table 4).

Moreover, we found a positive linear correlation
between COX-2 score (% x intensity) and CD-34 express-
ing small microvessels (p D .034; Pearson’s R: 0.246),
also considering the total amount of small and large
microvessels (p D .031; Pearson’s R: 0.251) (Figs. 4a–4b)
(Table 5).

Table 3. Correlation between E-cadherin and clinic-pathological parameters

Female Male Significance

E-cadherin (C) in deep invasion 10 30 P D .006
E-cadherin (C) in superficial invasion 20 30 P D .011

All values are medians.Mann-Whitney U test.

Table 4. Expression of COX-2 and CD34 in OSCCs.

Mean Std Dev Min Max

COX-2 (percentage) 63.63 35.27 0 100
COX-2 (intensity) 1.64 0.92 0 3
COX-2 (score) 120.21 99.84 0 300
CD-34 Large microvessels 4.61 5.14 0 30
CD-34 Small microvessels 32.79 25.13 0 114
CD-34 Total microvessels 37.40 25.23 1 120

Figure 1. Sprouting angiogenesis surrounding COX-2 positive oral squamous cell
carcinoma in deep invasion. 1a, 1b. Two representative OSCCs with over-expres-
sion of COX-2, that is accompanied by the formation of new CD-34-positive vessels
(LSAB-HRP, nuclear counterstaining with haematoxylin; original magnification £
100).
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Predictors of survival

Then, we have studied predictors of survival throughout Cox
proportional hazards regression, analyzing the effect of several
risk factors on survival. This analysis was conducted on COX-2
expression; small, large and total microvessels; chemiotherapy
and radiotherapy. The overall model fit was significant. Only the
variable “large microvessels” was found to significantly contrib-
ute to the prediction of survival time (p D .019; Exp(b)D1.102;
95% CI of Exp(b)D 1,0163 to 1,1957) (Fig. 5).

Discussion and conclusions

Angiogenesis is crucial for development of aggressive and often
fatal cancers.23-24 Progression of OSCC is characterized by

loco-regional infiltration and regional lymph-node metastases,
without significant distant metastases (very low frequency).25

Therefore, haematic blood vessel formation may contribute to
OSCC cell growth and tumor mass development, whereas lym-
phatic vessel neo-angiogenesis may contribute to tumor dis-
semination.26 Since this is clinically significant in this study we
have analyzed some crucial aspects of the invasion microenvi-
ronment, in particular the relationship between COX-2 expres-
sion by malignant cells and inflammatory cells and formation
of new vessels.

During the formation of a network of new vessels, the phe-
nomenon, called sprouting angiogenesis, occurs.27-32 It involves
highly specialized cells of haematopoietic origin that can be dis-
tinguished in 2 types: a) stalk cells that maintain a proliferative

Figure 2. Interplay between COX-2 overexpression in phlogistic cells and CD-34
positive endothelial cell at invasive front of OSCCs. Photo 2a, COX-2 expressing
phlogistic cells captured in deep invasion of OSCC contribute to neoplastic neoan-
giogenesis inducing CD34 positive endothelial cells (LSAB-HRP, nuclear counter-
staining with haematoxylin; original magnification x200). Photo 2b Higher
magnification of micro- and macro vessels CD34 positive and COX-2 positive
inflammatory cells (LSAB-HRP, nuclear counterstaining with haematoxylin; original
magnification x400)

Figure 3. Basaloid oral cancer. COX-2 showed low level of expression in basaloid
type OSCC together with very low level of neoangiogenesis and consequent tumor
necrosis (LSAB-HRP, nuclear counterstaining with haematoxylin; original magnifica-
tion x200).

Figure 4. Positive correlation between COX-2 score and small microvessels (A), and
between COX-2 score and total microvessels (B) (P<0.05).
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phenotype and contribute to forming a vascular lumen, and b)
tip cells that have low proliferative potential and high power of
migration. The tip cells, which are CD34C, guide the process of
invasion through the stroma, in fact they extend filopodia and
migrate from a pre-existing vascular structure toward a micro-
environment full of angiogenic growth factors.33 In particular,
in our study we have demonstrated that the OSCC cells hyper-
express COX-2 and the expression of this protein is strongly
associated with the ability to attract tip cells; in turn, this phe-
nomenon leads to a considerable statistically significant
increase of micro-vessels, budded around the cords and drop-
lets of malignant cells spreading at invasion front of tumors.

COX-2 has been involved in the processes of formation of
new blood vessels that support the viability of the cancerous
cells (neo-angiogenesis).27-32 Elevated levels of COX-2 have
been associated with increased levels of invasion in human
tumors.33-34

In particular, in order to clarify the role of COX-2 in pro-
moting tumoral angiogenesis of lymphatic vessels and lymph
node metastasis in OSCC, Morita Y et al. studied the highly
metastatic fluorescent labeled OSCC cell line SAS-LM3. They
observed that SAS-LM3 tumors showed increased lymphangio-
genesis, elevated expression of VEGF-C and COX-2 compared
to parental SAS cells.35

Since the early observation by Chan G., et al. in 1999 regard-
ing COX-2 up-regulation in squamous cell carcinoma of the
head and neck region, numerous other scientific papers have
highlighted the importance of prostanoids also in oral carcino-
genesis.8,36-43

In a recent study, Seyedmajidi M et al. have demonstrated
high levels of COX-2 expression in OSCC and dysplasia com-
pared to normal mucosa; moreover, they have found a positive
correlation between COX-2 expression and severity of dyspla-
sia, supporting the thesis of a role of COX-2 in carcinogenesis
and progression of premalignant lesion to malignancy.44

Our preliminary study in 45 OSCCs showed COX-2 expres-
sion in oral cancer cells in a percentage 77.8% of the examined

cases.15 A further study based on Real-Time PCR expression of
COX-1 and COX-2 transcripts in OSCCs showed that most of
the tumor samples expressed at least one cyclooxygenase
enzyme (COX-1 or COX-2 mRNA) with an inverse relation-
ship between COX-1 and COX-2 in each sample; we also dem-
onstrated that patients with tumors over-expressing COX-2
had a significantly worse overall survival when compared to
those COX-2 under-expressed.45

It has postulated that there is a close link between inflamma-
tion, angiogenesis and tumor invasion since the angiogenetic
factors are produced by inflammatory cells infiltrating and/or
surrounding cancers such as mast cells, macrophages, and T
lymphocytes, cells of the vascular repair, such as platelets and
by tumor cells themselves.46-50 In fact in our study we have
demonstrated the angiogenic property of OSCC cells them-
selves, overexpressing COX-2 and in this way determining new
formed CD34-positive vessels (sprouting angiogenesis). More-
over, also phlogistic cells captured in deep tumoral invasion
expressed high level of COX-2, inducing CD34C endothelial
cells and contributing to increase the neoplastic neo-angiogene-
sis (Fig. 2).

Beside the well-known angiogenic role of COX-2, recent
studies demonstrated that this molecule participates in cancer
invasion and metastasis also by decreasing the expression of E-
cadherin and leading to phenotypic changes in epithelial cells
(EMT) that could enhance their tumorigenic potential. An
inverse relationship between E-cadherin and COX-2 and its
molecular mechanism in cancer cells was first described in
non-small cell lung cancer (NSCLC).

Dohadwala M et al. demonstrated that PGE(2), in autocrine
or paracrine fashion, modulates transcriptional repressors of E-
cadherin and thereby regulates COX-2-dependent E-cadherin
expression in NSCLC. In particular, Authors have shown that
treatment of NSCLC cells with exogenous PGE(2) significantly
decreased the expression of E-cadherin, whereas treatment of
genetically modified COX-2-sense NSCLC cells (low E-cad-
herin expressing) with celecoxib led to increased E-cadherin
expression.51

Similarly, Chen Z et al. suggested that in gastric cancer NF-
kB and Snail could take part in COX-2-dependent modulation
of E-cadherin expression.52

Other Authors demonstrated that significantly decreased
expression of COX2, increased E-cadherin and apoptosis,
decreased VEGF/Microvessel Density (MVD) and inhibited
angiogenesis were observed in gastric cancer tissues from
patients receiving Celecoxib compared to Surgery group.12

A similar effect of COX-2 inhibitors (able to reverse the
EMT, restore E-cadherin expression and suppress the invasive
potential) was also found in subsets of colon and bladder can-
cer cells.53-56

However, in oral cancer, neither the effect of COX-2 inhibi-
tors on the regulation of E-cadherin has been examined, neither
the molecular mechanisms, through which COX-2 regulates E-
cadherin expression and function, have not yet been fully eluci-
dated. Scientific literature reports only few studies.

St John MA et al., for the first time, have investigated inter-
leukin-1b (IL-1b)-induced upregulation of Snail leading to
EMT in surgical specimens and HNSCC cell lines. Authors
have shown an inverse relationship between COX-2 and E-

Table 5. Correlation between COX-2 score and CD34 expressing vessels.

Two-tailed p Pearson’s R

COX-2 score and CD-34 small microvessels 0.034 0.246
COX-2 score and CD-34 total microvessels 0.031 0.251

Figure 5. Survival at mean of covariates. The variable “large microvessels” was
found to significantly contribute to the prediction of survival time (p D .019).
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cadherin. They have revealed that treatment of HNSCC cells
with IL-1beta caused the downregulation of E-cadherin expres-
sion, an increase in the mRNA expression of the transcriptional
repressor Snail and up-regulation of COX-2 expression. This
effect was blocked in the presence of COX-2 small hairpin
RNA.57

Emi Segawa et al. have demonstrated that overexpression of
COX-2 increased tumorigenicity and hematogenous metastasis
via down-regulating E-cadherin and up-regulating CD44
expressions in KB cells.58 On the same wave, in our work we
have observed an overall loss of E-cadherin membranous
expression and an overexpression of COX-2 in OSCCs, that is
accompanied by new formed CD34-positive vessels (sprouting
angiogenesis). Only basaloid type of OSCCs showed low level
of COX-2 expression together with very low level of neoangio-
genesis and consequent tumor necrosis.

The positive correlation of metastatic potential and COX-2
overexpression indicates that COX-2 may become a target mol-
ecule for regulating metastases of oral cancer.

Recently, Fujii R et al. have suggested that the appropriately
selective administration of certain COX-2 inhibitors may have
an anti-metastatic effect by suppression of the EMT by restor-
ing E-cadherin expression on the cell surface of the HNSCC
cells, through the down-regulation of its transcriptional
repressors.59

Finally, it has been believed that endothelial cells can deter-
minate an environmental ground permissive of tumoral
growth, angiogenesis, and invasion.60 The continued depen-
dence on angiogenesis for early and late stages of tumorigenesis
suggests that COX-2 inhibitors will have clinical utility in the
management of advanced cancers.

We retain that further understanding the biological mecha-
nisms regulating cell interaction and angioinhibitors molecular
relationship may facilitate development of conventional che-
motherapy and an effective and suitable anti-tumoral strat-
egy.61-62 Angioinhibitory therapy may also be used to prevent
acquired drug resistance in OSCCS.

Material and methods

Study population

A tissue microarray containing 120 OSCCs has been con-
structed. Methods to build this TMA and therapeutic criteria
have been previously reported.19 To the aim of this work, we
further specify that none patient have been treated with anti-
angiogenetic factors. In brief, the source paraffin blocks were
cored and a 0.6 mm cores (area: 0.28 mm2) transferred to the
recipient block using Galileo TMA CK 3500 Tissue Microar-
rayer (ISE TMA Software, Integrated System Engineering). For
each patient, 2 superficial and 2 deep samples have been cored.

Tissue microarray based double staining
immunohistochemistry

The collection of cases was approved by ethics board of
National Cancer Institute, Fondazione ‘G. Pascale’, Napoli,
Italy. The source block was cored and a 0.6 mm core trans-
ferred to the recipient master block. Four cores from different

areas (2 representative of superficial and 2 deep invasion) of
the same tissue block were arrayed for each case. All the donor
cores were formatted into one recipient block. H&E staining of
a 4-mm TMA section was used to verify all samples. Double
immunostaining has been performed using monoclonal CD-34
and COX-2 antibodies. Primary Ab anti-E-cadherin has also
been tested in all OSCC cases.

Primary antibodies were revealed by automated staining
device (Leica BOND RX) using standard linked strepatavidin-
biotin horseradish peroxidase (LSAB-HRP);20-21 and linked
streptavidin biotin alkaline phosphatase (LSAB-AP) techniques
performed at the same time. Immune-stained cells were detected
in 4 high power fields (HPFs) at optical microscope (OLYMPUS
BX53, at x200). Immune-stained spots were acquired by digital
camera and analyzed by ISE TMA Software (Integrated System
Engineering, Milan, Italy), and Cellsens V1.9� Olympus image
analysis softwares. By CD-34 staining, we were able to count
and measure diameters of micro-vessels ranging from to 2
micron to 20 micron. Neo-formed vessels have been considered
all CD-34 positive endothelial buds measuring less than 20
microns and surrounding tumor cords and nests in deep infiltra-
tion spots as evaluated by computed image analysis. Then, we
grouped all measureable vessels in 2 groups: a) small microves-
sels (measuring from 2 to 10 micron), and b) large microvessels
(from 11 to 20 micron). As regard E-cadherin and COX-2 stain-
ing we evaluated percent of stained cells and intensity of
immune-labeling detected in cancer cells by a continuous scale
of values. Then, a total score has been calculated multiplying
percentage by intensity, in order to obtain a continuous scale of
values ranging from zero to 300. Furthermore, COX-2 positive
leucocytes and macrophages cells have been counted in reactive
phlogistic infiltrate surrounding OSCCs categorized according to
Wada T. classification.22

Statistical analysis

All data were analyzed by MedCalc 12.2.1.0 (for Windows),
SOFA Statistics 1.4.3 and R 2.11.1 (for Linux) statistical software,
using Debian 7 and Windows Operating Systems. The delocal-
ized E-cadherin was assessed as previously described.3 Differen-
ces between groups were determined using the one-way analysis
of variance (ANOVA) and Scheff�e test for pairwise comparisons.
Pearson’s method and Point-biserial correlation coefficient were
used to study linear correlation and to determine the relation-
ship between COX-2 expression and neo-angiogenesis evaluated
by CD-34 expression and between tumor dimension, tumor
stage (as evalutated in TNM staging) and deep invasion. Finally,
Cox proportional hazards regression was used to examine the
effect of several risk factors on survival. Only p values < 0.05
were considered significant.

List of Abbreviation

CDH1 Cadherin-1 gene
COX-2 Cyclooxygenase-2
EGFR Epidermal Growth Factor receptor
EMT Epithelial-Mesenchymal Transition
HPFs high power fields
IHC Immunohistochemistry
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LOH loss of heterozygosity
LSAB-HRP linked strepatavidin-biotin horseradish peroxidase
LSAB-AP streptavidin biotin alkaline phosphatase
MVD microvessel density
NSCLC non-small cell lung cancer
OSCCs Oral Squamous Cell Carcinomas
PGE2 prostaglandin E2
PGI2 Prostaglandin I2
TXA2 Thromboxane A2
TMA Tissue Microarray
VEGF-C Vascular Enditelial Growth Factor-C
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