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Abstract

Objective

Patients with rheumatoid arthritis (RA) have altered circadian rhythm of circulating serum
cortisol, melatonin and IL-6, as well as disturbance in the expression of clock genes
ARNTL2 and NPAS2. In humans, TNFa increases the expression ARNTL2 and NPAS2 but
paradoxically suppresses clock output genes DPB and PERS3. Our objective was to investi-
gate the expression of direct clock suppressors DEC1 and DEC2 (BHLHE 40 and 41 pro-
teins) in response to TNFa and investigate their role during inflammation.

Methods

Cultured primary fibroblasts were stimulated with TNFa. Effects on DEC2 were studied
using RT-qPCR and immunofluorescence staining. The role of NF-kB in DEC2 increase
was analyzed using IKK-2 specific inhibitor IMD-0354. Cloned DEC2 was transfected into
HEK293 cells to study its effects on gene expression. Transfections into primary human
fibroblasts were used to confirm the results. The presence of DEC2 was analyzed in (RA)
and osteoarthritis (OA) synovial membranes by immunohistochemistry.

Results

TNFa increased DEC2 mRNA and DEC2 was mainly detected at nuclei after the stimulus.
The effects of TNFa on DEC2 expression were mediated via NF-kB. Overexpression,
siRNA and promoter activity studies disclosed that DEC2 directly regulates IL-18, in both
HEK293 cells and primary human fibroblasts. DEC2 was increased in synovial membrane
in RA compared to OA.
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Conclusion

Not only ARNTL2 and NPAS2 but also DEC2 is regulated by TNFa in human fibroblasts.
NF-kB mediates the effect on DEC2, which upregulates IL-1(. Circadian clock has a direct
effect on inflammation in human fibroblasts.

Introduction

Rheumatoid arthritis (RA) is a common chronic inflammatory joint disease. RA patients suffer
from chronic fatigue [1]. Pain, joint stiffness and functional disability are most prominent in
the morning [2]. These symptoms reflect abnormal circadian rhythms of circulating inflamma-
tory cytokines TNFo [3] and IL-6 as well as serum cortisol in RA [4, 5]. Many physiological
and pathological processes are under circadian regulation. A central circadian pacemaker is
located in the suprachiasmatic nucleus (SCN) of the hypothalamus [6, 7]. Because circadian
rhythm of the SCN is not exactly 24h in humans [8], light adjusts the rhythm of the central
pacemaker. The central circadian pacemaker synchronizes the peripheral molecular pacemak-
ers located in all other tissues [6].

The function of the molecular clock is based on rhythmic oscillation of transcription and
translation of reciprocal clock genes. Brain and muscle Arnt-like protein-1 (BMALI1 or
ARNTL) and Circadian Locomotor Output Cycles Kaput (CLOCK) form a heterodimer which
upregulates clock controlled genes by binding to an E-box element in the promoter of the clock
controlled genes. Some of the upregulated genes, Periods and Cryptochromes, form the com-
ponents of the best known negative feedback loop [9]. The clock molecules, DEC1 (BHLHE40)
and DEC2 (BHLHE41), form another less known negative feedback loop because they compete
with BMAL1/CLOCK for E-box binding [10].

Clock genes are needed for proper immune cell function. Notably, autoimmune diseases
develop in aging DECI deficient mice which display increased production of IL-4 and IL-10
without affecting IFN-y [11]. In contrast, its paralogue DEC2 is selectively expressed in Th2
cells and enhances their development in mice leading to improper Th2 responses in asthma
and parasite response models [12]. In addition, a connection between circadian clock and
arthritis has been described. Arthritis is exacerbated in Cryl and Cry2 deficient mice [13] and
dysfunctional clock is present in RA patients [14, 15]. TNFa affects the clock and in human
cells, in contrast to that of mice [16], the upregulated genes are ARNTL2 and NPAS2, func-
tional paralogues of BMAL1 and CLOCK, respectively. Paradoxically, however, TNFo. sup-
presses clock controlled genes DBP and PER3. Thus, we hypothesized that the negative
regulators in the molecular clock DEC1, DEC2 or both are affected by TNFo.. Because of our
hypothesis and their central role in immune cell function, their regulation in vitro by TNFa
and expression in vivo in RA were studied.

Materials and Methods
Subjects

The research plan and this study were approved by the ethical committee of the Helsinki Uni-
versity Central Hospital (Dnro 165/E6/03). Written informed consent from each patient was
obtained to collect sample for research purposes. Guidelines of the Declaration of Helsinki
were followed. RA patients fulfilled the 2010 ACR-EULAR classification criteria of RA [17].
None of the patients were treated with anti-TNF agents or other biologicals. Tissue samples of
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both RA (n = 6) and OA (n = 5) patients were taken at 10 a.m. + 2 h during synovectomy or
operation for total joint replacement. Samples were formalin fixed and embedded in paraffin.

Cell culture

Primary human fibroblast cultures (n = 6) were established and characterized as previously
described [18]. Briefly, tissue samples were minced into small pieces with a sterile scalpel in a
laminar flow hood. The explants were left overnight in RPMI-1640 medium containing 10%
fetal bovine serum with 1000 U/ml penicillin and 1 mg/ml streptomycin (10x) solution. The
next day, the media were changed to basal RPMI with 10% FBS media and 100 U penicillin
and 0.1 mg streptomycin (1x solution). The medium was changed twice a week. The explants
were removed until roughly 80% monolayer confluence was reached, and the cells were subcul-
tured 1:3 until confluent. The cells were frozen at passage 2 for subsequent experiments. After
thawing, the cells were cultured in RPMI-1640 medium (Lonza Group, Basel, Switzerland)
containing 10% fetal bovine serum (FBS; Lonza) 100 IU/ml penicillin and 0.1 mg/ml strepto-
mycin and used in passages 4-5. Stimulation and inhibitor experiments were performed with
three different donor fibroblasts. Transfection experiments were performed with single donor
fibroblasts. In Amaxa Nucleofector II transfection experiments, fibroblasts were cultured in
DMEM medium (Thermo Fisher Scientific, Waltham, USA; cat# 41965) containing 10% FBS
(Lonza) with 100 IU/ml penicillin and 0.1 mg/ml streptomycin.

The synchronization of the molecular clock in cells was performed as described elsewhere
with [15] with minor modification. Briefly, cultured human primary fibroblasts were seeded on
24-well plates at 4x10* cells per well in RPMI-1640 containing antibiotics and 1% FBS, cultured
for 24 h after which the medium in wells was replaced with RPMI-1640 media containing anti-
biotics, 1% FBS and TNFo, IMD-0354 or DMSO when indicated.

HEK293 cells were cultured in DMEM medium (Thermo Fisher Scientific, cat# 41965) con-
taining 10% FBS (Lonza) with 100 IU/ml penicillin, 0.1 mg/ml streptomycin and 1 mM pyru-
vate (Lonza, cat# BE13-115E).

Cell stimulation

Human primary fibroblasts were synchronized as described in the previous section. At t =0,
the media was replaced with RPMI-1640 media containing antibiotics, 1% FBS and TNFa (10
ng/ml; R&D Systems, Minneapolis, USA) or with media containing no added stimulants (nega-
tive control). At indicated times, the wells were washed with PBS and cells were lysed with
350 pl RLT lysis buffer (RNeasy kit, Qiagen, Hilden, Germany).

To study the effect of NF-xB inhibition on DEC2 regulation, IKK-2 inhibitor IMD-0354
(cat# 13159; Sigma-Aldrich Corporation, St. Louis, USA) was used. 24 h after plating the cells,
the media was replaced with RPMI-1640 containing antibiotics, 1% FBS, and IMD-0354 in a
final concentration of 1 uM or DMSO in the same final concentration as was achieved when
IMD-0354 (dissolved in DMSO) containing media were added. After 20 minute incubation
(t = 0) TNFo (R&D Systems) was added to the wells to a final concentration of 10 ng/ml. At
the indicated times, the wells were washed with PBS and cells were lysed with 350 ul RLT lysis
buffer (Qiagen).

RNA isolation, cDNA synthesis and quantitative real-time PCR

RNA was isolated using RNeasy kit (Qiagen) according to the manufacturer’s instructions.
RNA concentrations were measured using NanoDrop ND-1000 instrument (Thermo Fisher
Scientific). The cDNA synthesis was performed using 500 ng of total RNA and iScript”cDNA
Synthesis Kit (Bio-Rad Laboratories, Hercules, USA) in a 20 ul reaction volume. After cDNA
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synthesis the cDNA was diluted to 1:5. Quantitative real-time PCR was performed from diluted
cDNA in iQ™ SYBR™ Green Supermix (Bio-Rad) using gene specific primers (Table 1) in 20 ul
reaction volume. The PCR was performed in iQ5 real-time PCR detection system (Bio-Rad).
RPLPO was used as a housekeeping gene.

Plasmids and vectors

DEC2 (NM_030762) cDNA was amplified from human primary fibroblast total cDNA and
was inserted into pcDNA3.1 V5 hisA vector (Thermo Fisher Scientific). The following primers
were used for DEC2 cDNA amplification: sense 5/ ~AACGAAGGATCCGCCACCATGGACGA
AGGAATTCCTCATTTGCA-3' and antisense 5’ ~GGACGCCTCGAGTCAGGGAGCTTCC
TTTCCTGGCT-3" .

2 kb part of IL-18 promoter (NG_008851.1) was amplified from Human Genomic DNA
(Roche Basel, Switzerland; cat# 11691112001) and inserted into pGL3-Enhancer vector (Pro-
mega Corporation, Fitchburg, USA). The following primers were used for amplification: sense
5" ~-AATTTGGGTACCAATGCTGTCAAATTCCCATTCACCCA-3" and antisense 5/ ~TACTT
CCTCGAGGGCTGCTTCAGACACTTGAGCA-3' . The constructs were validated by using nucle-
otide sequencing.

For dual-luciferase assay the control vector was pRL-TK (Promega). Vectors were propa-
gated in competent TOP10 Escherichia Coli cells (Thermo Scientific). Ultrapure endotoxin-
free plasmid DNA was prepared using NucleoBond® Xtra Midi EF (Macherey-Nagel, Diiren,
Germany; cat# 740420) according to the manufacturer’s instructions. Plasmid DNA was
diluted in a sterile water.

Transfection

HEK293 cells were seeded on 24-well plates at 4x10* cells per well in 0.5 ml DMEM medium
and incubated for 24 h before transfection. For transfection, Fugene HD transfection reagent
(Promega, cat# E2311) was used according to manufacturer’s instructions with 500 ng DNA
and DNA:Fugene HD ratio of 1:3. All cell manipulations and assays were carried out 48 hours
after transfection.

Human primary fibroblasts were transfected using Amaxa Nucleofector II (Lonza) and
Amaxa Human Dermal Fibroblast Nucleofector Kit (cat# VPD-1001). Transfection was per-
formed according to manufacturer’s instructions using 4x10° cells, 3 ug DNA and transfection
program U-023. Immediately after transfection cells were seeded on 12-well plates at 1x10°
cells per well in 1 ml DMEM medium. All cell manipulations and assays were carried out 24 h
after transfection.

Luciferase assay

Transfection of HEK293 cells was carried out as described using 500 ng of DEC2 expression
plasmid or empty control plasmid, 10 ng of reporter plasmid and 1 ng of Renilla luciferase plas-
mid. Luciferase assay was done using Dual-Luciferase™ Reporter Assay System (Promega, cat#
E1910) according manufacturer’s instructions 48 h after transfection. Luminescence was mea-
sured using Plate CHAMELEON V Multilabel Microplate Reader (Hidex, Turku, Finland).

siRNA transfection

Human primary fibroblasts were seeded on 24-well plates at 4x10* cells per well in 0.5 ml
RPMI-1640 containing antibiotics and 1% FBS. After 12 h, siRNA transfection using RNAi-
MAX transfection reagent (Thermo Fisher Scientific, cat# 13778) was performed according to
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Table 1. Primers use in quantitative RT-PCR.

Gene GeneBank Accession
DEC2 NM_030762

IL-1B NM_000576

CCL8 NM_005623.2

CXCL5 NM_002994.4

PER1 NM_002616

PER3 NM_016831

DBP NM_001352

RPLPO NM_001002

doi:10.1371/journal.pone.0145279.t001

5' Primer 3' Primer Length
TGCTTTACAGAATGGGGAGCGATC CCCTGGGTGTCCAGCTCTCAAAC 134
TGGCAATGAGGATGACTTGT GGAAAGAAGGTGCTCAGGTC 237
TCATGGCAGCCACTTTCAGCC CCCTGACCCATCTCTCCT 219
CCTGCCGCTGCTGTGTTGAG AGGGAGGCTACCACTTCCACC 137
CTCCAATCAGGACGCACTTTC GCTGCCAAAGTATTTGCTTGTG 211
TGAAGAATCCATCCCATCCTACTG TATACTGCTGTCGCTGCTTCC 218
CTTAAGCCCCAGCCAATCATGAAG CCGCCCGCACCGATATCTG 160
GGCGACCTGGAAGTCCAACT CCATCAGCACCACAGCCTTC 149

manufacturer’s instructions. Briefly, 1.5 ul of Lipofectamine RNAIMAX diluted in 25 ul OPTI--
MEM (Thermo Fisher Scientific, cat# 31985) and 15 pmol of ON-Targetplus Human DEC2
(Thermo Fisher Scientific, cat# 79365) siRNA diluted in 25 pl OPTI-MEM were combined and
incubated for 5 min at room temperature (RT) after which 50 pl of transfection mix was added
per well. After 12 h (t = 0), the media were replaced with RPMI-1640 containing antibiotics,
1% FBS and 10 ng/ml TNFo. (R&D Systems) or no added stimulants (negative control). After
10 h, the wells were washed with PBS and lysed with 350 ul RLT lysis buffer (Qiagen).

Immunofluorescence

Human primary fibroblasts were seeded at 1x10° cells per well on coverslips placed in 12-well
plates containing RPMI-1640 supplemented with antibiotics and 1% FBS. Before stimulations
the cells were synchronized as described above. For cellular stimulation the media were
replaced with RPMI-1640 containing antibiotics and 1% FBS, without or with 10 ng/ml TNFa
(R&D Systems). After 24 h cells were washed with PBS and fixed in 4% PFA for 15 min at RT.
Fixed cells were permeabilized with 0.1% Triton-X in PBS for 10 min at RT, blocked with 1%
BSA-PBS for 1 h at RT, after which slides were incubated with 1 ug/ml rabbit anti-human
DEC2 IgG (Santa Cruz Biotechnology, Dallas, USA; cat# sc-32853) or 1 pg/ml non-immune
rabbit IgG at 4°C overnight. Next day slides were incubated in 1:100 dilution of Alexa Fluor
568 labeled goat anti-rabbit IgG secondary antibody (Molecular Probes, Leiden, The Nether-
lands; cat# ab175471) for 1 h at RT, counterstained in 5 pg/ml DAPI and mounted.

Immunohistochemical staining

Formalin-fixed and paraffin-embedded tissue samples of synovial membranes were cut to

3 pum sections, deparaffinized and rehydrated. Antigens were retrieved in citrate buffer using
microwaves (Program AR98C-S30M, MicroMED T/T Mega Histoprocessing Labstation; Mile-
stone Srl, Sorisole, Italy) followed by quenching of endogenous peroxidase in 3% H,O, in PBS
for 15 min. Sections were incubated in 0.67 mg/ml rabbit anti-human DEC2 IgG (Santa Cruz,
cat# sc-32853) at 4°C for overnight. Rabbit IgG at the same concentration was used for negative
control staining. Slides were washed with PBS following incubation in biotin-conjugated goat
anti-rabbit IgG secondary antibody for 1 h at RT. After washes, slides were incubated for 1h at
RT in freshly prepared avidin-biotin-peroxidase complexes (Vector Laboratories, Burlingame,
USA; Vectastain Elite ABC kit). Color was developed using H,O, and DAB. Between each step
slides were washed at least three times with PBS. Finally, slides were dehydrated, counter-
stained in haematoxylin and coverslips were mounted using Mountex (Histolab, Vistra Fro-
lunda, Sweden).
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Statistical analysis

The data of IL-1B or DEC2 expression after TNFo stimulation was analyzed with repeated
measures ANOVA. Significance was tested using Bonferroni. Reported p-value is difference of
TNFa stimulation and mock group. The means of the experiments with two independent sam-
ples were tested using student’s t-test. Tests were performed with SPSS 15.0 for Windows
(SPSS Inc. Chicago, IL). All results are expressed as mean + SEM unless otherwise stated in the
figure legend.

Results
TNFa stimulates the expression of DEC2 but not DEC1

To study the eventual TNFa effects on DEC1 and DEC2, synovial fibroblasts were synchro-
nized by serum starvation after which they were stimulated without or with 10 ng/ml TNFo.
TNFo upregulates IL-1f, which was therefore used as a positive control in TNFa stimulation
experiments. TNFo-mediated increase of IL-1B (p < 0.05, F 9.6, df between groups 1,6) con-
firmed that the stimulation was successful (Fig 1A). Samples collected at 1, 2 and 4 hours and
then every 4 hours up to 32 hours were analyzed for DEC1 (which was not changed, data not
shown) and DEC2 mRNA (Fig 1A). TNFa increased DEC2 expression 4-fold (p < 0.001, F
50.6, df between groups 1,6) already at 2 hours and this effect was maintained until the 32 hour
time point. The effect of TNFo on DEC2 was also shown by immunofluorescence staining of
TNFa stimulated synovial fibroblasts (Fig 1B). DEC2 was increased also at the protein level
and mainly localized in nuclei of TNFo stimulated cells.

To test if TNFo effect on DEC2 expression is mediated by NF-xB pathway, synovial fibro-
blasts were stimulated as above but first after 20 min pretreatment with 1 uM IKK-2 inhibitor
IMD-0354. Successful inhibition was confirmed by studying the expression of IL-1B (p < 0.05,
t-value 4.1, df 4) (Fig 2). Samples collected at 16 hours of stimulation (the highest peak of
DEC?2 expression) were analyzed for DEC2 mRNA. IMD-0354 significantly (p < 0.001, t-value
9.0, df 4) inhibited the TNFa-induced DEC2 expression. The 15-fold expression was reduced
to only 2-fold when NF-xB pathway was inhibited (Fig 2).

DEC2 overexpression stimulates IL-13 expression in HEK293 cells and
in human fibroblasts

Because TNFa increases the expression of DEC2 and IL-1, it was hypothesized that DEC2
itself might contribute to the upregulation of IL-1. To test this hypothesis, DEC2 gene was
cloned and overexpressed in HEK293 cells. DEC2 downregulates Per1 [10], which was there-
fore used as a positive control of DEC2 function in HEK293 cells (Fig 3A) and in synovial
fibroblasts (Fig 3B). Both experiments demonstrated that DEC2 significantly reduced the
expression of PERI1 (p < 0.05, t-value 4.2, df 4 in HEKs and p < 0.01, t-value 5.6, df 4 in fibro-
blasts). In addition to this, DEC2 inhibited the expression of DBP and PER3 (not shown) con-
firming that its overexpression may contribute to the reduction of clock output genes after
TNFo stimulation. DEC2 overexpression increased the expression of IL-13 mRNA 8-fold

(p < 0.001, t-value 9.6, df 4) in HEK293 cells (Fig 3A) and 3-fold (p < 0.01, t-value 4.6, df 4) in
human synovial fibroblasts (Fig 3B) compared to empty vector controls. Because CCL8 and
CXCL5 are regulated by components of the circadian clock [19, 20], we investigated their regu-
lation by DEC2 in human cells. Indeed they were significantly (p < 0.05, t-value 3.5, df 4 for
CCL8 and p < 0.01, t-value 6.4, df 4 for CXCL5) regulated by DEC2 in human synovial fibro-
blasts (Fig 3B).
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Fig 1. The response of human fibroblasts to TNFa stimulation. After 24h incubation in medium
containing 1% FBS, the cells were incubated in fresh medium containing TNFa (10ng/ml) or PBS. A, mRNA
expression of IL-1B and DEC2 after the stimulus. Samples were collected at indicated time points. Values
represent means + SEM of four different experiments performed in duplicate. * p < 0.05, ** < 0.001, repeated
measures ANOVA. B, After the stimulation fixation and blocking, the cells were incubated overnight with
DEC2 antibody or rabbit IgG at 4°C followed by secondary fluorescent antibodies (red) and nuclear
counterstain with DAPI (blue). Induction and nuclear localization of DEC2 protein is evident after TNFa
stimulation.

doi:10.1371/journal.pone.0145279.g001

DEC2 overexpression further increases TNFa responses

TNFa induces the expression of IL-1f both in human fibroblasts (Fig 1A) and in HEK293 cells
(hundred fold; data not shown). It may well be that DEC2 only induces IL-1p in unstimulated
cells. Thus, we wanted to test the effect of DEC2 during TNFo stimulus. Overexpression of
DEC2 in HEK293 cells increased IL-1 mRNA levels in response to TNFo. 4-fold (Fig 4A).
Accordingly, DEC2 also increased TNFo mediated IL-1B promoter activity (p < 0.05, t-value
4.3 df 4) suggesting that this increase results in part from increased transcription (Fig 4B). This
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Fig 2. NF-kB pathway regulates the expression of DEC2. After 24h incubation in medium containing 1%
FBS, human fibroblasts were incubated in fresh medium containing 1 yM IMD-0354 (abbreviated IMD) diluted
in DMSO. After 20 min incubation cells were stimulated with TNFa (10ng/ml) or PBS for 16h. IL-13 and DEC2
were measured using real time PCR. Values represent means + SEM of three different experiments
performed in duplicate. * p < 0.05, ** p < 0.001, t-test.

doi:10.1371/journal.pone.0145279.g002
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Fig 3. DEC2 regulates PER1 and inflammatory factors. A, HEK293 cells were transfected with empty
vector (pcDNA) or DEC2 containing vector. After 48h samples were analyzed using RT-qPCR. Values
represent means + SEM of four different experiments performed in duplicate. * p < 0.05, *** p < 0.001, t-test.
B, Human fibroblasts were transfected with empty vector (pcDNA) or DEC2 containing vector. After 24h
samples were analyzed using RT-gPCR. Values represent means + SEM of three different experiments
performed in triplicate. * p <0.05, ** p <0.01, t-test.

doi:10.1371/journal.pone.0145279.g003
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were stimulated with TNFa (10ng/ml) for 24h. Samples were analyzed by using RT-gPCR. Values represent
means + SD of single experiments performed in duplicate.

doi:10.1371/journal.pone.0145279.9g004

effect was also true in human fibroblasts. Overexpression of DEC2 also in these cells increased
IL-1B and CCL8 mRNA levels in response to TNFa. (Fig 4C).

DEC2 silencing decreases TNFa responses

If the results from overexpression experiments were true, silencing of DEC2 should lead to
decrease of IL-1P expression. To verify the results, silencing of DEC2 using siRNA was per-
formed. Indeed silencing of DEC2 (p < 0.005, t-value 6.5, df 4) declined the IL-1f increase
(p < 0.05, t-value 3.0, df 4) in response to TNFo in human fibroblasts (Fig 5).

DEC2 protein is abundant in the synovial membrane in RA

Due to the above described in vitro effects of TNFo on upregulation of DEC2, RA and OA
synovial tissues were immunostained for the presence of DEC2. DEC2 staining was much
more intense and extensive in RA synovitis tissue (Fig 6A) than in more mildly inflamed OA
synovial tissue samples (Fig 6B). Negative staining controls confirmed the specificity of the
staining (Fig 6C).

Discussion

BMALI1/CLOCK heterodimer is the major component of the molecular pacemaker responsible
for the normal homeostatic circadian rhythm. Its major counter-regulators are PER1-3 and
CRY1-2, which in various complexes cyclically oscillate in a fashion reciprocal to that of the
BMAL1/CLOCK, regulating the length of the circadian cycle. However, yet another regulatory
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medium containing TNFa (10ng/ml) or PBS. Samples were collected 10h after stimulation. Values represent means + SEM of three different experiments
performed in duplicate. * p <0.05, ** p <0.005, t-test.

doi:10.1371/journal.pone.0145279.9005

paralogue pair exists in the negative feedback loop controlling unconstrained and continued
effect of the BMAL1/CLOCK [21]. Due to the apparently disturbed circadian rhythm in RA
and the upregulated ARNTL2, NPAS2 but paradoxically downregulated DBP and PER3
mRNA expression after TNFa stimulations, the clock counter-regulators DEC1 and DEC2
were analyzed in resting and TNFa stimulated human synovial fibroblasts. Fibroblast was
selected as the major target cell because it is an important cellular component of synovial stro-
mal connective tissue, erosive pannus and synovial lining, in which fibroblast-like type B lining
cells together with macrophage-like type A lining cells form its two cellular components [22].
Because the central circadian pacemaker at SCN regulates the peripheral clocks in all peripheral
cells, fibroblast should in principle be as good indicator of the regulation of the clock compo-
nents as any other cell type. It was found that the pro-inflammatory cytokine TNFo. stimulates
DEC2 at both mRNA and protein level in a NF-kB-dependent manner in cultured human
synovial fibroblasts. Further studies focused on DEC2 because its paralogue DECI1 was not
affected by TNFo.

IL-1P displays circadian rhythm in circulation and its expression is rhythmic in fibroblasts
[23, 24]. Thus, we wanted to test if DEC2 by itself without upstream TNFa has some indepen-
dent effects on IL-1B3. DEC2 was cloned and first transfected to HEK293 cells. It was shown
that IL-1p is increased in both DEC2- and TNFo-dependent manner in HEK293 cell. This was
then confirmed for IL-1p via transcription and promoter activation and also for some other
pro-inflammatory cytokines by overexpression of DEC2 in human synovial fibroblasts. Thus,
TNFa exerts its inflammatory effects in part through DEC2 suggesting that this component of
the molecular clock participates in the regulation of inflammatory responses also in human
cells. This conclusion was further confirmed by silencing DEC2 with siRNA that significantly
decreased TNFa-induced IL-1p expression. Although silencing of DEC2 was quite effective, its
effect on TNFo-induced IL-1p was only partial. This suggests that the upregulation of IL-1f by
TNFo is only partially DEC2-dependent. There are several signaling pathways and transcrip-
tion factors that are known to be activated after TNFa stimulus [25]. Thus, it is not surprise
that DEC2 is not completely responsible for the regulation of IL-1.

NF-kB pathway is involved in the transcriptional activation of a vast number of inflamma-
tory and apoptotic machinery genes in response to TNFo. [25]. DEC2 is involved in the control
of apoptosis in cancer cells [26]. Thus, the hypothesis was that TNFo. induced DEC2 expression
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IgG;

Fig 6. Abundant DEC2 expression in synovial membrane samples from RA patients. Tissue sections
were incubated with DEC2-speficic antibody (0.67 pug/ml) at 4°C overnight. Negative staining control of a RA
sample was stained using normal rabbit IgG at the same concentration. After ABC staining, the slides were
counterstained with hematoxylin. Arrowheads point to the lining cells which exhibit a strong staining reaction.
DEC2 does not only localize into the nucleus but it is also abundant in the cytoplasm (arrows).

doi:10.1371/journal.pone.0145279.9g006
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is mediated via the NF-kB pathway. Indeed, the induction of DEC2 was almost completely sup-
pressed by the inhibition of IKK-2.

DEC?2 protein levels were much higher in RA synovial membrane than in OA synovial
membrane. This is in accordance with the higher degree of inflammation and TNFo produc-
tion in RA compared to that of OA [27]. The high impact of TNFo on the pathomechanisms of
RA is supported by the overall effectiveness of anti-TNF drugs in the clinical setting [28].
Many different mechanisms of action of anti-TNF drugs have been suggested, such as dimin-
ished expression of vascular endothelial adhesion molecules and therefore diminished recruit-
ment of inflammatory leukocytes to synovitis tissue [29]. The present findings suggest that
TNFo and anti-TNF drugs may also affect disease activity and progress via regulation of the
circadian clock, which further participates in the regulation of immune responses and fatigue
[30].

It can be concluded that DEC2 is aberrantly expressed in RA tissue, it is induced by TNFo.
and not only affects the expression of genes belonging to molecular clock but also significantly
impacts on the expression of IL-1B as well as other inflammatory genes.
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