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Early diagnosis of oral squamous cell carcinoma (OSCC) remains an
unmet clinical need. Therefore, elucidating the initial events of
OSCC preceding tumor development could benefit OSCC progno-
sis. Here, we define the Langerhans cells (LCs) of the tongue and
demonstrate that LCs protect the epithelium from carcinogen-
induced OSCC by rapidly priming αβT cells capable of eliminating
γH2AX+ epithelial cells, whereas γδT and natural killer cells are dis-
pensable. The carcinogen, however, dysregulates the epithelial
resident mononuclear phagocytes, reducing LC frequencies, while
dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs)
populate the epithelium. Single-cell RNA-sequencing analysis indi-
cates that these newly differentiated cells display an immunosup-
pressive phenotype accompanied by an expansion of T regulatory
(Treg) cells. Accumulation of the Treg cells was regulated, in part,
by pDCs and precedes the formation of visible tumors. This sug-
gests LCs play an early protective role during OSCC, yet the capac-
ity of the carcinogen to dysregulate the differentiation of
mononuclear phagocytes facilitates oral carcinogenesis.
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Oral squamous cell carcinoma (OSCC) is the most preva-
lent cancer in the oral cavity, representing about 90% of

head and neck malignancies worldwide (1). Despite recent
advances in the detection, prevention, and treatment of OSCC,
this highly aggressive cancer, unfortunately, remains associated
with a poor 5-y patient survival rate (2). This is attributed, in
part, to the late diagnosis of OSCC, resulting in high mortality
and morbidity rates. It is therefore crucial to understand the
early events in the establishment of OSCC to improve the
capacity to discover predictive markers and ultimately prevent
tumor progression.

Langerhans cells (LCs) are a resident cell population of
antigen-presenting cells (APCs) that exclusively occupy the
stratified squamous epithelia, including the skin epidermis and
the oral epithelium where SCC develops (3). Unlike skin epi-
dermal LCs that arise from embryonic precursors immediately
after birth and are self-maintained locally, oral LCs develop
and are continuously replenished from circulating bone marrow
(BM) precursors—predendritic cells (pre-DCs) and monocytes
(4–6). Upon entering the lamina propria, LC precursors are
exposed to BMP7, a member of the TGF-β1 superfamily that
directs their translocation to the oral epithelium where local
TGF-β1/ALK5 signaling drives their differentiation into LCs
(7). Whereas skin LCs are considered a homogenous popula-
tion, oral LCs can be further divided into at least three subsets:
LC1 (CD11blowCD103+), LC2 (CD11b+CD103�), and
monocyte-derived LCs (CD11b+CD64+). Despite such ontoge-
netic disparities within this population, epidermal and oral LCs
share many similar transcriptomic signatures and immunological

functions, suggesting that LCs can arise from various precursors
in a tissue-dependent manner (3, 7).

Due to their epithelial location, LCs are thought to be the
first APCs to encounter and react against early carcinogenic
events. Nevertheless, previous studies have generated contra-
dicting evidence for both epidermal and oral LCs during skin
and oral SCC, respectively. Whereas epidermal LCs were
reported to have antitumor activity in a carcinogen-induced
skin SCC (8, 9), other studies found a deleterious impact of
LCs in this disease (10, 11). The role of oral LCs in OSCC also
remains elusive since our current knowledge relies on observa-
tional human studies, suggesting both an anti- and protumor
role for these cells. Several studies have demonstrated reduced
numbers of oral LCs in human OSCC (12–14), while elevated
numbers compared to normal tissues were reported by others
(15, 16). In oral epithelial dysplasia (OED), an oral pathology
with a potential to become malignant, LC numbers increase
with the severity of the OED lesions, but were significantly
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reduced in lesions with malignant transformation (17). Yet, the
numbers of LCs reported being either increased (18) or
reduced (19) in OSCC compared to OED. The presence of
oral LCs in the tumor microenvironment was further suggested
to reflect a better prognosis for head and neck SCC patients in
terms of cancer recurrence (20, 21). This correlation was also
described with regards to laryngeal SCC in which LC infiltra-
tion was associated with longer disease-free survival (22, 23).
While this suggests a protective role of LCs in established
tumors, how LCs respond during the early events of carcino-
genesis in the oral mucosa remains ill defined. Using a murine
model of carcinogen-induced OSCC mimicking the disease in
humans (24), this study reveals a protective role for LCs during
the initial stage of OSCC. The carcinogen, however, rapidly
alters the resident pool of mononuclear phagocytes residing in
the oral epithelium, which display an immunosuppressive phe-
notype facilitating the development of a large T regulatory
(Treg) population in the epithelium and subsequently tumor
establishment.

Results
Characterization of LCs in the Tongue Epithelium. Exposure of
mice to the carcinogen 4-nitroquinoline 1-oxide (4NQO) in the
drinking water is known to induce OSCC in the tongue epithe-
lium (25). Therefore, before embarking on changes in the
tongue epithelium during oral tumor pathology, we first charac-
terized the tongue mononuclear phagocyte compartment at
steady state. Visualization of mononuclear phagocytes by
immunofluorescence staining revealed a dense network of
major histocompatibility complex class II (MHCII) and
langerin-labeled cells, situated within the basal epithelial layers
between the papillae, while extending their dendrites around
each papilla (Fig. 1A and SI Appendix, Fig. S1A). Using flow
cytometry, it became apparent that the majority of tongue epi-
thelial MHCII+CD11c+ cells express the LC markers EpCAM
and langerin (Fig. 1B). Some of these cells were
EpCAM+langerin�, representing developing LCs as previously
reported (4). Resident tongue LCs are predominately com-
posed of the LC2 subset CD11b+CD103� or CD24+Sirp-α+,
while the frequencies of LC1 were low (Fig. 1C). To determine
the abundance of monocyte-derived LCs, Ms4a3Cre-RosaTdT

mice were used, which simply fate map cells arising directly
through the committed granulocyte-monocyte precursors
(GMPs) expressing the tdTomato reporter gene (26). The anal-
ysis of these mice revealed that about 20 to 30% of tongue LCs
derive from monocytes (Fig. 1D). Nevertheless, virtually all
LCs and EpCAM+ APCs express ZBTB46, a transcription fac-
tor selectively expressed by conventional DCs but no other
myeloid cells (27, 28) (Fig. 1E). A population of
MHCII+CD11c+EpCAM�langerin� and negative for ZBTB46
was recovered in certain experiments, likely representing mac-
rophage contamination located within the lamina propria that
was unintentionally picked up during the isolation. Careful sep-
aration of the tongue epithelium from the lamina propria indi-
cated that LCs are restricted to the epithelium, while other
langerin-expressing APCs are virtually absent in either com-
partment (Fig. 1F). Besides the LCs, the tongue epithelium
also contains large populations of γδ and αβ T cells as well as a
population of monocytes (SI Appendix, Fig. S1B). Taken
together, these data suggest that LC2s, arising from both pre-
DCs and monocytes, are the predominant APCs surveying the
epithelium of the tongue at a steady state.

Oral LCs Inhibit the Establishment of OSCC. To investigate the role
of LCs in experimental OSCC, langerin-DTR (diphtheria toxin
receptor) mice were administered the chemical carcinogen
4NQO for 10 wk in the drinking water and simultaneously

depleted langerin-expressing cells by weekly injections of diph-
theria toxin (DT) (Fig. 2A). As shown in Fig. 2B, mice treated
with 4NQO+DT developed tumors more rapidly than mice
treated with 4NQO alone. No spontaneous tumors were
observed in the control groups receiving DT injections or left
untreated. Congruent with these results, only groups that were
treated with 4NQO began to lose weight 6 to 8 wk after the
treatment, whereas the coadministration of DT accelerated the
weight loss (Fig. 2C). Clinical assessment, based on the appear-
ance of the mice and their reaction to stimulation, performed
16 wk after the commencement of the experiment further dem-
onstrated a lower clinical score in the 4NQO-treated mice while
the lowest score was observed in the 4NQO+DT group (Fig.
2D). Quantification of the tumorigenicity in the tongues
revealed higher numbers of tumors per tongue as well as a
larger size of the principal tumors in the 4NQO+DT group in
comparison to the 4NQO-treated mice (Fig. 2E). Histopatho-
logical assessments of the tumors based on the basal cells’
invasiveness, thickness of the epithelium, and the heterochro-
maticity of the nucleus, confirmed the increased severity of the
tumors in the group treated with DT in addition to 4NQO (Fig.
2F). Of note, depletion of LCs before the initiation of the
4NQO treatment also resulted in accelerated OSCC (SI
Appendix, Fig. S2). These results suggest LCs perform a protec-
tive role during 4NQO-induced OSCC, postponing the estab-
lishment of the tumors.

LC-Mediated Immunity Eliminates γH2AX+ Epithelial Cells. LCs are
thought to be the first mononuclear phagocyte to encounter
carcinogenic events in the oral epithelium to prime naive αβT
cells; therefore, we examined the capacity of LCs to migrate to
the lymph nodes (LNs) in the presence of 4NQO. To this end,
the tongue epithelium was painted with a solution containing
fluorescein isothiocyanate (FITC) and 4NQO to enable the
tracking of LCs or DCs migrating to the LNs as these cells
would be labeled with FITC. Indeed, a population of migratory
FITC+ LCs were detected in the cervical LNs 3 d after the
FITC application (Fig. 3A). Interestingly, additional popula-
tions of EpCAM+CD207� and EpCAM�CD207� DCs were
also labeled with FITC and detected in the LNs, indicating that
other oral DC subsets can migrate to the LNs in this setting. In
accordance with these observations, elevated levels of the LN
homing chemokines, Ccl19 and Ccl21, were detected in the
tongue and the expression of adhesion molecules necessary for
transendothelial migration via lymphatic vessels (Fig. 3B).
Next, we examined the frequencies of CD8+ and CD4+ T cells
in the tongue epithelium 1 wk after exposure to 4NQO in the
drinking water. The relative frequencies of CD8+ and CD4+ T
cells were significantly increased in the epithelium of the
4NQO-treated groups (Fig. 3C). However, depletion of LCs
significantly reduced the abundance of these T cells, indicating
that the early migration of LCs is crucial for T cell priming. Of
note, the relative frequencies of epithelial γδT cells were
reduced in 4NQO-treated mice due to the increase of αβT cells
(Fig. 3C). To test whether the absence of LCs directly affects
the numbers of cells undergoing DNA damage by the carcino-
gen, we stained the tongue epithelium of 1-wk 4NQO-treated
groups with an antibody against the DNA damage marker
γH2AX. γH2AX+ cells were detected in the epithelium only
upon exposure to 4NQO, while depletion of LCs significantly
increased the number of these cells (Fig. 3D). Moreover, LC
depletion up-regulated the expression of the stress-induced
NKG2D ligands such as Rae1 and Ublp1 (Fig. 3E). Higher
numbers of γH2AX+ cells were also detected when NSG mice
or Rag1�/� mice were treated with 4NQO for 1 wk compared
to wild-type mice, supporting the view that lymphocytes medi-
ate the clearance of these cells (Fig. 3F). To assess the role of
γδTcells in the elimination of DNA-damaged cells, we used the
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Tcrd-GDL mice enabling the specific ablation of these cells
upon administration of DT (29). Despite the absence of γδT
cells, the numbers of γH2AX+ cells remained unaffected, ruling
out their involvement in cell clearance (Fig. 3G). Moreover,
oral γδT cells, unlike their equivalents in the skin epidermis, do
not express high levels of NKG2D (SI Appendix, Fig. S3). Since
natural killer (NK) cells were previously shown to be rapidly
recruited during skin carcinogenesis to eliminate DNA-
damaged cells (9), we examined the presence of these cells in
the tongue epithelium. As shown in Fig. 3H, NK cells could not
be detected by flow cytometry in the tongue epithelium 48 h fol-
lowing the exposure to 4NQO. Taken together, these data sug-
gest that LC-primed αβTcells, rather than γδTcells or NK cells,
probably mediate the elimination of transformed epithelial cells
early after exposure to the carcinogen.

4NQO Rapidly Reduces the Frequencies of Tongue Resident LCs.
Since conditional ablation of LCs accelerates the development
of carcinogen-induced OSCC, we asked what impact 4NQO
has on tongue LCs. For this, B6 mice were treated with 4NQO
in the drinking water, and the frequencies of tongue LCs were
quantified over 5 wk before the detection of visible tumors. As

depicted in Fig. 4A, the frequencies of total CD45+ leukocytes
in the tongue epithelium sharply increased from the first week
of 4NQO treatment. In contrast, the frequencies of
MHCII+CD11c+ cells among the total leukocytes decreased
gradually, which contributed to the significant increase of other
leukocytes such as the αβTcells. Nevertheless, LCs were consid-
erably reduced during the first 3 wk and also remained low in
the fifth week of the treatment (Fig. 4A). This was confirmed
by immunofluorescence analysis, as clusters of MHCII+ cells
were detected in the epithelium, whereas staining for langerin
was rare (Fig. 4B). Of note, constant exposure to the carcino-
gen was required to maintain the reduction of LCs, since the
removal of 4NQO after a 3-wk treatment restored the LC pop-
ulation within 3 wk (Fig. 4C). As LC differentiation is driven by
exposure to BMP7 and TGF-β1 (7), we asked whether 4NQO
down-regulates the expression of these molecules. However,
the mRNA levels of Tgfb1 and Bmp7 were either up-regulated
or remained unchanged in the third wk of the 4NQO treat-
ment, respectively, compared to the naive control (Fig. 4D). On
a protein level, BMP7 and TGF-β1 were equally expressed in
the tongues of both groups (Fig. 4E). We further quantified the
mRNA of Ccl2 and Ccl20, chemokines mediating the
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Fig. 1. Characterization of LCs in the tongue epithelium. (A) Immunofluorescence whole-mount staining from tongue epithelial layers of adult B6 mice
with mAbs directed against MHCII (red), langerin (green), and with Hoechst (blue) for nuclear visualization. Representative image from four independent
experiments. (Scale bar, 100 μm.) (B and C) Epithelial cells were prepared from the tongue of wild-type (WT) B6 mice and stained with the noted antibod-
ies to identify by flow cytometry (B) epithelial mononuclear phagocytes (CD45+CD11c+MHCII+) and LCs (EpCAM+langerin+ APC) as well as (D) the LC sub-
sets based on CD24 and Sirp-α or CD103 and CD11b expression. Data are representative of three independent experiments. (D) Tongue epithelial cells
were prepared from Ms4a3Cre-RosaTdT mice and stained for LCs; the flow cytometry plots and graph present the mean frequencies + SEM of tdTomato+

cells among LCs and EpCAM+ APCs (n = 3). Data are representative of two independent experiments. (E) Tongue epithelial cells were prepared from
Zbtb46GFP mice and stained for LCs; the frequencies of GFP/ZBTB46-positive cells among LCs, Epcam+ APCs, and EpCAM�langerin� APCs are presented.
Representative image from two independent experiments. (F) The epithelium and lamina from the tongue of WT B6 were separated and processed; the
flow cytometry plots and graph present the mean percentages + SEM of cells expressing EpCAM and/or langerin among the CD11c+MHCII+ population in
each tissue (n = 5). Data are representative of two independent experiments. Ep, epithelium; LP, lamina propria, **P < 0.01.
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recruitment of LC precursors into the epithelium. While Ccl2
was not significantly alerted, Ccl20 expression was decreased in
4NQO-treated mice compared to the control group (Fig. 4D).
Next, we examined the capability of 4NQO to directly impair
LC differentiation, by employing in vitro differentiation cul-
tures in which BM cells are exposed to GM-CSF+TGF-β1 to
drive the development of LCs. Using concentrations of 4NQO
that do not broadly impact cell survival, the carcinogen did not
interfere with the differentiation of LCs (SI Appendix, Fig. S4 A
and B). Taken together, LCs are rapidly reduced in the tongue
epithelium while other mononuclear phagocytes are likely
recruiting and/or developing locally. The carcinogen is indi-
rectly reducing the levels of LCs but this does not involve the
dysregulation of BMP7 and TGF-β1 expression in the tissue.

Reprogramming of Tongue Epithelial Cells by Prolonged Exposure
to 4NQO Contributes to the Impairment of LC Repopulation. To get
insight into the impact of 4NQO on the tongue epithelial cells
during the period in which LCs are reduced, we profiled the
global gene expression of fluorescence-activated cell sorting

(FACS)-sorted epithelial cells (CD45� cells) after 1 and 3 wk
of 4NQO treatment and compared it to naive mice. The hierar-
chical clustering of the three cell populations, as well as princi-
pal component analysis (PCA), indicated a significant differ-
ence between the epithelial cells of naive and 4NQO-treated
mice, as well as between epithelial cells sorted from mice
treated with the carcinogen for 1 and 3 wk (Fig. 5 A and B). In
agreement with the rapid DNA damage induced by the carcino-
gen, the analysis of gene set enrichment analysis (GSEA)
revealed that cellular pathways involved in the cell cycle, DNA
repair, and apoptosis, were up-regulated in epithelial cells
treated with 4NQO for 1 wk and to a lesser extent for 3 wk
(Fig. 5C). Exposure to 4NQO for 1 wk also significantly down-
regulated the expression of genes related to innate immune
sensing and function such as TNF-α signaling via NFκB, com-
plement, and various TLR pathways. In the third week, how-
ever, the inhibition of immunological mechanisms was not
observed and pathways related to the IFN-α, IFN-γ, and
inflammatory responses were increased in the epithelial cells
(Fig. 5D). TGF-β signaling in epithelial cells that is crucial for
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LC differentiation was reduced during the first but not the third
week of treatment, in agreement with our earlier observations.
Interestingly, 4NQO also down-regulated cellular pathways
related to oxidative phosphorylation in the third but not the
first week of exposure, which was the first-ranked down-regu-
lated pathway in the analysis. To examine whether the reduc-
tion in the oxidative phosphorylation pathway can affect LC
development, we differentiated LCs from BM cells in vitro in
the presence of oligomycin, an inhibitor of adenosine triphos-
phate (ATP) synthase that reduces oxidative phosphorylation.
Incubation of the differentiation cultures with 5 nM of oligomy-
cin had limited effects on the viability of the differentiating cells
and the overall frequencies of MHCII+CD11c+ cells in the cul-
ture (SI Appendix, Fig. S5 and Fig. 5F). Nevertheless, the

generation of LCs (EpCAM+langerin+) and partially differenti-
ating LCs (EpCAM+langerin�) were specifically reduced when
the oligomycin was added. Collectively, these data demonstrate
a fundamental alteration in the immunological response of the
tongue epithelial cells to 4NQO early after the exposure. The
carcinogen-induced down-regulated expression of the oxidative
phosphorylation genes might represent a metabolic shift in the
epithelium that potentially inhibits the differentiation of LCs.

Sustained Exposure to 4NQO Disrupts the Mononuclear Phagocyte
Pool in the Tongue Epithelium. To probe the population of APCs
developing in the tongue epithelium simultaneously with the
decrease of LCs, Zbtb46gfp mice were administrated 4NQO and
analyzed. In contrast to LCs of naive mice that were positive to
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Fig. 3. LC-mediated immunity eliminates γH2AX+ epithelial cells. (A) Flow cytometry analysis demonstrates the frequencies of FITC-labeled migratory
(Mig.) LCs and other DC subsets (Mig. DCs) in the cervical LNs 24 h after applying FITC+4NQO solution on the tongue epithelium. The negative control
group represents mice treated with 4NQO without FITC painting. Representative flow cytometry plots and graph from four independent experiments
(n = 3 to 5). (B) Quantification of the expression of the noted genes in the tongue by RT-PCR presented as the mean values + SEM (n = 5). Representative
data are from two independent experiments. (C) Representative flow cytometry plots and graphs present the mean frequencies + SEM of the various T
cell subtests in the tongue epithelium 1 wk after the 4NQO treatment in the presence or absence of LCs. (D) Mice were treated with 4NQO in the drinking
water for 1 wk. Immunofluorescence staining of tongue epithelial cross-sections were prepared from the various groups with mAbs directed against
γH2AX (red) and with DAPI (blue). (Scale bar, 50 μm.) Graph shows the mean number + SEM of γH2AX+ cells in the epithelium of each group (n = 5).
Data are representative of three independent experiments. (E) Quantification of the expression of Ublp1 and Rae1 genes in the tongue epithelium 1 wk
after the 4NQO treatment. Data are presented as the mean values + SEM (n = 5) and represent the data of three independent experiments. (F) Represen-
tative images and a graph show the mean numbers + SEM of γH2AX+ cells in the epithelium of NSG mice or Rag1�/� mice versus control mice 1 wk after
4NQO treatment (n = 5). Data are representative of two independent experiments. (G) Tcrd-GDL were administered with DT to ablate γδT cells and then
treated with 4NQO for a week. Representative flow cytometry plots demonstrate the depletion of γδT cells. Representative immunofluorescence images
and a graph show the mean numbers + SEM of γH2AX+ cells in the epithelium (n = 5). Data are representative of two independent experiments. (H) Flow
cytometry plots and graph show the mean percentages + SEM of NK cells among CD45+CD3� cells in the tongue epithelium of naive mice and mice
treated with 4NQO for 48 h (n = 4). UN, untreated. (Scale bar, 50 μm.) *P < 0.05. **P < 0.01.

IM
M
U
N
O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N

Saba et al.
Early antitumor activity of oral Langerhans cells is compromised by a carcinogen

PNAS j 5 of 12
https://doi.org/10.1073/pnas.2118424119

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2118424119/-/DCSupplemental


ZBTB46 (including the monocytes-derived CD64+ LCs), the
APCs of 4NQO-treated mice segregated into ZBTB46+CD64�

and ZBTB46�CD64+ subsets, likely representing DC and mac-
rophage populations, respectively (Fig. 6A). Next, single-cell
RNA-sequencing analysis (scRNAseq) was performed on
enriched CD45+ cells prepared from the tongue epithelium of
wild-type mice treated or not with 4NQO. The tissues were col-
lected from mice treated with 4NQO for 5 wk since at this time
point the shift in epithelial leukocytes has been established. We
used the MetaCell algorithm (30) to identify homogeneous and
robust groups of cells from scRNAseq data. We retained a
single-cell transcriptome for 4,667 cells after removing doublets
and dead cells during initial quality control. Various myeloid
(DCs, monocyte-derived APCs, mast cells, and neutrophils)
and lymphoid (αβT cells, γδT cells, and NK cells) leukocytes
were identified in the tongue epithelium, as well as epithelial
cells that were not removed by the enrichment (Fig. 6B). Of

note, the epithelium of untreated mice contains fewer subsets
of leukocytes that consist of LCs, αβT cells, γδT cells, and a few
NK cells (Fig. 6C). In line with the above results, the APC pop-
ulation expressing Cd74 (also H2-Aa/Ab1/Eb1) and Itgax/
CD11c consists of two main clusters representing macrophages
and DCs (Fig. 6 D and E). The monocyte-derived macrophages
express the signature genes such as Ms4a7, Cx3cr1, Mafb, and
Adgre1 (F4/80). Within the macrophage population, three main
clusters were further characterized: Ccl5hiIfitm3hi subset
(Igs15, Cxcl9hi, and Ccl4), Trem2hiApoehi subset (Cxcl9þ and
Mt1), and a subset expressing C1qlowCebpbþ (Plac8 and Ly6c2)
(Fig. 6F). Of note, expression of Trem2, Apoe, and Ccl5 is associ-
ated with the capacity of macrophages to induce an immunosup-
pressive microenvironment and to facilitate carcinogenesis and
metastases (31–33). Moreover, virtually all the macrophages
express high levels of Tgfbi (TGF-β–induced protein), previously
proposed to have a protumor role in OSCC (34, 35). The DC
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populations were more complex and various clusters were
detected (Fig. 6 E and G). A subset of the DCs express Irf8,
Ccr7, Ccl22, and Socs2, suggesting that these are migratory
DCs. Expression of CCL22 and SOCS2 by DCs was previ-
ously shown to promote the priming of Treg cells and to
block antitumor immunity (36, 37). We further confirm the
ability of these relatively late migratory DCs to reach the
LNs, though at lower frequencies than LCs/DCs migrating
after a 1-wk treatment with 4NQO (SI Appendix, Fig. S6 A
and B). Direct quantification of CCL22 in the tongue epithe-
lium reveals high expression from the first to the fifth week
of 4NQO treatment (SI Appendix, Fig. S5C). Another cluster
of DCs express Siglech, Ly6d, Ccr9, Fcrla, Cd7, Irf8hi, Ly6c2,
and Cox6a2, indicating the presence of plasmacytoid DCs
(pDCs) in the tongue epithelium at this period. Besides
these two subsets, the largest DC cluster expresses Epcam, a
marker known to be first expressed by LC precursors in the
course of their differentiation into LCs (7). The major subset
of Epcamþ DCs (Ifitm3, Fcerg1, Cd72, and Ifitm1) did not

express Cd207/langerin, while some cells were proliferating
(Top2a and Mki67). Other EpcamþCd207� DCs clustered
into three subsets: 1) Cxcl9, Irf8, Xcr1, Ifitm3, Isg15, Itif1,
and Itif3; 2) Xcr1, Irf8, Cd9, and Itgae (CD103); and 3)
Cd209a, Cd7, Ifitm3, and Fcerg1. This large EpcamþCd207�

DC population is likely representing partially or aberrantly
differentiated LCs. Nevertheless, in line with the earlier flow
cytometry analysis, minor subsets of LCs were detected in
the epithelium that express Epcam, Cd207, Cd9, Itgam
(CD11b), Mfge8, Cd72, and Adgre1 (F4/80) representing
LC2, and Epcam, Cd207, Xcr1, Sirpa, Irf8, and Mfge8 that sig-
nify LC1. Interestingly, a population of cells expressing both
LC- and neutrophil-associated genes (Epcam, Cd207, Lyz2,
Camp, Ngp, S100a8/9, Lcn2, Chil3, Mfge8, Sirpa, Cd72,
Adgre1, and Ly6c2) were also identified. These data suggest
that exposure to 4NQO results in a substantial alteration of
the leukocytes in the tongue epithelium, while the transcrip-
tomic signature of certain mononuclear phagocytes implies
the development of a tumor permissive environment.
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The Epithelium following Chronic Exposure to 4NQO Is Enriched for
Treg Cells. Besides myeloid cells, scRNAseq analysis revealed a
diverse population of lymphocytes expressing the Thy1 gene
(Fig. 7 A and B). The majority of these cells express Cd3e/d/g,

identifying them as T cells, whereas a smaller population was
negative to CD3 yet expressed Ncr1, thus distinguished as NK
cells. Among the T cells were a relatively small cluster of γδT
cells (Trgc1 and Trdc) that also express Cd163l1 (Scart1),
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Tmem176a/b genes, Cxcr6, Serpinb1a, Blk, and Actn2, a signa-
ture representing tissue-resident effector γδT17 cells (38).
Within the αβT cells, the majority of the cells express Foxp3,
Ctla4, Tnfrsf9, Tnfrsf4, Tnfrsf18, Rora, Il1r2, Icos, and Lgasl1, in
line with the signature of suppressive Treg cells (39). Flow
cytometry analysis confirmed the presence of a large Treg pop-
ulation in the tongue epithelium at this time point, representing
about 44% of the total αβT cells (Fig. 7C). In addition to the
Treg cells, and concurring with our earlier observations demon-
strating the presence of cytotoxic T cells, we detected activated
CD4+ and CD8+ T cells in the epithelium. These cells express
Klrk1 (NKG2D), Ctsw, and Nkg7, indicating cytolytic activity
(40), as well as Cxcr6 that reported to be involved in T cell
recruitment and retention in carcinoma (41). Some of the T
cells express genes such as Top2a, Hmgb2, Stmn1, and Birc5,

suggesting local proliferation. Taken together, besides altering
the composition of mononuclear phagocytes in the tongue epi-
thelium, exposure to 4NQO for 5 wk is also accompanied by an
accumulation of lymphocytes, particularly Treg cells.

The Enrichment of Epithelial Treg Cells Is Regulated by pDCs.
Human studies have previously highlighted an increase of
tumor-infiltrating pDCs predicts a poor prognosis of OSCC
and depletion of pDCs attenuates experimental OSCC (42, 43).
Moreover, in various cancers, pDCs were associated with ele-
vated levels of Treg cells in the tumor (44–48). To address the
relationship between pDCs and Treg cells in the present experi-
mental setting, we first characterized the kinetics of pDCs and
Treg cells in the tongue epithelium and cervical LNs at various
times after the 4NQO treatment. In both the tongue epithelium
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and LNs, the relative frequencies of the pDCs increase after 1
wk of treatment and remains high in the following weeks (Fig.
8A and SI Appendix, Fig. S7). Treg cells, on the other hand,
were not detected in the first week, but after 3 to 5 wk of
4NQO treatment, their frequencies consistently increased.
Since previous ex vivo studies suggest that pDCs isolated from
human OSCC lose their capacity to produce IFN-α due to
reduced TLR9 expression (42, 43, 49), we examined next the
expression kinetics of both genes in the tongue epithelium. As
depicted in Fig. 8B, both genes were significantly up-regulated
3 wk after the exposure to 4NQO but sharply reduced in the
fifth week and later on. To examine directly the connection
between pDCs and Tregs we treated mice with 4NQO and
simultaneously depleted pDCs using an anti-PDCA1 monoclo-
nal antibody or isotype control as illustrated in Fig. 8C and SI
Appendix, Fig. S7B. Analysis of the LNs revealed that the pDCs
were significantly depleted while the frequencies of the Tregs
were partly but significantly reduced compared to mice receiving
the isotype control (Fig. 8D). In the tongue epithelium, adminis-
tration of anti-PDCA1 results in partial depletion of the pDCs
but this was sufficient to reduce the frequencies of Treg cells by
one-third (Fig. 8E). The depletion of pDCs also results in lower
expression of IFN-α in the epithelium when the epithelium was
analyzed after 3 wk of 4NQO treatment (Fig. 8F). These findings
suggest that the presence of a large Treg population in the
tongue epithelium is mediated, in part, by the pDCs.

Discussion
LCs are considered the sentinels of the epithelium; consistent
with this notion, this study establishes a protective role of
oral LCs in the early stages of carcinogen-induced OSCC.

Nevertheless, constitutive exposure to the carcinogen 4NQO
indirectly impairs the repopulation of resident LCs following
their migration to the LNs to prime antitumor αβTcells, while at
the same time numerous mononuclear phagocyte subtypes
appear in the epithelium. This modification in the epithelial
mononuclear phagocyte landscape was associated with the devel-
opment of an immunosuppressive microenvironment within the
tongue epithelium enabling the establishment of the tumor.

An early protective role was demonstrated for epidermal
LCs during carcinogen-induced skin SCC, in which production
of TNF-α by LCs induces the expression of CCL2 and CXCL10
in keratinocytes, resulting in rapid recruitment of NK cells (9).
Such a mechanism was not observed here, likely due to the
capacity of the carcinogen to down-regulate TNF-α signaling in
oral epithelial cells. It is worth mentioning that, in humans, no
differences were found in the frequencies of NK cells between
healthy and OSCC patients, supporting the limited impact of
these cells in oral malignancy (50). Besides the LC–NK cell
axis, γδT cells were also reported to inhibit carcinogen-induced
skin SCC via their capacity to express NKG2D, enabling elimi-
nation of keratinocytes expressing stress ligands (51, 52). While
stress ligands were also up-regulated in our system, oral γδT
cells do not express NKG2D and are dispensable for the early
elimination of damaged γH2AX+ cells. This might be attrib-
uted, in part, to the distinct subsets of γδTcells residing in each
epithelium. The epidermis is composed of Vγ5+ T cells, which
are recognized to have cytotoxic activity, while the tongue epi-
thelium is populated by the IL-17–producing Vγ6+ T cells that
have been reported to exhibit both anti- and protumor capabili-
ties (53). Taken together, NK and γδTcells are dispensable dur-
ing the initiation of oral carcinogenesis, underlining the impor-
tance of LC-induced αβT cells in eliminating transformed cells
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during the early stages of oral tumorigenesis. This is underlined
by our finding that activated CD4/CD8+ T cells expressing
NKG2D were detected by scRNAseq analysis in carcinogen-
treated tongues. Yet, while our study proposes an early protec-
tive role of LCs, by priming anticancer T cell immunity, LCs
could also have other antitumor activities. For instance, the
depletion of LCs could limit carcinogenicity, since LCs were
reported to mediate carcinogen processing that facilitates DNA
damage (10). It has also been proposed that LCs maintain tis-
sue homeostasis by regulating gene expression in keratinocytes,
thus their ablation might dysregulate tissue function and facili-
tate carcinogenesis (54).

While LCs were lost during 4NQO treatment, other mono-
nuclear phagocyte populations develop in or are recruited to
the tongue epithelium creating a compatible environment for
tumor development. Among the DC population, a major subset
expresses Epcam, consisting of a small subset of LCs (also
expressing high Cd207 levels), while the remainder expresses
very low or negligible levels of Cd207. The latter are also capa-
ble of proliferating locally unlike steady-state oral LCs (4).
Whereas 4NQO was not directly interfering with LC differenti-
ation, its impact on the epithelial cells might cause this effect.
Yet, the expression of TGF-β and BMP7, the cytokines driving
the differentiation of oral LCs was not significantly altered by
the carcinogen. We provided evidence that LC differentiation is
likely regulated by the level of oxidative phosphorylation. This
is in agreement with previous studies demonstrating that the
development and function of LCs depend on mTORC1 sig-
naling (55, 56), which also controls mitochondrial oxidative
function (57). It is also possible that the inflammatory milieu
generated in the epithelium dysregulates LC development
(58). Indeed, under inflammatory conditions, monocytes
infiltrate the skin epidermis and differentiate, in a TGF-
β–independent manner, into inflammatory LCs expressing
low levels of CD207 (59, 60). These inflammatory LCs were
also shown to be short-lived, disappearing within 3 wk after
the treatment, resembling the kinetics of LC repopulation in
the current study upon the removal of 4NQO.

Other populations of mononuclear phagocytes residing in the
4NQO-treated epithelium include migratory DCs and pDCs. In
this study, we demonstrated that pDCs accumulate during carci-
nogenesis together with Treg cells, while the frequencies of the
latter were partly regulated by the pDCs. This is in agreement
with previous clinical studies reporting a direct correlation
between the numbers of tumor-infiltrating pDCs and the adverse
outcome in primary OSCC patients (42). In this regard, pDCs
were found to induce Treg cells through the ICOS/ICOS-L path-
way and indoleamine 2,3-dioxygenase (IDO) expression (61).
The reduced expression of TLR9 and IFN-α detected 5 wk after
the exposure to 4NQO is also congruent with human observa-
tions (43, 49). Of note, the scRNAseq analysis indicates that
pDCs express the highest level of Irf8 among the various DC sub-
sets, a phenotype associated with a reduced capacity to produce
IFN-α (62). The reduction in IFN-α production was proposed to
be mediated by the Treg cells via secretion of IL-10 and TGF-β,
which potentially create a vicious cycle intensifying the immuno-
suppressive effect of the tumor (61, 63). Since in our system the
depletion of pDCs results in partial reduction of the Treg cells,
it is likely that other DCs besides pDCs control these cells.
This could be mediated by the migratory DCs identified by the

scRNAseq analysis, which express high levels of Ccl22 and Socs2,
an expression pattern promoting the development of Treg cells
and further immune escape of tumor cells (36, 37). It is thus pos-
sible that the Treg cells are primed by CCL22-expressing DCs,
whereas pDCs facilitate the local proliferation of the Treg cells.

Macrophages represent the other major mononuclear phago-
cyte population in the epithelium of 4NQO-treated mice, which
our scRNAseq analysis provides several indications that these
monocyte-derived cells might facilitate tumor development. For
instance, a population of macrophages expresses Apoe and
Trem2, which accumulating evidence suggests a role in promot-
ing an immunosuppressive tumor microenvironment that also
facilitates metastases (31, 33). Another subset expresses Ccl5,
yet again associated with the capacity of macrophages to facili-
tate carcinogenesis and metastases (32). Moreover, all the mac-
rophages express Tgfbi, reported for promoting tumor growth
and has been associated with a poor prognosis of OSCC and
ovarian cancer (17, 64, 65). The majority of the macrophages
also express high levels of the complement C1q genes, which
are implicated in the establishment of an immunosuppressive
tumor microenvironment and poor prognosis in renal cell carci-
noma (66). Additionally, the scRNAseq analysis in melanoma
models identified a unique, dominant antiinflammatory macro-
phage population induced by Treg cells and defined by expres-
sion of the C1q gene (67).

In summary, this study demonstrates that oral LCs protect
the host from epithelial carcinogenesis early, following expo-
sure to the carcinogen. Nevertheless, prolonged exposure to
the carcinogen dysregulates the differentiation of the mononu-
clear phagocytes in the oral epithelium, facilitating the develop-
ment of immunosuppressive conditions that promote the
establishment of the tumor. Our findings are in agreement with
human data suggesting that oral malignancy is associated with
reduced LC numbers (17), and the correlation of high LC num-
bers in the tumor microenvironment with a better prognosis
(20, 21). Human studies have also reported a correlation
between tumor-infiltrating pDCs and a poor prognosis of
OSCC (42). Our data confirmed this observation and substanti-
ate it by linking pDCs to the presence of Treg cells, which are
also found in human OSCC (68, 69). We hope this study will
encourage the development of novel diagnostic and therapeutic
approaches for the detection and prevention of OSCC at its
early stages.

Materials and Methods
Detailed information on antibodies, reagents, mice, and ethical approvals is
described in SI Appendix. Details of the experimental OSCC setting, immuno-
fluorescence staining, isolation, and processing of the murine tongue, condi-
tional ablation of Langerhans cells, RNA extraction and RT-qPCR, single-cell
RNA analysis of tongue leukocytes, RNAseq analysis of tongue epithelial cells,
and statistical analysis are provided in SI Appendix. All animal protocols were
approved by the Hebrew University Institutional Animal Care and Use Com-
mittee (IACUC).

Data Availability. Study data are available in the Gene Expression Omnibus
(accession no. GSE192470). All other study data are included in the article and/
or SI Appendix.
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