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Abstract

Motivation: Late onset Alzheimer’s disease is currently a disease with no known effective treatment

options. To better understand disease, new multi-omic data-sets have recently been generated with

the goal of identifying molecular causes of disease. However, most analytic studies using these

datasets focus on uni-modal analysis of the data. Here, we propose a data driven approach to inte-

grate multiple data types and analytic outcomes to aggregate evidences to support the hypothesis

that a gene is a genetic driver of the disease. The main algorithmic contributions of our article are:

(i) a general machine learning framework to learn the key characteristics of a few known driver

genes from multiple feature sets and identifying other potential driver genes which have similar fea-

ture representations, and (ii) A flexible ranking scheme with the ability to integrate external valid-

ation in the form of Genome Wide Association Study summary statistics. While we currently focus

on demonstrating the effectiveness of the approach using different analytic outcomes from RNA-

Seq studies, this method is easily generalizable to other data modalities and analysis types.

Results: We demonstrate the utility of our machine learning algorithm on two benchmark multi-

view datasets by significantly outperforming the baseline approaches in predicting missing labels.

We then use the algorithm to predict and rank potential drivers of Alzheimer’s. We show that our

ranked genes show a significant enrichment for single nucleotide polymorphisms associated with

Alzheimer’s and are enriched in pathways that have been previously associated with the disease.

Availability and implementation: Source code and link to all feature sets is available at https://

github.com/Sage-Bionetworks/EvidenceAggregatedDriverRanking.

Contact: ben.logsdon@sagebionetworks.org

1 Introduction

Late onset Alzheimer’s disease (LOAD) is a debilitating illness with no

known disease modifying treatment (Alzheimer’s, 2015; Frozza et al.,

2018). To address this, there have been a recent surge in the gener-

ation of multi-modality data (Hodes and Buckholtz, 2016; Mueller

et al., 2005) to understand the biology of the disease and potential

drivers that causally regulate it. Identification new genetic drivers of

LOAD will be key to the development of effective disease modifying

therapeutics. To prioritize experimental evaluation of LOAD drivers,

we present a data driven approach to rank genes based on the prob-

ability that they drive LOAD using transcriptional (RNA-seq) data

collected from postmortem brain tissue in patient cohorts.

While there exists some prior work on driver gene ranking

(Grechkin et al., 2016; Hou and Ma, 2014; Liu et al., 2015;

Mukherjee et al., 2018; Zhang et al., 2013), these approaches have

several limitations that make them unsuitable for all feature types.

Many of these approaches work only with somatic mutation data

from patients tumor samples, ranking genes by comparing the muta-

tion rates of somatic variants in patients for different genes to an ap-

propriate null model to identify cancer driver genes (Tian et al.,

2014). While some other approaches use ensemble approaches to

rank genes using predictions from other tools that use genomic data

(Liu et al., 2015). Unfortunately, these approaches are highly speci-

alized to the type of data and cannot be easily generalized to a
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broader class of feature sets. Furthermore, while in cancer driver

genes are defined based on somatic genetic variation, in complex

diseases such as Alzheimer’s disease we define driver genes as those

that are causally affecting risk of disease via germline genetic vari-

ation. While there exist approaches such as DawnRank (Hou and

Ma, 2014) which utilize RNA-Seq data in addition to genomic data

for each patient, these too have strong modeling assumptions lead-

ing to lack of generalizability. Furthermore, most of these previous

approaches are designed for detecting driver genes that are driven by

somatic mutation events aside from the Key Driver analysis of

Zhang and Zhu (2013). Alternatively, we are interested in identify-

ing signatures of driverness from somatic tissue that are indicative of

germline risk for LOAD. Here, we propose a highly generalizable

machine learning approach to learn signatures of germline genetic

risk within summaries of transcriptomic expression of somatic post-

mortem brain tissue driver ranking and demonstrate it’s effective-

ness on RNA-Seq derived feature sets.

Our driver ranking approach serves as an evidence aggregation

framework, and currently uses differential expression, undirected

gene networks inferred with an ensemble co-expression network in-

ference method and co-expression module summaries (Logsdon

et al., 2019) generated using transcriptional data collected from

postmortem brain tissue across three studies (ROSMAP, Mayo

RNAseq, MSBB) in AMP-AD. We assume that each analytic sum-

mary (while originating from the same RNA-seq data-sets) contains

independently predictive information that can be used to identify

genes with a burden of germline AD risk variants. We process these

independent analytic summaries into the following feature sets (see

Table 1) to be used for machine learning: (i) genes that are differen-

tially expressed between AD cases and controls in specific brain

regions, (ii) global un-directed network topological features for spe-

cific brain regions and (iii) module specific network topological fea-

tures for 42 tissue specific co-expression modules.

Here, we divide the task of ranking potential driver genes into

two sub-tasks: (i) training machine learning models to identify prob-

abilities of genes being driver genes using each feature set, (ii) aggre-

gation of predictions of models for each feature set along with

independent Genome Wide Association Study (GWAS) statistics to

rank potential driver genes (Fig. 1). The primary goal of the first

task is to learn the unique characteristics of 27 previously known

drivers of AD identified from published LOAD GWAS studies

(Kunkle et al., 2019; Lambert et al., 2013) and use it to identify po-

tential novel drivers of the disease. These AD drivers were defined as

loci that were genome-wide significant in one study (P<5 � 10�8),

with significant replication P-value (P<0.05) in a second study.

The technical challenges associated with the first task include find-

ing an appropriate approach to identify the driver probabilities and

finding a way to learn from sparsely labeled data (only 27 genes

have labels, while others may or may not be driver genes). To tackle

this, here we propose a novel multiview classification (Xu et al.,

2013) approach, which includes iterative update of labels to infer

additional candidate driver genes. For the latter task the primary

challenge is to define an appropriate scoring system to rank genes.

Here, we propose a flexible scoring system that not only utilizes

model predictions for each feature set but also independent LOAD

GWAS statistics.

We demonstrate our multiview classification algorithm achieves

substantially higher performance compared with models trained for

individual feature sets on standardized multiview datasets. We then

demonstrate that similar performance benefits hold when applied to

LOAD postmortem brain tissue RNA-seq using qualitative metrics.

We observe that global network topological features from inferred

sparse co-expression networks—such as node degree—are predictive

of LOAD driver genes as identified in GWAS, and more so than dif-

ferential expression features. Finally, we show that our ranking

methodology identifies several previously known LOAD loci impli-

cated in other studies (Jonsson et al., 2013; Ki et al., 2002; Kiyota

et al., 2015; Mukherjee et al., 2017) as well potentially new LOAD

risk loci. These findings may lead to new mechanistic hypotheses

regarding the genetic drivers of LOAD. Furthermore, a Gene

Ontology (Chen et al., 2013) pathway analysis of the highly ranked

predicted driver genes identifies multiple pathways previously impli-

cated in LOAD disease etiology.

2 Materials and methods

2.1 Study description
In brief, all feature sets are derived from analyses of RNA-seq data

on 2114 samples from 1100 patients from seven distinct brain

regions (Temporal Cortex, Cerebellum, Frontal Pole, Inferior

Frontal Gyrus, Superior Temporal Gyrus, Parahippocampal Gyrus

and Dorsolateral prefrontal cortex) and three studies—the Mount

Sinai Brain Bank study (Wang et al., 2018), the Mayo RNA-seq

study (Allen et al., 2016) and the ROSMAP study (A Bennett et al.,

2012). A full description of the data and the RNA-seq processing

pipeline that was used to generate analytic outputs is described in

Logsdon et al. (2019).

2.2 Deriving usable features for meta-analysis
Features were inferred from specific statistical analyses that were

run on RNA-seq datasets within each of the seven tissue types.

These analyses included set membership features from differential

expression analysis (e.g. test of changes in mean expression between

AD cases/controls and subgroups such as males and females), global

network features from a sparse ensemble co-expression network in-

ference method described in further detail in Logsdon et al. (2019),

and network topological features for communities of genes identi-

fied from the networks described in the same paper. The sparse net-

work inference approach applies 17 distinct co-expression network

inference algorithms (including ARACNe, Genie3, Tigress,

Aparrow, Lasso, Ridge, c3net and WGCNA) to data derived from

each tissue type, and averages across the edge strength rankings

Table 1. Description of various feature sets used for multiview evidence aggregation

Feature set SynapseID No. features Type Descriptions

Differential expression syn18097426 250 Binary Membership based on differential expression in different brain

regions and patient subgroups (such as males/females)

Global network syn18097427 42 Numeric Features derived from graph structure in different brain regions

Module network syn18097424 66 Numeric Features derived from graph structure in important co-expression

modules from different brain regions
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from each method to determine an ensemble sparse representation

of co-expression relationships (see Logsdon et al., 2019) for details).

In all network type features we extract standard network topologic-

al characteristics such degree, authority score, betweeness centrail-

ity, pagerank and closeness.

2.3 Iterative multiview classification for driver

prediction
Here, we pose the driver gene prediction as a binary classification

problem using corrupted labels (Frénay and Verleysen, 2014).

Formally, given a feature vector Xi 2 Rd for a gene denoted by the

index i, we wish to predict a class label from {0, 1} where 1 would

indicate that the gene is a driver gene and 0 if it’s not. Additionally,

we also desire to predict the conditional probability for of a gene

being a driver, given the feature information, i.e. PðŶ i ¼ 1jX ¼ XiÞ.
This problem is solved by a broad class of binary classification prob-

lems such as logistic regression, support vector machines etc. in the

presence of a training dataset with input features and output class

labels. However, here we are only provided a list of a small subset of

drivers (from existing literature), whereas all other genes may or

may not be a driver. Mathematically, this is akin to learning from

noisy labels ~Y instead of the actual labels Y where PðY ¼ 1j ~Y ¼
1Þ ¼ 1 but PðY ¼ 0j ~Y ¼ 0Þ 6¼ 1. While there are many general strat-

egies for learning from noisy labels such as removing bad data

points, active learning etc. (Frénay and Verleysen, 2014), they gener-

ally don’t account for this specific type of label noise or make

assumptions about rates of mis-labeling in each class. Hence, here

we focus on a simple existing approach for such problems (Iterative

Classification) and propose a variant of it utilizing the fact that we

have features from multiple views for the same genes.

2.3.1 Iterative classifier

Iterative classification is a simple approach where the general idea is

to update the labels samples where ~Y 6¼ 1 to that of the predicted

class Ŷ after each iteration of model training (Liu et al., 2003). This

can be written in algorithmic terms as in Algorithm 1. While this al-

gorithm is general and can be used for different classifiers, here we

demonstrate it on a L2-penalized logistic regression. Here, ll denotes

the maximum likelihood loss for logistic regression and thresh is a

constant in ½0;1�, typically chosen to be greater than 0.5. The higher

the threshold, the more conservative the iterative updates are, acting

as a trade-off between specificity and sensitivity.

In the presence of data from multiple views from the same sam-

ples fXigK
i¼1, the algorithm is run for each view separately and an

average of the predicted probabilities of all models is considered

while evaluating the final multiview predictions (we shall refer to

this as ’consensus’ for short in later text and figures).

2.3.2 Iterative classifier with co-training

While the previous algorithm solves the problem of noisy labels and

integrates information from multiple views, it does so by training

models for each individual view independently. However, as seen in

Figure 1, the features for different views are generated from the

same underlying source, i.e. the RNA-Seq data from brain samples

of patients and controls. Hence, the different views can be seen as

functional transformations of the same underlying data, corrupted

with different noise sources and should encode the same classifica-

tion information.

In the case of original multiview classification problems, it is

common to enforce view similarity which requires predictions

made by different views to be similar to each other, through co-

training or co-regularization (Xu et al., 2013). Here, the problem

is more difficult to the noise in the labels. Hence, we develop a

method which integrates the iterative updating scheme developed

Fig. 1. RNA-Seq data for AD patients and controls were derived for seven different brain regions from three centers. Differential expression, co-expression mod-

ule and global network features were derived from all brain regions. Each feature and known drivers were used to build predictive models for driver genes.

These driver probabilities and GWAS statistics were used for an evidence-based driver ranking

Algorithm 1. Iterative classification with L2-penalized logistic

regression

function IC(X; ~Y ;maxiters; thresh; k)

y ~Y

for iter 1 . . . maxiters do

ŵ ¼ argminw1=N
PN

k¼1�llðykjXk;wÞ þ kjjwjj22

for j 1 . . .N s.t. ~Y j 6¼ 1 do

pj  Pðyj ¼ 1jXj; ŵÞ
yj  1ðPðyj ¼ 1jXj; ŵÞ � threshÞ

end for

end for

return p, y

end function
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previously with co-training. Formally, we pose the problem of it-

eratively learning labels with co-training as the following opti-

mization problem:

argmin
fwkgK

k¼1 ;fyk
i
gKk¼1

� 1

N

XK

k¼1

XN
i¼1

llðykjXk
i ;w

kÞ þ kkjjwkjj22

" #

þq
4

XK

k¼1

XK

k0¼1

jjyk � yk0jj22

subject to:

yk 2 f0; 1gN ; yk
i ¼ 1; 8 ~Y i ¼ 1

It can be seen that this is a mixed-integer optimization problem,

which is a particularly hard class of optimization problems to solve.

However, for fixed fykgK
k¼1, the optimization problem is convex in

fwkgK
k¼1 and is simply logistic regression for the different views.

Hence, a locally optimal solution to the optimization problem is via

alternative minimization on fykgK
k¼1 and fwkgK

k¼1 starting with

f ~Y
kgK

k¼1. Unfortunately, the problem of optimizing over fykgK
k¼1 is a

constrained binary quadratic programming problem, which does

not have exact solutions or efficient exact solvers (Kochenberger

et al., 2014). However, upon relaxing the binary constraint to a lin-

ear constraint (f0; 1g ! [0, 1]), the optimization problem becomes a

tractable convex optimization problem:

argmin
fykgKk¼1

� 1

N

XK

k¼1

XN
i¼1

yk
i log

Pðyk
i ¼ 1jXkT

i ;wkÞ
Pðyk

i ¼ 0jXkT
i ;wkÞ

 !
þ

"

q
4

XK

k¼1

XK

k0¼1

jjyk � yk0jj22

#

subject to:

0 � yk � 1; yk
i ¼ 1 8 ~Y i ¼ 1

Here, we note that logðORk
i Þ ¼ log

Pðyk
i
¼1jXkT

i ;wkÞ
Pðyk

i
¼0jXkT

i
;wkÞ

� �
. We note that

this optimization problem is independent in each i and can be solved
independently. Next we demonstrate that the previously posed lin-

ear relaxation which can be solved using the co-ordinate descent

methodology using a closed form update rule for each yk
i .

Claim 1: A co-ordinate descent strategy leads to an optimal solution to

the previously stated optimization problem.

PROOF: It is sufficient to show that the optimization problem is convex.

Since the inequality constraints are linear in yk
i ’s, to demonstrate convex-

ity of the optimization problem, we simply need to demonstrate that the

cost function is convex. This can be shown by re-parameterizing the

problem for the ith variable in terms of a new variable xi ¼ ½y1
i ; ::; y

K
i �.

JðxiÞ ¼
q
4

XK

j¼1

XK

k¼1

jjAk
j xijj22 þ bTxi

Where; ðAk
j Þpq ¼

1; for p ¼ j;q ¼ k
�1; for p ¼ k; q ¼ j
0; Otherwise

8<
:

And;bT ¼ 1

N
log10ðOR1

i Þ; ::; log10ðORK
i Þ

h i

Next, we calculate the second derivative of JðxiÞ:

r2JðxiÞ ¼
q
4

XK

j¼1

XK

k¼1

ðAk
j Þ

TAk
j

We see that, since this is a sum of positive semi-definite matrices,

r2JðxiÞ�0 for all xi, which is a sufficient condition for convexity

(Q.E.D.).

Claim 2: The previously stated optimization problem has a closed form

co-ordinate descent rule given by:

yk
i ¼ max 0;min

1

K� 1

X
j6¼k

yj
i þ

1

Nq
logðORk

i Þ;1
( )( )

8i 2 f1; ::;Ng s:t: ~Y i 6¼ 1; 8k 2 f1; ::;Kg

PROOF: The loss function for each yk
i can be written as:

Jðyk
i Þ ¼ �

1

N
yk

i logðORk
i Þ þ

q
2

X
k0 6¼k

ðyk
i � yk0

i Þ
2 (1)

It is easy to see that this is a parabola of the form y ¼ aðx� bÞ2 þ c. For

a parabola of this form, the minima (if a> 0) or maxima (if a< 0) occurs

at x¼ b. For our cost function, we see that a ¼ ðK�1Þq
2 > 0 and

b ¼ 1
K�1

P
j6¼k yj

i þ 1
Nq logðORk

i Þ. Hence,
dJðyk

i
Þ

dyk
i

< 0 if yk
i < b;

dJðyk
i
Þ

dyk
i

¼ 0 if

yk
i ¼ b and

dJðyk
i Þ

dyk
i

> 0 if yk
i > b. We now look at three possible locations

of yk
i ¼ b with respect to the interval yk

i 2 ½0; 1� and the constrained

minima in each case:

Case I (b 2 ½0; 1�): Here, the constrained minima is the same as the global

minima.

Case II (b< 0): Here,
dJðyk

i Þ
dyk

i

> 0 in ½0; 1�. Hence, the constrained minima

occurs at yk
i ¼ 0.

Case III (b> 0): Here,
dJðyk

i
Þ

dyk
i

< 0 in ½0; 1�. Hence, the constrained minima

occurs at yk
i ¼ 1.

Algorithm 2. Iterative classifier with co-training

function ICCT(fXigK
i¼1;

~Y ;maxiters; thresh; k;q)

yk  ~Y 8k 2 f1; ::;Kg
for iter 1 . . .maxiters do

for k 1 . . .K do

ŵk ¼ argminwk 1=N
PN

l¼1�llðyljXk
l ;w

kÞ þ kjjwkjj22
end for

for j 1 . . .N s.t. ~Y j 6¼ 1 do

for k 1 . . .K do

pk
j  Pðyj ¼ 1jXk; ŵ

kÞ
yk

j  1ðyk;LR
j � threshÞ

end for

end for

end for

return fpigK
i¼1; fyigK

i¼1

end function
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Now, compiling the closed form solutions in the three cases, we can

re-write the co-ordinate descent rule as yj
i ¼ max 0;min 1

K�1

P
j6¼k yj

iþ
nn

1
Nq logðORk

i Þ; 1
oo

(Q.E.D.).

The solutions can then be binarized by selecting an appropriate

threshold like in the previous algorithm. An interesting observation

is that the update rule for any yk is simply an average of all the other

y’s and an additional term which is solely dependent on the

odds ratio of the kth view. This can be implemented as seen in

Algorithm 2.

Similar to the separately trained approach, consensus is taken to

obtain final multiview predictions.

2.3.3 Implementation and hyperparameter tuning

Both multiview iterative learning schemes were built using the

Logistic regression in the sci-kit learn package of Python. A general-

izable implementation of the code can be found at the link men-

tioned in the abstract. Values of k for each feature set were chosen

using a 10-fold cross-validation approach using the original labels

using the LogisticRegressionCV function in sci-kit learn. The value

of q was chosen to be 1=N for analysis of the RNA-Seq dataset

based on performance on the benchmark datasets.

2.4 Evidence aggregated ranking
The goal of the evidence aggregated ranking scheme is to aggregate

the predictions of the models trained using different feature sets and

also (optionally) integrate unrelated external information from large

sample GWAS studies. Here, we develop a flexible scoring system

that achieves the above stated goal:

ScoreðGeneiÞ ¼
a
K

XK

j¼1

log 10ðORj
iÞ

� 1� a
jSNPðGeneiÞj

X
k2SNPðGeneiÞ

log 10ðp�valueÞk

Here, a 2 ð0; 1� is a user specified weighting parameter which

controls the relative importance given to the external GWAS evi-

dence vis-a-vis the model predictions using our feature sets, and

jSNPðGeneiÞj refers to the number of single nucleotide polymor-

phisms (SNPs) in a pre-specified window around Genei. The models

themselves are weighed equally relative to each other. For the pur-

poses of this paper we chose the a ¼ 0:5, thereby assigning equal

weight to our model predictions and external GWAS evidence. The

average of log transformed SNP P-value is chosen instead of the

minimum P-value (MP) in order to capture the composite effect of

all SNPs in a gene.

3 Results

3.1 Comparison of learning approaches on benchmark

datasets
To first test quantitatively test the relative efficiency of the two

learning approaches, we first test them on some standard bench-

mark datasets obtained from https://github.com/yeqinglee/mvdata

[used in Li et al. (2015)]:

Handwritten digits: This is a dataset containing handwritten dig-

its (0 through 9) originally from UCI’s Machine Learning repository.

It consists of 2000 data points. We use three of the published fea-

tures namely: 240 pixel averages in 2�3 windows, 76 Fourier coef-

ficients of the character shapes and 216 profile correlations.

Caltech-101: This is a dataset comprising of seven classes of

images amount to a total of 1474 images (Dueck and Frey, 2007).

We use three of the published features namely: 48 Gabor features,

254 CENTRIST features and 40 features derived from Wavelet

moments.

For each dataset, we performed binary classification with differ-

ent algorithms on each class separately, after corrupting the labels

by randomly deleting 50% of the ’true’ class labels to simulate the

driver identification problem. The training was performed on cor-

rupted labels while testing was performed on the actual labels.

Algorithms were compared by their mean accuracy across all the

class labels on the actual class labels. The algorithms compared

were: (i) Iterative classifiers (ICs) trained on each feature type separ-

ately, (ii) ICs trained on each feature type separately followed by

consensus among the learned models (using simple majority), (iii) IC

trained on a ‘stacked’ feature set (all feature sets were horizontally

stacked into one) and (iv) IC with co-training.

As seen in Figure 2, we see that IC with co-training outperforms

other algorithms on both standard datasets by a large margin, while

IC with consensus does not always lead to improvements over the

best single view iteratively trained model. The stacked model tends

to perform better than the best single view model but not as well as

iterative classifier with co-training (ICCT) in either dataset. This is

perhaps because the difference in information content between the

different views can sometimes make taking consensus ineffective.

3.2 Validation of driver prediction using independent

GWAS datasets
To validate our multiview data aggregation schemes and generate a

biologically meaningful ranking, we first generated gene-wise sum-

mary statistics from two separate GWAS datasets, namely IGAP

(Lambert et al., 2013) and Jansen (Jansen et al., 2019). The IGAP

study has a sample size of 74 046 (25 580 cases and 48 466 controls)

from individuals of European ancestry with over 7 million total

SNPs. The Jansen study has a sample size of 455 258 (71 880 cases,

383 378 controls) also from European ancestry. This study contains

in the addition to the data used in the IGAP study in addition to 3

complementary studies: Alzheimer’s Disease Sequencing Project

(ADSP), Psychiatric Genomics Consortium (PGC-ALZ) and UK

Biobank studies.

For each of these GWAS datasets, we generated two gene-wise

summary statistics, namely: (i) mean of log P-value of SNPs (MLP)

and (ii) MP of SNPs. This was done by mapping each SNPs to a

Fig. 2. Comparison of various classification algorithms trained on corrupted

class labels and tested on actual labels
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10 kb window around known protein coding gene locations in a ref-

erence genome (hg38) and then computing the two summary statis-

tics of interest per gene. The mapping of SNPs to genes was

performed using the MAGMA software package (de Leeuw et al.,

2015).

Similar to the benchmark datasets, we trained both IC and ICCT

models on the three previously mentioned feature sets to obtain

probabilities of all genes being driver genes for AD. We first per-

formed a validation using a leave-one-out approach where we

trained models excluding one driver gene each time and compared

the predicted probability for the held out gene for ICCT and IC

approaches. We find a stark improvement in the performance at pre-

dicting the driver probability by ICCT (mean ¼ 0.47, median ¼
0.59, standard deviation ¼ 0.36) when compared with IC (mean ¼
0.24, median ¼ 0.09, standard deviation ¼ 0.29). In the absence of

true labels for validation, we adopt a qualitative metric to further

test the model accuracies using external GWAS data. This was done

by performing a Mann–Whitney U test between the distributions of

MP/MLP values of predicted driver genes and genes not predicted to

be drivers. A significant difference between the distributions would

suggest that predicted driver genes contain more genes significant to

AD than non-driver genes. Using this metric, we find that the ICCT-

consensus model shows the strongest difference between the

distributions (measured using the Mann–Whitney U test P-value),

followed by models trained on the network topological features

trained as a part of the ICCT algorithm (Fig. 3). It is seen in both

datasets, that even some feature set specific predictions of the ICCT

algorithm outperforms the basic iterative learning approach (IC),

demonstrating the utility of co-training. Interestingly, the high rela-

tive performance of the network topological features when com-

pared with the differential expression features implies that local and

global network structure plays a strong role in determining which

genes have causal effects on Alzheimers.

3.3 Biological analysis of predicted drivers
Having demonstrated the statistical significance of the predicted

driver genes, we ranked them using our ranking schema. The top 20

ranked genes can be seen in Table 2, which contains several genes

strongly linked with AD such as APOE, APOC1, CD74, TREM2,

SLC7A7 (Jonsson et al., 2013; Ki et al., 2002; Kiyota et al., 2015;

Mukherjee et al., 2017) etc. Table 2 also contains the minimum SNP

P-values for each of these genes according to the IGAP and Jansen

studies. It can be seen that while our models are not trained on any

SNP information, the results strongly align with additional valid-

ation GWAS data.

To further validate the results we performed gene set enrichment

analyses with the top-500 ranked potential driver genes using

Enrichr (Chen et al., 2013), a web based gene set enrichment tool.

The top 20 significant processes and functions ranked according to

their adjusted P-values can be seen in Table 3. Several of the proc-

esses such as immune response, amyloid processing, amyloid cata-

blism, amyloid clearance and apoptotic processes, and functions

such as low-density lipoprotein binding and activity are already

known to significantly altered in AD, whereas several other interest-

ing ones such as endocytosis, scavenger receptor activity and peptid-

ase activity can lead to potential new insights into AD disease

mechanisms.

3.4 Analysis of top features for driver prediction models
Having noted that the network topological features provide are

more predictive of the driver ranking of genes, we evaluate the most

Fig. 3. (A) Results of the Mann–Whitney U test performed on IGAP and

Jansen MP distributions for predicted driver versus non-driver genes. (B)

Results of the t-test performed on IGAP and Jansen MLP distributions for pre-

dicted driver versus non-driver genes

Table 2. Top 20 ranked genes along with their associated driver

score and minimum P-value from IGAP (Lambert et al., 2013) and

Jansen (Jansen et al., 2019) GWAS datasets

Genes Driver score Jansen P-value IGAP P-value

APOC1 42.92 <1E�308 <1E�308

APOE 41.75 <1E�308 <1E�308

BCAM 5.88 1.60E�143 4.66E�69

CD74 4.92 1.93E�02 1.20E�01

TREM2 4.65 2.95E�15 1.07E�03

CLPTM1 4.58 7.07E�50 2.80E�21

DEF6 4.28 5.94E�03 3.52E�02

SLC7A7 4.05 2.29E�03 2.36E�02

DOCK2 3.72 9.14E�04 4.82E�03

SPI1 3.62 1.06E�06 1.99E�06

STEAP3 3.61 3.63E�05 2.21E�02

PICALM 3.56 2.19E�18 1.91E�12

HMOX1 3.56 1.16E�02 1.43E�01

CLU 3.55 2.61E�19 2.48E�17

MS4A6A 3.55 1.55E�15 6.64E�11

IRF5 3.45 1.21E�02 1.48E�02

TYROBP 3.44 1.34E�02 5.40E�02

PARVG 3.42 1.44E�02 1.05E�03

ITGAL 3.41 1.92E�04 4.36E�03

PTPRC 3.33 2.12E�03 7.24E�03
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predictive features of each of the network feature sets in Table 4.

We calculated the Spearman’s rank correlation for each feature with

the model predictions for their feature set, to evaluate their relative

predictive power. Interestingly, we find several highly correlated fea-

tures from both feature sets. Upon closer look at the top 10 highly

correlated features from the Module-Network feature set all are

negatively correlated, with all the features derived from with

DLPFC (Dorsolateral Prefrontal Cortex) and TCX (Temporal

Cortex) brain regions. This is intriguing because the sample size in

DLPFC is largest (n¼630), and the signal to noise ratio in TCX is

highest (it is a highly affected brain region, and the median depth of

sequencing for that study was 60 million reads compared with

35 million for the other studies). The same trend cannot be observed

in the Global-Network feature set, where the top 10 features are

associated with STG (Superior Temporal Gyrus), PHG (Parahip

pocampal Gyrus) and DLPFC brain regions and all the correlations

are positive. However, in this case, the top features are all associated

with high connectivity of genes, which agrees with the popular

notion that driver genes are also typically hub genes (Liu et al.,

2012, 2011; Mukherjee et al., 2018). This can also be seen in

Figure 4, where we note that most of the known drivers lie in one of

the islands of genes (in the principle component plot) which corre-

sponds to genes with very high degrees (or hubs).

4 Conclusion

Here, we provide a generalizable framework for integration of di-

verse systems biology outputs to rank and identify new transcrip-

tomic and genetic drivers of Alzheimer’s disease. This provides

evidence that integration of multiple systems biology resources can

provide insights into new Alzheimer’s disease loci, which can help

researchers prioritize future experimental studies focusing on specif-

ic genes and pathways that are driving disease etiology. While not

all genes in genomic neighborhoods implicated by GWAS may actu-

ally be causal drivers of disease, we expect genes implicated in

GWAS to be highly enriched for disease specific drivers. Our ap-

proach takes these genes implicated from GWAS analyses and finds

common patterns from expression data that are predictive of these

genes. We do not expect the predictions from our model to be de-

void of false positives, but we do expect genes that are in fact genetic

drivers to be ranked higher by our model—which we see evidence of

when looking at the (Jansen et al., 2019) summary statistics.

We currently demonstrate the utility of the approach on three

RNA-Seq derived feature sets, providing strong qualitative agree-

ment with known biology as well as previously published GWAS

studies. Furthermore, we show the approach for driver gene predic-

tion itself is a broadly application machine learning approach by

demonstrating quantitative performance improvement over baseline

models.

Table 3. Top 20 enriched genesets for biological process and function along with their associated adjusted P-values obtained from Enrichr

(Chen et al., 2013)

GO biological process Adjusted P-value GO molecular function Adjusted P-value

Neutrophil mediated immunity 3.03E�12 MHC Class II receptor activity 7.67E�03

Neutrophil activation involved in immune response 3.03E�12 Activin binding 7.67E�03

Neutrophil degranulation 4.62E�12 MHC Class II protein complex binding 7.67E�03

Interferon-gamma-mediated signaling pathway 4.62E�12 MHC protein complex binding 7.67E�03

Cytokine-mediated signaling pathway 9.91E�11 Transforming growth factor beta binding 7.67E�03

Cellular response to interferon-gamma 5.79E�10 Phosphotyrosine residue binding 7.67E�03

Negative regulation of amyloid precursor protein

catabolic process

7.71E�05 Transforming growth factor beta receptor binding 7.67E�03

Regulation of amyloid-beta formation 7.94E�05 Amyloid-beta binding 7.67E�03

Positive regulation of intracellular signal

transduction

1.62E�04 Scavenger receptor activity 1.04E�02

Positive regulation of actin nucleation 1.68E�04 Protein phosphorylated amino acid binding 1.09E�02

Endocytosis 2.26E�04 Low-density lipoprotein receptor activity 1.42E�02

Regulation of mast cell degranulation 3.07E�04 Phosphatidylinositol bisphosphate binding 1.42E�02

Regulation of apoptotic process 3.07E�04 Protein kinase binding 1.42E�02

Extracellular matrix organization 3.07E�04 Clathrin heavy chain binding 1.91E�02

Negative regulation of amyloid-beta formation 4.01E�04 Lipoprotein particle receptor activity 1.95E�02

Antigen receptor-mediated signaling pathway 4.01E�04 GTPase regulator activity 2.02E�02

Negative regulation of extrinsic apoptotic signaling

pathway

5.26E�04 Actin binding 2.23E�02

Regulation of amyloid-beta clearance 5.77E�04 Type II transforming growth factor beta receptor

binding

2.30E�02

T cell receptor signaling pathway 5.77E�04 Low-density lipoprotein particle binding 2.30E�02

Cellular response to transforming growth factor

beta stimulus

1.09E�03 Peptidase activity, acting on L-amino acid peptides 2.30E�02

Table 4. Spearman rank correlation (with model predictions) for

the top 10 features of network topological feature sets

Module net qs Global net qs

TCXbrownTCXauthority �0.36 STGcloseness 0.58

TCXbrownTCXdegree �0.36 STGdegree 0.57

TCXbrownTCXeccentricity �0.36 STGauthority 0.57

DLPFCredDLPFCauthority �0.34 PHGauthority 0.54

DLPFCredDLPFCeccentricity �0.34 STGpagerank 0.53

TCXbrownTCXcloseness �0.34 PHGdegree 0.53

DLPFCredDLPFCdegree �0.34 PHGcloseness 0.52

TCXbrownTCXpagerank �0.34 DLPFCauthority 0.52

DLPFCredDLPFCcloseness �0.33 STGcentr_betw 0.50

DLPFCredDLPFCpagerank �0.33 DLPFCdegree 0.50
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While the current work has focused on engineering and using

RNA-Seq feature sets, future work will focus on integrating other -

omics datasets from the AMP-AD study to further improve the evi-

dence driven ranking of driver genes. Another direction of future

work will focus on identifying the relevance and agreement of differ-

ent feature views. While the current approach equally weighs the

predictions from different feature views, this may be unadvisable if a

feature view has limited information about the driverness of genes.
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