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Abstract

Our earlier studies proved that RIPK3-mediated necroptosis might be an important mode of

renal tubular cell death in rats with chronic renal injury and the necroptotic cell death can be

triggered by tumor necrosis factor-α (TNF-α) in vitro, but the triggering role of angiotensin II

(AngII), which exerts notable effects on renal cells for the initiation and progression of renal

tubulointerstitial fibrosis, is largely unknown. Here, we identified the presence of necroptotic

cell death in the tubular cells of AngII-induced chronic renal injury and fibrosis mice and

assessed the percentage of necroptotic renal tubular cell death with the disruption of this

necroptosis by the addition of necrostatin-1 (Nec-1). Furthermore, the observation was fur-

ther confirmed in HK-2 cells treated with AngII and RIPK1/3 or MLKL inhibitors. The detec-

tion of Fas and FasL proteins led us to investigate the contribution of the Fas/FasL signaling

pathway to AngII-induced necroptosis. Disruption of FasL decreased the percentage of

necroptotic cells, suggesting that Fas and FasL are likely key signal molecules in the

necroptosis of HK-2 cells induced by AngII. Our data suggest that AngII exposure might trig-

ger RIPK3-MLKL-mediated necroptosis in renal tubular epithelial cells by activating the Fas/

FasL signaling pathway in vivo and in vitro.

Introduction

Chronic kidney disease (CKD) causes serious health problems[1] and affects approximately

8–16% of adults worldwide[2, 3]. Its prognosis depends mainly on the degree of renal tubu-

lointerstitial fibrosis (TIF) rather than glomerular damage[4]. Therefore, exploring the mecha-

nism of TIF has great significance for the early prevention and treatment of CKD. In our

earlier studies, we found that necroptosis mediated by receptor-interacting serine-threonine

kinase 3 (RIP3) and mixed lineage kinase domain-like (MLKL) might play a more significant

role than apoptosis in mediating the loss of renal tubular cells rather than glomerular cells

death in rats subjected to subtotal nephrectomy (SNx), thus favoring the progression of TIF

and CKD[5, 6].
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Several studies have demonstrated that the necroptosis of tubular cells in renal injury mod-

els can be triggered by tumor necrosis factor-α (TNF-α) or other agonists [5, 7, 8]. Angiotensin

II (AngII) has been recognized to exert potent effects on renal cells for the initiation and pro-

gression of renal fibrosis [9–11]. However, the role of AngII in promoting necroptosis of tubu-

lar cells has not been fully elucidated.

AngII has long been known to be the principal effector of the renin-angiotensin system and

mediates kidney disease progression through its hemodynamic and nonhemodynamic effects

on renal cells [12]. It has been demonstrated that AngII levels in the peritubular capillary and

the proximal tubule are 1000 times higher than circulating AngII levels, suggesting that intrar-

enal AngII may be more important for the progression of renal injury than systemic AngII

[13–15], and that human proximal tubular cells (PTECs) are sites of intrarenal AngII accumu-

lation [16]. It has been proved that AngII can cause PTEC apoptosis and autophagy [12, 17].

However, it is still unknown whether AngII is the most common and efficient mediator of

renal tubular cell necroptosis in CKD progression. In this study, we hypothesized that AngII

might induce necroptosis of renal tubular epithelial cells and contributes to TIF and CKD.

Our results show that AngII triggers the RIP3- and MLKL-dependent necroptosis of renal

tubular epithelial cells by the Fas/FasL signaling pathway in vitro and in vivo. These data iden-

tify molecular targets for early prevention of CKD progression.

Materials and methods

Animals

Adult male C57BL/6 mice (purchased from Beijing Vital River Laboratory Animal Technology

Co., Ltd.) were used in the study. Mice were housed in groups of five under specific pathogen-

free conditions in the Hainan Research Center for drug safety evaluation and given free access

to water and food. Seven- to eight-week-old male mice were randomly divided into two

groups, and administered AngII (1.5 μg/kg/min; Sigma) or 0.9% sterile saline continuously

using osmotic minipumps (Alzet model 2002; USA) implanted subcutaneously in the backs

after uninephrectomy surgery under pentobarbital sodium anesthesia, as previously reported

by Zahraa Mohammed-Ali et al.[18]. Then, all mice treated with AngII were fed 1% saline

drinking water ad libitum. Simultaneously, AngII-treated mice were randomly divided into

three groups (n = 6) and were injected intraperitoneally with 10% dimethyl sulfoxide (DMSO,

Sigma-Aldrich, USA) or necrostatin-1 (Nec-1 1.65 mg/kg/day[6], Sigma-Aldrich, USA) or

Z-VAD-FMK (zVAD, 1.0 mg/kg per day[6], MP Biomedicals, Solon, OH, USA) dissolved in

10% DMSO for 3 consecutive weeks. The AngII-treated mice were sacrificed 21 days after

implantation via cervical dislocation, and blood and kidneys were collected. All experimental

protocols were approved by the Institutional Ethics Committee of the First Affiliated Hospital

of Hainan Medical University, and the methods were carried out in accordance with the

approved guidelines.

Renal morphological and serum analyses

Kidneys of the mice were collected when the mice were sacrificed. One portion of the kidney

tissue was fixed with 4% phosphate-buffered formaldehyde and embedded in paraffin wax. To

assess renal tubular morphological changes, 4-micrometer-thick sections were stained with

H&E, and tubular injury was scored by assessing the tubular injury scores using a light micro-

scope. Tubular damage was scored as follows: for tubular dilatation, 0 = no dilation and

1 = dilated tubules; for tubular atrophy, 0 = no atrophy, 1 = signs of atrophy and 2 = necropto-

sis, apoptosis and desquamation; for intracellular vacuoles, 0 = none, 1 = mild (<10 cells per

field of view) and 2 = severe; and for hyaline deposition, 0 = no deposits and 1 = hyaline

PLOS ONE Ang II triggers necroptosis of renal tubular cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0228385 March 5, 2020 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0228385


deposits. The total index score for each mouse was expressed as the mean value of all of the

scores obtained. In addition, after deparaffinization and rehydration, kidney tissue sections

were subjected to Masson Trichrome (Sigma-Aldrich) staining by following the manufacture-

rs’instructions. The staining results were recorded under a bright field microscope. For the

quantitative analysis, at least 10 random high-power fields (i.e., 400x) were selected and evalu-

ated. The positive area was calculated as a % of the total area. All assessments were performed

in a blinded manner by an experienced pathologist.

BUN and serum creatinine levels were determined using standard clinical biochemical

techniques for assessing renal function in mice.

Cell culture and gene expression interference

Human kidney cells (HK-2, an immortalized human proximal tubule epithelial cell line) were

purchased from American Type Culture Collection (Manassas, VA, USA). The cells were cul-

tured in DMEM/F12 medium (Gibco Life Technologies, Carlsbad, CA, USA) containing 10%

FBS (HyClone, U.S.) supplemented with 1% penicillin and streptomycin (Beyotime, Shanghai,

China) in a humidified incubator with 5% CO2 at 37˚C. Cells were grown to 70–80% con-

fluency and stimulated with AngII (Sigma, USA) at a concentration range of 10−10–10−5 M for

24 h and exposed to 10−9 M AngII for 12 h, 24 h, 36 h, 48 h, and 72 h. To further assess the

necroptosis of HK-2 cells, cells were pretreated with RIP1 inhibitor (100 μM Nec-1[5]) or the

pan-caspase inhibitor (10 mM zVAD[5]) for 30 min, RIPK3 blocker (0.25 μM GSK’872[19]) or

MLKL inhibitor (1 μM NSA, Selleck, USA[8]) for 1 h. To elucidate the relevant mechanisms,

cells were treated with an AT1R antagonist (10 μM losartan[20, 21]) and an AT2R antagonist

(PD123319[20, 21]) for 30 min or with FasL inhibitor (3 μg/ml [22, 23] the neutralizing Human

Fas Ligand/TNFSF6 Antibody (RD Systems, USA)) for 2 h. After pretreatment for the assigned

duration, HK-2 cells were exposed to 10−9 M AngII for 24 h. The treated cells were collected at

the assigned time for western blot analysis, TEM, and immunofluorescence staining.

Small interfering RNA experiments

Small interfering RNAs (siRNAs) were designed and chemically synthesized (GenePharma,

Suzhou, China). The following mRNA sequences for targeting RIP1, RIP3, and MLKL were

used.

RIP1: 5’- GCAGUUGAUAAUGUGCAUATT-3’ (sense),

5’- UAUGCACAUUAUCAACUGCTT-3’ (antisense),

RIP3: 5’- CCGGCUUAGAAGGACUGAATT-3’ (sense),

5’- UUCAGUCCUUCUAAGCCGGTT-3’ (antisense),

MLKL: 5’- UCAAGGACGUGAACAGGAATT-3’ (sense),

5’- UUCCUGUUCACGUCCUUGATT-3’ (antisense).

HK-2 cells were seeded at 70–90% confluence and transfected with the targeting siRNAs

using Lipofectamine™ 3000 Reagent (Invitrogen Inc, USA) according to the manufacturer’s

instructions for 6 h, after which cells were placed in fresh medium for 24 h. Cells transfected

with nonspecific siRNA served as controls. Then, the cells were stimulated with 10−9 M AngII.

Twenty-four hours later, the cells were harvested for western blot analysis to determine the

transfection efficiency.

Flow cytometric analysis

Quantitation of necrotic cells in different groups was performed using a FITC annexin V apo-

ptosis detection kit (BD Biosciences, San Diego, CA) according to the manufacturer’s protocol.

Briefly, the cells were seeded into 6-well plates at a density of 5 × 105 cells/well and exposed to
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AngII at different concentrations for different times. Then, the cells were harvested, washed

twice with precooled PBS and resuspended in 100 μl of binding buffer. After the addition of

5 μl of FITC annexin V and PI, the cells were incubated for 15 min at room temperature in the

dark. The samples were diluted with 400 μl of binding buffer and analyzed on a flow cytometer

(BD Biosciences, San Jose, CA). The percentages of the cells residing in the upper right

(necrotic cells, annexin V+/PI+) and the lower right (apoptotic cells, annexin V+/PI-) regions

of the annexin V-FITC scatter plots were calculated.

Western blot analysis

Western blotting was performed in accordance with the manufacturer’s instructions. The kid-

ney tissue specimens and HK-2 cells were frozen in liquid nitrogen and kept at −80˚C, fol-

lowed by homogenization or lysis in ice-cold radioimmunoprecipitation assay (RIPA) buffer

(Beyotime, Nantong, Jiangsu, China). The total protein concentration was determined using

the Enhanced Bicinchoninic Acid (BCA) Protein Assay Kit (Beyotime, Jiangsu, China). The

extracted protein was mixed with 5× sodium dodecyl sulfate (SDS)-polyacrylamide gel electro-

phoresis (PAGE) sample loading buffer, boiled for 5 min, and separated via SDS-PAGE, fol-

lowed by transfer onto a polyvinylidene difluoride (PVDF) membrane (EMD Millipore,

Billerica, Massachusetts, USA). After blocking nonspecific binding sites with a 5% nonfat dry

milk solution, the membranes were incubated overnight at 4˚C with the following primary

antibodies: anti-RIP monoclonal antibody (#3493, Cell Signaling Technologies, Danvers, MA,

USA; 1:1000 dilution), anti-phospho-RIP polyclonal antibody (#31122, Cell Signaling Tech-

nologies, Danvers, MA, USA; 1:400 dilution) or anti-phospho-RIP monoclonal antibody

(#65746, Cell Signaling Technologies, Danvers, MA, USA; 1:400 dilution), anti-RIP3 monoclo-

nal antibody (#95702, Cell Signaling Technologies, Danvers, MA, USA; 1:1000 dilution) or

anti-RIP3 polyclonal antibody (ab152130, Abcam, Cambridge, MA, USA; 1:1000 dilution),

anti-phospho-RIP3 monoclonal antibody (ab205421, Abcam, Cambridge, MA, USA; 1:400

dilution), anti-MLKL polyclonal antibody (#28640, Cell Signaling Technologies, Danvers, MA,

USA; 1:1000 dilution) or anti-MLKL monoclonal antibody (#14993, Cell Signaling Technolo-

gies, Danvers, MA, USA; 1:1000 dilution), anti-phospho-MLKL monoclonal antibody

(ab208910, Abcam, Cambridge, MA, USA; 1:400 dilution) or anti-phospho-MLKL monoclo-

nal antibody (#91689, Cell Signaling Technologies, Danvers, MA, USA; 1:400 dilution), anti-

Fas polyclonal antibody (sc-1023, Santa Cruz Biotechnology, CA, USA; 1:1000 dilution), anti-

Fas ligand polyclonal antibody (ab15285, Abcam, Cambridge, MA, USA; 1:1000 dilution) and

anti-ß-actin monoclonal antibody (sc-47778, Santa Cruz Biotechnology, CA, USA; 1:1000

dilution). Subsequently, the membranes were incubated with goat anti-rabbit IgG and then

visualized using an ECL detection kit (Beyotime, Nantong, Jiangsu, China). The protein bands

of interest were visualized using an ECL detection kit (Beyotime, Nantong, Jiangsu, China).

The intensity of the bands was analyzed using Image Lab version 2.1 (Bio-Rad). The quantita-

tive densitometric values for each protein were normalized to ß-actin.

Transmission electron microscopy (TEM)

Kidney tissue and cells treated with reagents as shown previously were harvested, 1-mm3 renal

tissue fragments and centrifuged cells were fixed in 4% glutaraldehyde phosphate buffer (pH

7.4) overnight at 4˚C, rinsed with PBS and postfixed in 2% osmium tetroxide. Then, the fixed

renal tissue fragments and cells were dehydrated in an ascending series of ethanol and embed-

ded in epoxy resin. Finally, ultrathin sections (60–70 nm) were stained with uranyl acetate and

alkaline lead citrate, and the cells were visualized under a transmission electron microscope

(TEM) (Hitachi-7700, Japan).
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Immunofluorescence detection of RIP-3 and in situ fluorescent TUNEL

staining

Sagittal kidney tissue sections (4 μm thick) and HK-2 cells seeded on chamber slides (Thermo

Scientific) and incubated with treatments as described previously were prepared for immuno-

fluorescence staining and in situ fluorescent TUNEL staining. First, the sections and cells were

fixed with 4% paraformaldehyde (Sigma-Aldrich), followed by permeabilization in 0.1% Tri-

ton X-100 and incubated with 5% BSA (Sigma-Aldrich). The slides and cells were then incu-

bated with anti-RIP3 monoclonal antibody (#95702, Cell Signaling Technologies, Danvers,

MA, USA; 1:100 dilution) or anti-RIP3 polyclonal antibody (ab152130, Abcam, Cambridge,

MA, USA; 1:100 dilution) overnight at 4˚C and then incubated with Alexa Fluor 555-conju-

gated goat anti-rabbit IgG (H+L) (#4413, Cell Signaling Technologies, Danvers, MA, USA;

1:200 dilution). After rinsing 3 times in 0.1 M PBS (pH 7.4), the samples were incubated with

in situ cell death detection kit reagents (Fluorescein, Roche, Basel, Switzerland) according to

the manufacturer’s instructions and counterstained with 4’,6-diamidino-2-phenylindole

(DAPI). Finally, the images were captured by confocal microscopy (LEICA TCS SP2, Wetzlar,

Germany), and the cell counting was performed by a pathologist blinded to the experimental

conditions.

Statistical analysis

Data are presented as the means ± standard errors of the mean (S.E.M.s). SPSS 17.0 statistical

software (SPSS Inc., IL, USA) was used for statistical analyses. Multiple group comparisons

were performed via an ANOVA followed by a least significant difference (LSD) or Dunnett’s

post hoc test. P<0.05 was considered statistically significant.

Results

Nec-1 improves renal functions and renal pathological lesions in AngII-

induced chronic renal injury and fibrosis mice

To test whether Nec-1 would alleviate kidney damage caused Ang II, an animal model with

properties of progressive renal tubulointerstitial fibrosis and CKD was established through

continuous infusion of AngII (1.5μg/kg/min) using osmotic minipumps implanted subcutane-

ously in the backs of C57BL/6 mice that had undergone uninephrectomy. The mice were then

randomly divided into the Ang II-treated group, which only received a continuous Ang II

infusion, the Ang II + Nec-1 treated group, which received continuous infusion of Ang II and

intraperitoneal administration of RIP1 inhibitor(Nec-1, 1.65 mg/kg/d), and the Ang II +

zVAD treated group, which received continuous infusion of Ang II along with intraperitoneal

administration of the pan-caspase inhibitor (zVAD, 1.0 mg/kg/d). The mice from the control

group did not receive any treatment. The mice were then killed to collect blood samples and

kidneys on day 21 after infusion with AngII. The renal function and hematoxylin and eosin

(H&E) and Masson Trichrome staining of kidney tissue from the mice were assessed.

As shown in Fig 1A and 1B, the levels of blood urea nitrogen (BUN) and serum creatinine

(Scr) were significantly higher in the AngII-treated mice than in the control mice, which indi-

cated the animal model of Ang II-induced chronic renal injury was successfully established.

Following Nec-1 or zVAD administration, the levels of BUN (Fig 1A) and Scr (Fig 1B) in the

AngII-treated mice decreased. In addition, Ang II treatment increased systolic blood pressure

in AngII-treated mice, but Nec-1 and zVAD could not decrease the increased blood pressure

of the AngII-treated mice (Fig 1C).
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We further examined the histopathologic features of the kidney tissues retrieved from the

animal model experiments. Masson Trichrome staining revealed that Ang II treatment led to a

significant increase in interstitial collagen deposition in the kidney, compared with the control

group (p< 0.01) (Fig 1D and 1F). However, such renal fibrotic response was suppressed partly

in the Nec-1- or zVAD-treated mice with chronic Ang II infusion (Fig 1D). More importantly,

from the H&E-stained kidney tissue section (Fig 1D), we clearly found that the morphology of

the renal tubules in the AngII-treated mice exhibited severe and widespread structural damage,

including tubular dilatation, vacuolar degeneration, atrophy, desquamation of epithelial cells,

and hyaline deposition in the tubular lumen. Furthermore, the tubular injury scores were sig-

nificantly higher than those of the control group, and the tubular pathological lesions were

improved in mice treated with Nec-1 or zVAD (Fig 1E).

Nec-1 prevents the necroptosis of renal tubular epithelial cells in Ang II-

induced chronic renal injury model

To further elucidate the morphological characteristics of renal tubular epithelial cells in a

mouse model of Ang II-induced chronic renal injury, transmission electron microscopy

(TEM) was used to observe the ultrastructure of tubular epithelial cells. As shown in Fig 2A,

Fig 1. Effect of Nec-1 on renal function, blood pressure, and renal tubule injury in Ang II-induced chronic renal injury mice. The levels

of BUN (A) and Scr (B) were higher in AngII-treated mice than in control mice, and administration of Nec-1 or zVAD significantly

attenuated renal dysfunction of model mice. (C) Systolic blood pressure was elevated to the similar level between three treatment groups. (D)

Representative images of H&E-stained and Masson trichrome-stained mouse renal tubulointerstitial lesions in AngII-treated mice treated

with or without Nec-1 or zVAD. The tubular injury scores (E) and Masson-positive interstitial collagen regions (F) were analyzed under a

light microscope. Data represent the mean of three independent experiments ± S.E.M. N = 6 mice per group, �� p<0.01 compared with the

control group, #p<0.05 compared with the vehicle group, ##p<0.01 compared with the vehicle group.

https://doi.org/10.1371/journal.pone.0228385.g001
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many of the tubular epithelial cells in the AngII-treated mice displayed a necrotic morphology,

showing marked expansion of the cell volume, plasma membrane rupture, organelle disap-

pearance and loss of cell contents, consistent with the typical morphological features of

necrotic cell death. The apoptotic tubular epithelial cells showing cells shrinkage, nuclear con-

densation and other characteristic features in the AngII-treated mice were occasionally found.

Furthermore, the percentage of necrotic cell death was significantly elevated in the AngII-

treated mice (p< 0.05, Fig 2C). Pretreatment with Nec-1 led to better preservation of the

integrity of the renal tubular epithelial cells, and the percentage of necrotic cell death was

markedly lower than that in the AngII-treated mice (Fig 2A and 2C), but zVAD did not signifi-

cantly decreased the percentage of necrotic cell death in the AngII-treated mice. Interestingly,

we observed that necrotic cell death appears in renal tubular cells rather than glomerular

parenchymal cells in renal tissue from AngII-induced renal injury and fibrosis mice under

TEM.

To further confirm that the necrotic tubular epithelial cells observed by TEM were necrop-

totic cells, fluorescent TUNEL staining and RIP3 immunostaining assays were performed. By

confocal microscopy, we observed that RIP3 expressed mainly in tubular cells of the kidney,

especially in the cytoplasm of proximal tubular epithelial cells (Fig 2B). However, RIP3 protein

were not detected, or only scarcely detected, in glomeruli. Furthermore, we found that the per-

centage of TUNEL-positive, RIP3-positive tubular epithelial cells (necroptotic renal tubular

epithelial cells) was significantly higher in the AngII-treated mice (p< 0.01, Fig 2D) than in

the control mice. The necroptotic cell percentage significantly decreased when RIP1 were

blocked, but zVAD could not significantly decreased the necroptotic cell percentage in the

AngII-treated mice (Fig 2D), which is consistent with the TEM results. This finding further

confirms that necroptosis of renal tubular epithelial cells might play a significant role on tubu-

lar epithelial cells death in AngII-induced chronic renal injury mice and AngII might be

involved in necroptosis of renal tubular epithelial cells.

Nec-1 suppresses necroptosis-related proteins expression in Ang II-

induced chronic renal injury model

During the necroptotic process, RIP3, MLKL and their phosphorylated proteins are the key

proteins of the necroptosis pathway, and their expression levels have been shown to correlate

closely with necroptosis[24]. RIP3 is activated by binding and interacting with RIP1, and acti-

vated RIP3 recruits and subsequently phosphorylates downstream signaling molecule MLKL

(on Ser345/Ser347 in mouse MLKL)[25–28]. MLKL phosphorylation is believed to trigger a

molecular switch for programmed cell death, and result in necroptosis.

In this study, we found that the levels of RIP and its phosphorylated forms (phospho-RIP,

p-RIP), RIP3 and phospho-RIP3 (p-RIP3), MLKL and phospho-MLKL (p-MLKL)) in the kid-

ney tissues from AngII-treated mice were elevated, and the RIP1 stabilizer (Nec-1) could par-

tially inhibit the above protein expression in the animal models (Fig 3).

Together, these results imply that tubular epithelial cell necrosis in AngII-treated mice

under TEM may involve the RIPK3/MLKL-dependent necroptosis pathway and might be

related to AngII.

AngII induces RIP3/MLKL-dependent necroptosis of HK-2 cells in vitro. With in vivo

experiments, we demonstrated that necroptosis of renal tubular epithelial cells might play a

significant role on tubular epithelial cells excessive death in AngII-induced chronic renal

injury mice and AngII might be involved in necroptosis of renal tubular epithelial cells. There-

fore, HK-2 cells were exposed to varying concentrations of AngII (10−10–10−5 M, Fig 4A) for

different times (12, 24, 48 or 72 h, Fig 4B) for further support of our observations in vivo. The
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results of flow cytometric analysis showed a significant increase in the percentage of annexin

V+/PI+ cells (necrotic cells) in the cells treated with 10−9 M AngII for 24 h compared to that of

the control group and the other treated groups (Fig 4A, 4B, 4C and 4E). Again, the data from

western blot analysis showed a sharp increase in RIP3 and MLKL expression in the HK-2 cells

treated with 10−9 M AngII for 24 h (Fig 4F–4K). Thus, AngII is associated with necrotic

Fig 2. Effect of Nec-1 on necroptosis of renal tubular epithelial cells in Ang II-induced renal injury model (A) Representative images of necroptotic

tubular epithelial cells with typical necrotic morphological features under TEM in the kidney tissue of the Ang II-induced renal injury mice treated with

or without Nec-1 or zVAD. Scale bars represent 5 μm (B) TUNEL-stained (green fluorescence) cells in kidney tissue from Ang II-induced renal injury

mice treated with or without Nec-1 or zVAD were costained to detect RIP3 (red fluorescence) and the nucleus (DAPI, blue fluorescence). Scale bars

represent 20 μm. (C) The percentage of necrotic tubular epithelial cells were analyzed in the Ang II-induced chronic renal injury mice treated with or

without Nec-1 or zVAD. (D) The data are presented as the % ratio of necroptotic tubular epithelial cells in the Ang II-induced chronic renal injury mice

treated with or without Nec-1 or zVAD. Data represent the mean of three independent experiments ± S.E.M. N = 6 mice per group, �p<0.05 compared

with the control group, ��p<0.01 compared with the control group, #p<0.05 compared with the vehicle group, ##p<0.01 compared with the vehicle

group.

https://doi.org/10.1371/journal.pone.0228385.g002
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tubular cells mediated by RIP3 and MLKL in a specific spatiotemporal manner. In addition,

we also found that a significant increase in the percentage of annexin V+/PI- cells (apoptotic

cells) in the cells treated with 10−7M AngII compared to that of the control group and the

other treated groups (Fig 4A and 4D).

RIP1/3 and MLKL inhibition blocks AngII-induced necroptosis in vitro. We evaluated

the necroptotic incidence of AngII-induced HK-2 cells via fluorescent TUNEL staining and

RIP3 immunofluorescence assays to further investigate the role of AngII in necroptotic HK-2

cell. As shown in Fig 5A, TUNEL was found in the nucleus of cells, and RIP3 localized particu-

larly in the cytoplasm of the HK-2 cells. The percentage of TUNEL-positive, RIP3-positive

HK-2 cells was significantly higher in the group of HK-2 cells stimulated with AngII than in

the control group (Fig 5C). Importantly, prestimulation with Nec-1, GSK’872 (a RIPK3

blocker) or necrosulfonamide (NSA, a MLKL inhibitor) significantly decreased the percentage

of TUNEL-positive, RIP3-positive HK-2 cells (Fig 5C). However, pretreatment with zVAD

Fig 3. Nec-1 suppresses RIP and p-RIP, RIP3 and p-RIP3, MLKL and p-MLKL protein expression in the kidney tissues from AngII-treated mice (A)

Representative blots of RIP and p-RIP, RIP3 and p-RIP3, MLKL and p-MLKL protein in the Ang II-induced chronic renal injury mice are shown. Western

blot analyses of RIP and p-RIP (B), RIP3 and p-RIP3(C), MLKL and p-MLKL (D) protein expression in the kidney tissue of Ang II-induced renal injury mice

treated with or without Nec-1 or zVAD. Data represent the mean of three independent experiments ± S.E.M. N = 6 mice per group, ��p<0.01 compared with

the control group, #p<0.05 compared with the vehicle group, ##p<0.01 compared with the vehicle group.

https://doi.org/10.1371/journal.pone.0228385.g003
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Fig 4. The assessment of necroptosis and the expression levels of p-RIP3 and p-MLKL in HK-2 cells treated with AngII. (A) HK-2 cells were treated with varying

concentrations of AngII (10−10–10−5 M) for 24 h. (B) HK-2 cells were exposed to 10−9 M AngII for different times. After treatment, HK-2 cells were stained with annexin

V-FITC and PI to determine necrotic cells (annexin V+/PI+ cells) and apoptotic cells (annexin V+/PI- cells) using a flow cytometry assay. The bar chart shows that the

ratio of annexin V+/PI+ cell numbers was highest in the HK-2 cells treated with 10−9 M AngII for 24 h (C, E) and the ratio of annexin V+/PI- cells (apoptotic cells)

numbers was highest in the HK-2 cells treated with 10−7 M AngII (D) for 24 h. Protein expression of RIP3 and MLKL was determined by western blotting of the total
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elevated the percentage of TUNEL-positive, RIP3-positive HK-2 cells (Fig 5C). These results

further demonstrated that AngII can induce RIP3- and MLKL-dependent necroptosis of tubu-

lar epithelial cells in vitro.

TEM also showed the morphological changes in tubular epithelial cells treated with 10−9 M

AngII for 24 h. We found that injured epithelial cells often exhibited ultrastructural signs of

necrosis, such as loss of electron density, ballooning of the mitochondria, nuclear chromatin

irregularities, outer membrane disruption, and cytoplasm and organelle expulsion (Fig 5B),

and the percentage of necrotic cells increased significantly (Fig 5D). Furthermore, pretreat-

ment with Nec-1, GSK’872 (a RIP3 inhibitor), or NSA (an MLKL inhibitor) markedly

decreased the percentage of necrotic cells among HK-2 cells treated by AngII. In addition, we

found that pretreatment with zVAD elevated the percentage of necrotic HK-2 cells.

To confirm the phenotype observed with TEM is associated with RIP3, MLKL protein and

their phosphorylated forms, the protein expression of RIP and p-RIP (Fig 6A and 6B), RIP3

and p-RIP3(Fig 6A and 6C), MLKL and p-MLKL(Fig 6A and 6D) in HK-2 cells treated with

AngII was determined by western blotting. After pretreatment with Nec-1 or GSK’872, the lev-

els of RIP, RIP3 and MLKL and their phosphorylated forms in HK-2 cells treated with 10−9 M

AngII for 24 h was dramatically decreased, and MLKL and p-MLKL protein expression was

significantly downregulated in cells pretreated with NSA. The data further confirmed that

AngII exposure might leads to necroptosis of renal tubular epithelial cells in vitro.

Fas and FasL could be the target signal molecule of AngII in the AngII-induced necrop-

tosis of renal tubular epithelial cells. To explore which protein could be the target signal

protein for AngII, we studied the role of Fas and FasL in the necroptosis of HK-2 cells using

immunofluorescence detection of RIP3 and in situ fluorescence TUNEL staining and TEM. As

shown in Fig 7A–7D, the percentage of TUNEL-positive, RIP3-positive HK-2 cells found with

confocal microscopy (Fig 7A and 7C) and the percentage of necrotic cells found with TEM

(Fig 7B and 7D) were lower when the FasL signal molecule was blocked with the neutralizing

Human Fas Ligand/TNFSF6 Antibody than in the condition treated with AngII alone.

We further determined the expression levels of Fas and FasL protein in HK-2 cells exposed

to AngII. When the cells were treated with 10−9 M AngII for 24 h, we found that AngII expo-

sure significantly increased Fas and FasL protein expression (Fig 7E and 7F). Importantly, dis-

ruption of AT1R with losartan(an AT1R antagonist) and disruption of AT2R with PD123319

(an AT2R antagonist) significantly reduced the levels of Fas and FasL protein in HK-2 cells

(Fig 7E and 7F), indicating that Fas and FasL were likely the target downstream signaling mol-

ecules of AngII. However, the expression of Fas and FasL did not change very significantly

after transfection with the respective specific small interfering (si) RNA for RIP1, RIP3 and

MLKL before being exposure to AngII (Fig 7E and 7F), indicating that Fas and FasL were likely

to be target signaling molecules downstream of AngII and upstream of RIP1, RIP3 and MLKL.

These data confirm that Fas and FasL serve as the target signal molecule of AngII and its

receptors and mediate the renal tubular cell necroptosis induced by AngII.

Discussion

In our previous study, we showed that necroptotic cell death is a more significant cause of the

loss of renal tubular cells in SNx rats than apoptosis [5]. This discovery raises the question of

which factors and distinct signaling pathways can trigger the necroptosis of renal tubular cells

proteins isolated after stimulation of HK-2 cells with varying concentrations of AngII for 24 h (F, H, I). Protein expression of RIP3 and MLKL was determined by

western blotting of the total proteins isolated from HK-2 cells exposed to 10−9 M AngII for different times (G, J, K). Data represent the mean of three independent

experiments ± S.E.M. with n = 3, �p<0.05 compared with the control group, ��p<0.01 compared with the control group.

https://doi.org/10.1371/journal.pone.0228385.g004
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Fig 5. Disruption of RIP1, RIP3, and MLKL suppresses the necroptosis of HK-2 cells induced by Ang II (A) TUNEL-stained (green fluorescence) HK-2

cells in each treatment group were costained to detect RIP3 (red fluorescence) and the nucleus (DAPI, blue fluorescence). Scale bars represent 50 μm. (B)

Representative images of necroptotic HK-2 cells (yellow arrow) were observed under TEM. Scale bars represent 5 μm. (C) The data are presented as the

% ratio of necroptotic cells among HK-2 cells treated with 10−9 M AngII for 24 h. (D) The data are presented as the % ratio of necrotic cells among HK-2

cells treated with 10−9 M AngII for 24 h. Data represent the mean of three independent experiments ± S.E.M. with n = 3, ��p<0.01 compared with the

control group, #p<0.05 compared with the vehicle group, ##p<0.01 compared with the vehicle group.

https://doi.org/10.1371/journal.pone.0228385.g005

Fig 6. Disruption of RIP1, RIP3, and MLKL blocks necroptosis-related key proteins expression in Ang II-induced HK-2 cells. HK-2 cells

were pretreated with a RIP1 inhibitor (Nec-1), a RIP3 inhibitor (GSK’872), and an MLKL inhibitor (NSA) before being exposed to AngII. The

levels of RIP and p-RIP, RIP3 and p-RIP3, MLKL and p-MLKL in HK-2 cells were detected by western blotting after treatment with AngII for

24 h. (A) Representative blots are shown. Western blot analyses for RIP and p-RIP (B), RIP3 and p-RIP3 (C), MLKL and p-MLKL (D) protein

expression in HK-2 cells in each treatment group are shown. Data represent the mean of three independent experiments ± S.E.M. with n = 3,
��p<0.01 compared with the control group, #p<0.05 compared with the vehicle group, ##p<0.01 compared with the vehicle group.

https://doi.org/10.1371/journal.pone.0228385.g006
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in progression of chronic renal damage. In the present study, we demonstrated that AngII

might effectively trigger the necroptosis of renal tubular epithelial cells in AngII-induced

chronic renal injury mice and that Nec-1, the RIP1 stabilizer, significantly reduced the per-

centage of necroptotic cells and attenuated tubulointerstitial lesion in AngII-treated mice.

A large amount of evidence indicates that AngII exerts key and adverse nonhemodynamic

effects on renal cells in the initiation and progression of renal fibrosis and CKD [29–31]. The

underlying mechanisms involved in AngII-induced chronic renal injury and fibrosis are

incompletely understood. Recent studies have shown that AngII can lead to PTEC apoptosis,

growth, and differentiation[17] and that PTECs are key targets regulated by AngII [32]. In the

present study, we found that AngII exposure led to renal tubular epithelial cell necroptosis and

Fig 7. AngII-induced necroptosis in HK-2 cells requires Fas/FasL. HK-2 cells were pretreated with FasL inhibitor (the neutralizing Human Fas Ligand/TNFSF6

Antibody) before exposure to 10−9 M AngII. Necroptotic cells were assessed by fluorescence staining and a TEM assay 24 h later. A shows representative images of

immunofluorescence staining for RIP3 (red fluorescence) and in situ fluorescence TUNEL staining (green fluorescence). Scale bars represent 50 μm. B shows

representative TEM images. Cell death was assessed by quantifying the % ratio of TUNEL- and RIP3-positive cells (C) and the % ratio of necrotic HK-2 cells (D). Scale

bars represent 5 μm. HK-2 cells were pretreated with PD123319, losartan, and a FasL inhibitor and transfected with specific small interfering (si) RNA for RIP1, RIP3

and MLKL before being exposed to AngII. The protein expression of Fas and FasL was determined by western blotting for HK-2 cells treated with AngII (E, G, F). Data

represent the mean of three independent experiments ± S.E.M. with n = 3, ��p<0.01 compared with the control group, #p<0.05 compared with the vehicle group,
##p<0.01 compared with the vehicle group.

https://doi.org/10.1371/journal.pone.0228385.g007
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tubulointerstitial lesion. Importantly, the RIP1 stabilizer (Nec-1) abrogated the necroptotic

cell death and renal pathological injury triggered by AngII cytotoxicity in an AngII-induced

renal injury and fibrosis mouse model. The results indicate that that AngII-induced necropto-

sis plays pathological important role on renal tubular epithelial cell excessive death in the

development of chronic renal injury and fibrosis. In addition, Ang II treatment increased

blood pressure in AngII-treated, AngII+Nec-1 and AngII+zVAD treated mice with no differ-

ences between the three treatment groups. Therefore, we speculate that Ang II exposure led to

the development of renal interstitial fibrosis because Ang II might lead to renal tubular epithe-

lial necroptosis except increasing systemic blood pressure.

Interestingly, we observed that necroptotic cell death appears in renal tubular cells rather

than glomerular parenchymal cells in the TEM and immunofluorescence staining images of

renal tissue from AngII-induced chronic renal injury and fibrosis mice, likely because PTECs

are a key site of AngII action, providing evidence supporting the ideas of Ana Konvalinka et al.

[12]. Furthermore, when the HK-2 cells were treated with 10−9 M AngII for 24 h, we also

found that AngII exposure significantly increased the percentage of necroptotic cells and ele-

vated the levels of marker proteins of necroptosis (such as RIP, RIP3 and MLKL). It was more

important that the level of p-RIP, p-RIP3 and p- MLKL protein (activated forms of RIP, RIP3

and MLKL) were also elevated in AngII-induced HK-2 cells. In addition, we observed that the

percentage of necrotic cells significantly decreased when HK-2 cells were pretreated respec-

tively with inhibitors of RIP1/3 and MLKL. These data provide compelling evidence for a criti-

cal role of AngII in triggering the necroptosis of renal tubular epithelial cells in vivo and in

vitro.

Apoptosis has been suggested to play a critical role in the loss of renal tubular epithelial

cells in a previous study [33, 34]. In our previous study, Apoptotic renal tubular epithelial cells

and cleaved caspase-3 expression were enhanced in kidney tissue from SNx rats, and this effect

was inhibited by zVAD [5]. In the present study, we found a significant increase in the per-

centage of necroptotic cells among the HK-2 cells treated with 10−9 M AngII for 24 h using

flow cytometric analysis and western blot analysis. However, we observed that the percentage

of apoptotic cells was higher among the cells treated with 10−7 M AngII than among those

treated with the other concentrations, as indicated by flow cytometric analysis. A possible

explanation for this finding is that necroptotic HK-2 cells are more sensitive to AngII cytotox-

icity than apoptotic cells. Therefore, we speculate that necroptosis might be an earlier and

more important event in AngII-induced renal tubular epithelial cell death. In addition, the

results indicate that necroptosis can switch to apoptosis as the AngII concentration increases

and the blocking of apoptosis with zNAD can aggravate necroptotic cell death, in accordance

with Galluzzi’s idea that apoptosis and necroptosis can occur simultaneously in cells and that

necroptosis could even switch to apoptosis under special conditions [35]. However, we did not

find that apoptosis and necroptosis occurred simultaneously in renal tubular epithelial cells in

Ang II-induced chronic renal injury model 21 days post-implantation. Therefore, the relation-

ship between apoptosis and necroptosis of tubular epithelial cells is not yet clear in vivo. We

speculate that necroptosis and apoptosis might occur in different stages Ang II-induced

chronic renal injury.

The exact mechanism by which AngII triggers RIP3 and MLKL activation in renal tubular

epithelial cell necroptosis remains uncertain. In the present study, we found that AngII expo-

sure significantly increased the expression of Fas and FasL protein and significantly elevated

the percentage of necroptotic cells. Furthermore, disruption of AT1R and AT2R significantly

reduced the levels of Fas and FasL protein in HK-2 cells, but inhibiting RIP1/3 and MLKL

transfection with a specific small interfering (si) RNA did not decrease Fas and FasL expres-

sion. Importantly, blocking FasL significantly suppressed the percentage of necroptotic renal
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tubular epithelial cells. These data indicated that Fas and FasL were likely to be downstream

target molecules of AngII and its receptors and might be upstream signaling molecules for

RIP3 and MLKL. Therefore, we speculate that AngII mediates renal tubular cell necroptosis

via its receptors and the Fas/FasL signaling pathway. A previous study showed that there was

reciprocal expression between AT1R and AT2R in response to Ang II infusion, with evident

AT1R upregulation and AT2R downregulation[36,37]. However, the current data clearly chal-

lenge that concept. At least in kidney tissue, Ang II-treated adult mice exhibited higher AT2R

protein levels with increasing AT1R levels. Importantly, functionally antagonizing AT1R with

losartan or blockading of AT2R activity with PD123319, could effectively diminish renal tubu-

lar epithelial cell necroptosis in Ang II-induced renal injury mice[38]. These results is similar

to Ang II-induced apoptosis occurring via both AT1R and AT2R[39,40].

In conclusion, AngII cytotoxicity triggers necroptosis of renal tubular epithelial cells in

vitro and in vivo, and secondarily increasedFas, FasL are involved in the AngII-induced regu-

lation of cell death. Consequently, the therapeutic blockade of these molecules, for example,

with the receptors of AngII and FasL inhibitors or with RIPK1/3 and MLKL blocking agents,

can prevent AngII-induced excessive death of renal tubular epithelial cells in vitro and in vivo.

The findings may correspond to a redundant mechanism of AngII exerting adverse effects on

renal tubular cells in the initiation and progression of renal fibrosis and CKD and have poten-

tial clinical applications.

Supporting information

S1 Fig. Masson trichrome-stained mouse renal tubulointerstitial lesions in Ang II-induced

chronic renal injury mice. Representative images of Masson trichrome-stained mouse renal

tubulointerstitial lesions in AngII-treated mice treated with or without Nec-1 or zVAD. Mas-

son-positive interstitial collagen regions were analyzed under a light microscope. Data repre-

sent the mean of three independent experiments ± S.E.M. N = 6 mice per group, �� p<0.01

compared with the control group, #p<0.05 compared with the vehicle group, ##p<0.01 com-

pared with the vehicle group. According to the requirements of reviewers, S1 Fig has been

inserted into Fig 1(D) and 1(F).

(TIF)

S2 Fig. The ratio of annexin V+/PI- cells (apoptotic cells) numbers measurement in the

HK-2 cells treated with AngII. The ratio of annexin V+/PI- cells (apoptotic cells) numbers

was highest in the HK-2 cells treated with 10−7 M AngII (D) for 24 h. Data represent the mean

of three independent experiments ± S.E.M. with n = 3, �p<0.05 compared with the control

group, ��p<0.01 compared with the control group. According to the requirements of review-

ers, S2 Fig has been inserted into Fig 4(D).

(TIF)

S3 Fig. Effect of zVAD on the percentage of necrotic HK-2 cells induced by Ang II. zVAD

elevated the percentage of necrotic HK-2 cells induced by Ang II under TEM and confocal

scanning laser microscope. Data represent the mean of three independent experiments ± S.E.

M. with n = 3, �p<0.05 compared with the control group, ��p<0.01 compared with the control

group. To complete Fig 5, S3 Fig has been inserted into Fig 5.

(TIF)

S4 Fig. We showed other 2 different samples per condition from other immunoblots exper-

iments 2 times (S5 Fig, S4 Fig, S6 Fig, S7 Fig).

(TIF)
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S5 Fig. We showed other 2 different samples per condition from other immunoblots exper-

iments 2 times (S5 Fig, S4 Fig, S6 Fig, S7 Fig).

(TIF)

S6 Fig. We showed other 2 different samples per condition from other immunoblots exper-

iments 2 times (S5 Fig, S4 Fig, S6 Fig, S7 Fig).

(TIF)

S7 Fig. We showed other 2 different samples per condition from other immunoblots exper-

iments 2 times (S5 Fig, S4 Fig, S6 Fig, S7 Fig).

(TIF)

S1 File. Masson Trichrome staining analyses of renal tubulointerstitial injury.
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