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Abstract
Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries.

There are very limited treatment options available for oral cancer. Research endeavors

focused on discovery and development of novel therapies for oral cancer, is necessary to

control the ever rising oral cancer related mortalities. We mined the large pool of com-

pounds from the publicly available compound databases, to identify potential therapeutic

compounds for oral cancer. Over 84 million compounds were screened for the possible

anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted

anti-cancer compounds were mined from reliable sources like experimental bioassays stud-

ies associated with the compound, and from protein-compound interaction databases.

Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds

derived from literature mining of published studies, were used for building partial least

squares regression model. The regression model thus built, was used for the estimation of

oral cancer specific weights based on the molecular targets. These weights were used to

compute scores for screening the predicted anti-cancer compounds for their potential to

treat oral cancer. The list of potential compounds was annotated with corresponding physi-

cochemical properties, cancer specific bioactivity evidences, and literature evidences. In

all, 288 compounds with the potential to treat oral cancer were identified in the current

study. The majority of the compounds in this list are natural products, which are well-toler-

ated and have minimal side-effects compared to the synthetic counterparts. Some of the

potential therapeutic compounds identified in the current study are resveratrol, nimbolide,

lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and

colchicine.
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Introduction
Despite of great progress made in the field of medical science, there are still, over 32.6 million
people living with cancer worldwide. There were 8.2 million cancer deaths in 2012 worldwide,
out of which, 0.68 million people died from cancer in India [1]. Cancer, which was once
thought to be a disease prevalent in developed nations, has now spread across the world, in
fact, recent cancer statistics shows that 65% (5.3 million) of all cancer-related deaths were
reported from less developed countries [1]. This is definitely a dismal development in countries
which are ill-equipped to fight complex disease like cancer. The prevalence and/or incidence
rate of cancer-types vary significantly between different countries, for example, oral cancer,
which is less common in developed countries, is ranked in the top three causes of cancer-
related deaths among men in South Asian countries like India, Bangladesh, and Sri Lanka. The
heterogeneity in the distribution of the prevalence of cancer-types between developed and less
developed countries implies that the progress made in the area of cancer treatment, by devel-
oped countries cannot be efficiently applied in less developed countries. There is a wide range
of treatment options available for lung, prostate and breast cancer, that are more prevalent in
developed countries, however, treatment options are very limited, for cancers like oral cancer,
which is relatively rare in developed countries. Factors like the high usage of tobacco in various
forms, inability to diagnose cancer in early stage, and limited treatment options, are responsible
for the high mortality rate associated with oral cancer. Oral cancer is currently managed
through surgery, radiation therapy and chemotherapy [2].

The current study, attempts to identify potential anti-cancer compounds for treatment of
oral cancer. The availability of millions of bioactive compounds in publicly available databases
like NCBI-PubChem and ChEMBL, offers great opportunity to mine the pool of compounds,
based on attributes desired in the therapeutic area of interest. We have interrogated over 84
million compounds from databases like NCBI-PubChem, ChEMBL for the potential activity
against oral cancer. A custom support vector machine (SVM) classifier was built for the predic-
tion of anti-cancer activity among a pool of compounds. Features used for training and testing
the SVM classifier, were derived from functional groups present in the compounds, which
were used in model building and prediction process, respectively. The protein bioassay records
for a compound were used to associate targets for anticancer compound predicted by SVM
classifier. The target profile of the therapeutic compounds from the DrugBank database, and
manually curated list of natural anti-cancer compounds, were used for building regression
model, which was subsequently used for the computation of scores specific to oral cancer. The
list of potential compounds was annotated with corresponding physicochemical properties,
cancer specific bioactivity evidences, and literature evidences. Different analytical methods
have been integrated to enable logical selection of the potential therapeutic compounds for oral
cancer (Fig 1).

The current study presents a logical framework to find potential compounds for treatment
of oral cancer, based on large-scale mining of reliable compound- and bioactivity- databases.
The structural and target level patterns, shared by the compounds targeting the common
pathology, were used in the current study for selection of the potential compounds for oral
cancer.

Materials and Methods

Data Sources
Drug-Target data. DrugBank (version 4.0) [3] was used as a reference database to collect

comprehensive information about drug-drug target information. The ‘drugbank.xml’ file was
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downloaded from download section of DrugBank (http://www.drugbank.ca/downloads); it was
parsed by custom perl scripts to extract drug, along with its associated information like indica-
tion area, targets, SMILES string [4]. The indication area(s) associated with a drug is repre-
sented as free text in DrugBank, which poses algorithmic challenge for the process of
automated association of drug with its indication area(s). In the current study, we have mapped
diseases or indication area associated with drug to its corresponding ICD10 disease code [5],
[6] (http://apps.who.int/classifications/icd10/browse/2010/en can be referred for detailed map-
ping between ICD10 disease code to related diseases).

The file ‘drug-disease_TTD2013.txt’, available from the download section of Therapeutic
Target Database (TTD) [7], had been used for drug-disease mapping. This file can be used for
unambiguous association of drug with its indication area(s). The files, ‘drug_links.csv’ and
‘TTD_crossmatching.txt’ (TTD), were used to retrieve mapping between DrugBank ID to TTD
Drug ID. The data for the approved drugs along with its associated information, like drug tar-
get, ICD10 disease classification and SMILES string, was extracted from ‘drugbank.xml’ file.
The data of the drugs was segregated into two group, anticancer drugs and other drugs, which
is available as online supplementary material–‘DB_cancer.txt’ (see S1 Text) and ‘DB_others.
txt’ (see S2 Text), respectively. DrugBank represents target information as UniProt ID, which

Fig 1. Process flow of identification of potential compounds for oral cancer treatment.

doi:10.1371/journal.pone.0141719.g001
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was mapped into its corresponding Entrez Gene ID and Gene Symbol (based on mapping pro-
vided in ‘HUMAN_9606_idmapping_selected.tab’ and ‘gene_info’ files which can downloaded
from ftp sites ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/
idmapping/by_organism/HUMAN_9606_idmapping_selected.tab.gz, and ftp://ftp.ncbi.nlm.
nih.gov/gene/DATA/gene_info.gz, respectively).

In the current study, ICD10 disease codes ‘C00 to C06’ were considered to represent oral
cancer. While reviewing the information of anticancer drugs, we noticed that there are many
drugs which are mapped against ICD10 disease code ‘C00-C96’, which is a non-specific disease
code for malignant neoplasms. We could not find any drug in DrugBank database, which was
indicated to treat oral cancer; therefore, we extended our search to the literature database
(NCBI PubMed), and found evidence to control the growth of oral cancer cells by couple of
drugs like erlotinib [8], [9], vandetanib [10] and gefitinib [8], [11]. The ICD10 disease code
mapped for these drugs were updated manually, to include ‘C00-C06’ as drug indication in
‘DB_cancer.txt’ (see S1 Text). We realized that such a low representation of drugs for oral can-
cer treatment in public databases, would act as a bottleneck in downstream predictive data
mining processes; this prompted us to extend our search beyond compound databases like
DrugBank.

Nature is a gold-mine for treatment of various diseases, including cancer, which is evident
from the fact that the majority of existing anticancer drugs are either natural products or their
chemical derivatives [12]-[14]. We compiled the list of plant based anti-cancer natural com-
pounds by manually mining literature databases like PubMed, and also used Google Scholar to
search articles, not indexed with PubMed. A total of 269 articles were referred to collect the
data about plant based natural compounds, active against over 25 different cancer types. We
collected data for 377 compounds from these articles. The list of plant based compounds with
anti-cancer activity was further annotated with associated attributes like PubChem Compound
ID (cid), SMILES string, molecular targets. Target information was not present for all the com-
pounds in the base set of articles (269 articles), therefore we further referred 315 more articles
to collect target information of un-annotated compounds. The list of plant based natural anti-
cancer compounds complied in the current study consists of 30 compounds with growth inhib-
itory activities against oral cancer cells. The list of plant based natural compounds active
against various cancers obtained in the current study, can be found as online supplementary
material–‘Natural_Anticancer_list.txt’ (see S3 Text), which contains links to research articles
that were used to infer anti-cancer activities of compounds against particular cancer-type, and
it also contains reference to articles which were used to infer compound to target association.
This is a manually curated list, which can be of great use to researchers working in the field of
plant based natural anti-cancer compounds. The data of ‘Natural_Anticancer_list.txt’ (see S3
Text) was further rearranged in a format similar to files obtained after mining DrugBank (see
S1 and S2 Texts) to make it amenable for downstream data mining processes; this file can be
found as online supplementary material–‘Nat_Anticancer.txt’ (see S4 Text).

Compound-Target Data sources. ChEMBL—Compound Database. ChEMBL is a freely
available database of drug-like bioactive compounds [15]. The compound information present
in this database is linked with bioactivity measurements, which are manually extracted from
primary published literature. In the current study, we have utilized compound repository of
ChEMBL (version 19.0) to be used for prediction of anti-cancer activity. We downloaded
MySQL dump of ChEMBL and created a local database (ftp://ftp.ebi.ac.uk/pub/databases/
chembl/ChEMBLdb/latest/chembl_19_mysql.tar.gz).

In the current study, we used perl libraries DBI and DBH for interfacing with ChEMBL
database, created in locally installed MySQL. Perl scripts were written to extract data from the
ChEMBL database. We extracted SMILES string along with ChEMBL id from the database
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with the help of following SQL query—“select c.canonical_smiles,m.chembl_id from com-
pound_structures c,molecule_dictionary m where c.molregno = m.molregno”. A total of
1404752 compounds (i.e. ~1.4 million compounds) along with their SMILES strings were
extracted from the database.

STITCH—Chemical-Protein Interaction Database. STITCH is a chemical-protein interac-
tion database which integrates information about interactions from metabolic pathways, crys-
tal structures, binding experiments and drug—target relationships [16]. In the current study,
we have downloaded latest dataset from the STITCH database (version 4.0). Following files
were downloaded from the download section of STITCH:

1. http://stitch.embl.de/download/protein_chemical.links.v4.0/9606.protein_chemical.links.
v4.0.tsv.gz! Chemical-Protein Interaction data which contain over 4.5 million records.
Chemicals are derived from the PubChem compound database, and proteins are repre-
sented by Ensembl protein identifiers.

2. http://stitch.embl.de/download/chemicals.v4.0.tsv.gz! Contains STITCH compound’s
chemical structure information in the form of SMILES string. It contains 82841024 (i.e. ~
82.84 million) compound records.

3. ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2ensembl.gz! Contains mapping between
Ensembl protein identifier to NCBI-Entrez Gene ID.

Anticancer Activity Prediction
Compound dataset collected from ChEMBL (1.4 million compounds) and STITCH (82.8 mil-
lion compounds) was checked for the possible anti-cancer activity. It is to be noted that each
compound record in STITCH database does not correspond to a unique molecule, i.e. there
could be more than one record representing different stereo-isomers for a single compound
[16]. In the current study, we have considered each record as a separate compound for predic-
tion of anti-cancer activity, and duplicate compounds were removed from the list of com-
pounds predicted to be active anti-cancer compounds. This was done to optimize the memory
requirement for the task of identifying duplicates in a large pool of compounds. In the current
study, we have used two methods for prediction of anti-cancer activity of almost 84 million
compounds, (i) CDRUG [17] and (ii) a custom build support vector machine (SVM) classifier.

Benchmark Dataset. Benchmark dataset prepared for prediction of anti-cancer activity by
Li et al. [17] was used in the current study. This dataset is from the NCI-60 Developmental
Therapeutics Program (DTP) project [18]. The details of protocol used to create the benchmark
dataset, can be found in primary published article [17]. The dataset consist of more than 18,000
compounds, divided into active and inactive anticancer compounds. The benchmark dataset
can be downloaded from http://bsb.kiz.ac.cn/site_media/download/CDRUG/Benchmark.rar.

CDRUG. CDRUG is an analytical method for prediction of anticancer activity of chemical
compound [17]. In the current study, we have downloaded and used the latest standalone ver-
sion of CDRUG for anticancer activity prediction. This tool takes a list of SMILES string of
query compounds as an input and generates ranked list consisting of various scores and p
value. In the current study, we have considered the cutoff p value of� 0.05, as criteria to select
compounds with anticancer activity. The algorithmic details of CDRUG can be found in pri-
mary publication [17].

Support Vector Machine (SVM) Classifier. In the current study, we have built SVM
based model for the prediction of anticancer activity of chemical compound. Support Vector
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Machines are a useful tool for data classification, which has found its application in wide range
of domains including computational biology. We have used software LIBSVM (version 3.18)
[19] in our current study for SVM based classification. The SVM based classification task starts
with the process of “model building”, in which data is divided into training and testing sets.
Each instance in the training set contains one “target value” or “class label” (in our case it is
either 1 or 0; where ‘1’ represents compound has anti-cancer activity and ‘0’, otherwise), and
several “attributes” or “features”. The goal of SVM [20], [21] is to rigorously build a model
(based on instances from training data) which predicts the target values / class labels of the
instances from test data, given only attributes in the test data. In the current study, we selected
‘C-SVM’ (Multi-class classification) as SVM type, and radial basis function (RBF) as a kernel
type for building anti-cancer activity prediction model. RBF kernel was chosen on the basis of
its popularity, robustness, and the fact that other kernels available with LIBSVM are special
cases of RBF under certain parameter [22], [23].

The process of classification with SVM involves following steps:

1. Model building: In the current study, we have used benchmark dataset [17] (see the section
Benchmark Dataset) for building SVM prediction model. The rationale behind the selection
of dataset common to that, used by CDRUG [17], was to compare prediction outcomes of
two methods (CDRUG and SVM classifier) build from the same underlying dataset. The
process of building model involves following sub-steps:

a. Feature extraction of training compounds and transformation of feature vector into SVM
input format.

b. Cross validation based parameter estimation and building model with best parameters.

2. Prediction of query compounds:

a. Data processing of query compound(s).

b. Prediction of anti-cancer activity of query compound(s).

Feature Extraction. In the current study, the features were derived from the entities in the
compound, which are responsible for defining its reaction mechanism, and are the contribut-
ing factor towards its activity. These entities can be of organic (i.e. ‘functional groups’) or
inorganic (i.e. ‘metal ions’) in nature. Functional groups present in organic molecules had
been used in the past to predict drug-target interaction networks [24], wherein authors had
used 28 functional groups to characterize drugs. In addition to the functional group, metals
also play a very important role in determining the activity of drugs, especially in the field of
cancer drug, such as cisplatin, which can be regarded as a pioneer in the field of metal based
anti-cancer drug [25]. The functional groups and metals present in a compound can be visual-
ized as building block or substructure of a compound. SMARTS is a very powerful language
for describing such molecular substructures [26]. SMARTS strings are typically used for sub-
structure searching, to identify molecules based on pattern matching, either a singular string
or as a group of SMARTS strings. In the current study, we rigorously prepared SMARTS
strings of over 300 functional groups (including common metallic forms found in various
drugs). We have followed the guidelines given by Daylight [26], while preparing these
SMARTS strings.

Features were extracted from the training compounds, from the Benchmark dataset [17].
The dataset consist of over 18,000 compounds (positive- and negative-set) in SMILES format
(refer to: http://bsb.kiz.ac.cn/site_media/download/CDRUG/Benchmark.rar). In the current
study, we have used open-source python library Pybel [27] for finding substructures encoded
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as a SMARTS string in a query compound. Python script was written to automate the task of
matching the list of SMARTS stings against the benchmark dataset (Fig 2).

On reviewing the extracted features of all compounds (positive and negative dataset), we
observed that many of the substructures from our initial list of SMARTS string were not pres-
ent in either of the dataset (i.e. positive- or negative-set), and therefore, they were excluded
from the further downstream analysis process. The final list of SMARTS strings along with cor-
responding representative substructure (functional groups or metal ion) consisted of 228
SMARTS strings, which can be found as online supplementary material–‘SMARTS_pattern.
txt’ (see S5 Text). At the end of this exercise, we obtained feature matrix of dimension M ΓN
matrix; where ‘M’ corresponds to the number of compounds in benchmark dataset and ‘N’ cor-
responds to number of features/substructures (i.e. 228) used to prepare feature vector of a com-
pound. This feature vector was transformed into a SVM format as given below:

<label><index1>:<value1><index2>:<value2>. . .

.

.

.

Where, each line contains an instance and is ended by a '\n' character. The<label> is an
integer indicating the class label (1!Compound with anti-cancer activity and
0!Compound without anti-cancer activity). The pair<index>:<value> gives a feature
(attribute) value:<index> is an integer starting from 1 and<value> is a real number (In
the current study,<value> can be [0,1], where 0!indicates feature is absent in the com-
pound, and 1!indicates feature is present in the compound). Indices must be in ascending
order [19].

Parameter Estimation and Model Building. The RBF kernel has two parameters C and γ; for
a given prediction problem, the value of these parameters is not known beforehand, and there-
fore, some kind of parameter search has to be done to estimate values of these parameters. The
main objective of parameter search is to find good (C, γ), so that the prediction model will
accurately predict activity of unknown compounds. Generally poorly optimized models tend to
suffer with an overfitting problem, which refers to the condition when prediction model / clas-
sifier shows high accuracy with training data, but its accuracy drops drastically when used to

Fig 2. Pseudocode for substructure matching process.

doi:10.1371/journal.pone.0141719.g002
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predict unknown test data. Cross-validation is a technique which is applied to overcome the
overfitting problem. In n-fold cross-validation, training dataset is divided into n subsets of
equal size. Sequentially one subset is tested using the model, trained on the remaining n-1 sub-
sets. In this way, each instance of the whole training set is predicted once, so that, the cross-val-
idation accuracy is the percentage of data which are correctly classified.

In the current study, we performed an exhaustive grid—search on C and γ using 5-fold
cross-validation. After feature extraction and data transformation of the benchmark dataset
(see section Feature Extraction), we first did a coarse grid search for finding best C and γ using
5-fold cross-validation. We first started with coarse grid search with an exponentially growing
sequence of C and γ (C = 2−5, 2−4, 2−3. . ., 214, 215 and γ = 2−15, 2−14. . ..24, 23), which gave us
best parameters (C = 22 and γ = 2−2) with cross-validation accuracy of 80.99% (Fig 3). The
parameters with cross-validation accuracy of over 80.5% are distinctly marked with green color
in grid space of Fig 3, we next focused on fine grid search in this region.

The fine grid search was conducted with a growing sequence of C and γ (C = 2−1, 2−0.75,
2−50. . .25.50, 25.75, 26 and γ = 20, 2−0.75. . ..2−4.50, 2−4.75, 2−5), which gave us best parameters
(C = 21.5 and γ = 2−1.5) with cross-validation accuracy of 81.18% (Fig 4). Whole training set (i.e.
the transformed benchmark dataset with feature vectors) was used for building a final classifier
with the best parameters (C = 21.5 and γ = 2−1.5). The intermediate files generated during grid
search, along with final classifier ‘cancer.model’ can be found as online supplementary material
‘Model_Build.zip’ (S6 Text). In the current study, the classifier ‘cancer.model’ was used in the
subsequent SVM based prediction of anticancer activity. The exhaustive grid based parameter
search was done with the help of the python script ‘grid.py’ available with LIBSVM package

Fig 3. Coarse Grid Search forC and γ for parameter estimation.

doi:10.1371/journal.pone.0141719.g003
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[19]. Computationally grid search is memory and CPU intensive task, in a parallel mode, it
took almost 10 days to complete this task in 4 GB Intel1 Core™ i5 desktop installed with Linux
operating system.

Prediction Process. The prediction of anticancer activity with SVM classifier ‘cancer.model’
for query compounds involves following steps:

1. Read list of ‘n’ number of query compounds.

2. Set initial index i = 1.

3. Preparation of feature vector for ith query compound (as explained in section Feature
Extraction). The feature vector Di[x1, x2. . ..x228] for a i

th query compound, would be a
binary vector representing the presence or absence of functional group/substructure in a
query compound.

4. Check if ‘i’ is less than ‘n’, If yes then i = i+1 and go to step 3, else go to step 5.

5. Transform feature matrix into SVM input format and save as file “svm_input.dat”.

6. Predict with the following command:

a. ./svm-predict svm_input.dat cancer.model<output_name>

Validation of Prediction Models
Validation Dataset. The accuracy of the methods for the prediction of anticancer activity (i.e.
CDRUG and aforementioned SVM classifier) was tested with the help of the compound data-
set, associated with their indication area without any ambiguity. The validation dataset used in
the current study was randomly selected from the collection of DrugBank and natural plant

Fig 4. Fine Grid Search forC and γ for parameter estimation.

doi:10.1371/journal.pone.0141719.g004
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based anti-cancer compounds (see section Drug-Target data for details about the primary data-
set). We created a balanced dataset, which consisted of 526 compounds with anticancer activity
(positive dataset), and 526 compounds without anticancer activity (negative dataset). The vali-
dation dataset, can be found as online supplementary material–‘cancer_nat_db_smi.txt’ (com-
pounds with anti-cancer activity) (see S7 Text), and ‘others_smi.txt’ (compounds without anti-
cancer activity) (see S8 Text).

The standalone version of CDRUG [17] was used to predict activity of validation dataset,
the prediction results of CDRUG can be found in the file–‘validation_set_tab.txt’ (see S9 Text),
which is available as online supplementary material. The svm classifier ‘cancer.model’ build in
the current study, was also used to predict activity of validation dataset. The SVM based classi-
fication of validation dataset was achieved in following broad steps:

1. SMARTS string based computation of feature vector (see section Feature Extraction for
detailed procedure). The result of the feature extraction process on validation dataset is
available in file ‘Validation_dataset_features.txt’ (see S10 Text) as online supplementary
material.

2. Transformation of feature vector into svm input format. The transformed feature matrix is
available in file ‘Validation_dataset_dat.txt’ (see S11 Text) as online supplementary
material.

3. SVM based prediction: Anticancer activity of validation dataset was predicted with follow-
ing command of libsvm [19]: ./svm-predict Validation_dataset_dat.txt cancer.model Vali-
dation_dataset_out.txt.

The svm prediction result can be found in ‘Validation_dataset_out.txt’ (see S12 Text) as
online supplementary material.

The prediction results obtained from CDRUG and SVM classifier were compared, based on
following statistics:

Sensitivity ¼ TP
ðTP þ FNÞ ðiÞ

Specificity ¼ TN
ðTN þ FPÞ ðiiÞ

Accuracy ¼ ðTP þ TNÞ
ðTP þ FP þ TN þ FNÞ ðiiiÞ

where,
‘TP’ is True Positive.
‘TN’ is True Negative.
‘FP’ is False Positive.
‘FN’ is False Negative.
The sensitivity, specificity and accuracy statistics were calculated for the results obtained

from both methods (Table 1). It can be seen that the overall accuracy of CDRUG method is
slightly better than custom build SVM classifier, which can be mainly attributed to its excep-
tionally high specificity (~ 91%). The performance statistics of custom build SVM classifier can
be regarded as balanced in terms of sensitivity (~ 61%) and specificity (~ 62%), whereas, the
sensitivity of CDRUG observed as quite low (~40%) (Table 1).
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For a study of an exploratory nature like this, prediction methods with low sensitivity could
be counterproductive, since it would essential mean possibility of losing out lots of potential
compounds during initial screening stages without any scope of being considered for its thera-
peutic application for oral cancer during the downstream analytical process. We therefore,
selected SVM classifier for prediction of anti-cancer activity of over 84 million compounds col-
lected from ChEMBL and STITCH database (see section Compound-Target Data Sources).
We decided to leverage high specificity of CDRUG to identify possible false positives among
the list of potential compounds obtained at the end of this study.

Prediction of Anticancer Activity. The compounds collected from ChEMBL and
STITCH database (see section Compound-Target Data Sources) were given as input to the
SVM classifier for the prediction of anticancer activity. There were over 82.84 million com-
pounds from STITCH, and over 1.4 million compounds from ChEMBL databases. Various
analytical steps involved in preprocessing (like feature extraction) and SVM prediction, have
certain physical memory and CPU requirement which is determined by the size of a dataset
and complexity of underlying algorithm, because of these constraints, it was not possible to
analyze the whole dataset of over 84 million compounds all at once. After a couple of initial
trial runs of prediction workflow with varied sized subsets of the compound dataset, we were
able to find upper threshold of 2.6 million compounds which can be analyzed in the desktop
with 4GB memory (with 4 cores).

The number of compounds in the dataset, obtained from STITCH (~82.84 million) were
marginally above the required threshold of 2.6 million supported by system configuration used
in the current study. The compound dataset from STITCH was, therefore, divided into man-
ageable chunks, each consisting of ~2.6 million compounds, with the help of Linux ‘split’ com-
mand. The data chunks, thus obtained were given as input for anti-cancer activity prediction
by SVM classifier (see section Prediction Process for the steps involved in prediction by SVM
classifier). After all the data chunks were processed by SVM classifier, prediction results
obtained from the individual chunks were consolidated as a single output file. Compound data-
set collected from ChEMBL consisted of 1.4 million compounds, which were given as input for
anti-cancer activity prediction by SVM classifier (see section Prediction Process for the steps
involved in prediction by SVM classifier).

Association of Predicted Anticancer Compounds with Targets. Target information for
the compounds derived from the STITCH database [16] were compiled by parsing the file
‘9606.protein_chemical.links.v4.0.tsv.gz’, downloaded during the data collection stage of the
current study (see section STITCH—Chemical-Protein Interaction Database). STITCH data-
base stores target information as an Ensembl protein identifier, we have used gene2ensembl
file downloaded from NCBI to covert Ensembl ID to the corresponding Entrez Gene ID. The
chemical-protein interactions in STITCH database are arranged into four categories, viz. (i)

Table 1. Comparison of Prediction Results.

Statistics CDRUG SVM

TP 214 323

FN 312 203

TN 487 326

FP 39 200

Sensitivity 0.406844106 0.614068441

Specificity 0.912389381 0.62300885

Accuracy 0.66634981 0.616920152

doi:10.1371/journal.pone.0141719.t001
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experimental: interaction information collected from experimental databases like ChEMBL
[15], (ii) database: interaction information is collected from manually curated drug-traget data-
bases like DrugBank [3], (iii) textmining: interactions gathered from literature based on co-
occurrence text-mining and Natural Language Processing (NLP), and (iv) predicted: interac-
tion information predicted as explained by Kuhn et al. [16]. In the current study, we have con-
sidered only those chemical-protein interactions, which are of categories ‘experimental’ or
‘database’, with an objective of including interactions collected from the most reliable sources.
The interaction information of 449,666 compounds from STITCH database was collected,
which satisfy the source constraint (experimental/database), and were, thus used internally for
extracting target information of STITCH compounds which were predicted to have anticancer
activity by SVM classifier.

Target information for the ChEMBL compounds predicted to have anticancer activity by
the SVM classifier was retrieved by querying ChEMBL database. Bioactivity data was mined by
querying ‘activities’ table, and protein assays with IC50 value of� 1 μM or 1000 nM, was used
as a criteria to associate target(s) with the compound. Detailed steps involved in extraction of
target information of ChEMBL compounds can be found in perl script ‘chemdb_targets_pl.
txt’, available as online supplementary material (S13 Text). UniProt ids were mapped into cor-
responding Entrez Gene ID with the help of idmapping.tab file (available for ftp download at
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by_
organism/HUMAN_9606_idmapping_selected.tab.gz).

The compounds present in ChEMBL and STITCH are not mutually exclusive, therefore,
there was a possibility of existence of duplicate compounds, albeit with a different ids
(ChEMBL ID & STITCH compound id) in the list of predicted anti-cancer compounds. In the
current analysis, duplicate compounds were identified based on similarity in their SMILES
strings. The methods like calcfp() along with bitwise OR operator ‘|’, implemented in python
library PyBel [27] were used to calculate the Tanimato coefficient [28]. A Tanimato coefficient
of 1 was used for the identification of duplicate compounds. The targets of duplicate com-
pounds were merged by taking the union of the targets between duplicate compounds, for an
instance, compound A (targets 1,2,3), compound B (targets 2,5,6,8) and compound C (targets
3,9) were identified as identical (Tanimato coefficient of 1), such compounds were merged as a
single record with a target list as 1,2,3,5,6,8,9.

Partial Least Square Regression (PLSR) based Score Computation
Methods like multiple linear regression (MLR) are well suited for scenarios, when the factors
(or variables) are few in number, are not collinear (or significantly redundant), and their rela-
tionship with responses is well-defined, however, MLR turns out to be inefficient when any of
these preconditions are not met. The training data used in the current study has many variables
which may be highly collinear, therefore, application of MLR to build a regression model
would be inappropriate. Partial Least Squares (PLS) is an effective and robust alternative to
MLR, especially, in real life scenarios when data often have many, possibly collinear, predictor
variables and relatively few samples. In the current study, we have used R-package ‘pls’ for par-
tial least square regression [29].

Computation of Feature Weights. The data collected from DrugBank, and literature
related by natural compounds (see section Drug-Target data) was used to train partial least
squares regression model. Data from the file ‘DB_others.txt’ (see S2 Text), ‘DB_cancer.txt’ (see
S1 Text) and ‘Nat_Anticancer.txt’ (see S4 Text) was combined and transformed into the train-
ing matrix to be used for PLS regression modeling. The compounds were divided into three
classes based on their ICD10 codes and were represented as response variable/target value/
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class: ‘1’! compounds with activity against oral cancer, ‘0’! compounds with activity against
cancer types other than oral cancer and ‘-1’! compounds without anti-cancer activity. Com-
pounds like resveratrol, which are active against various cancers, including oral cancer, were
represented with two instances in the training matrix with two target values ‘0’ and ‘1’; this was
done to ensure that no information is lost about the activity of a compound. The training data
consisted of 33 compounds with activity against oral cancer (class! ‘1’). In a previously pub-
lished study, we have identified a list of potential therapeutic targets for oral cancer, based on
evidences gathered from the integrative study, and ability of these therapeutic targets to affect
diverse cancer hallmarks involved in carcinogenesis [30]. These targets are not well represented
in existing therapeutic compounds known for oral cancer, primarily because, very less number
of drugs/therapeutic compounds are currently known to be active against oral cancer. In order
to address this limitation, we have included an additional instance with targets reported in the
previous study [30]. The data matrix used for training the partial least squares regression
model can be found in the file–‘PLS_Matrix.txt’ (see S14 Text), which is available as online sup-
plementary material. The first two columns of ‘PLS_Matrix.txt’ corresponds to compound id,
and a class label (1/0/-1), respectively, and the rest of the columns indicates molecular targets
represented as Entrez Gene ID; the presence or absence of a target among target profile of a
compound is represented by 1 or 0, respectively, in ‘PLS_Matrix.txt’. The mapping between
compound ids to their names can be found in the file ‘Compound_index.txt’ (see S15 Text),
which is available as online supplementary material.

The PLS classifier is shown as below,

yi ¼ waai þ wbbi þ wcci þ wddi þ . . . : ðivÞ

where,
‘y’ is the training score for that compound;
where “1” represents a compound with anticancer activity against oral cancer cells, “0” rep-

resents a compound with generic anticancer activity or activity against cancers other than oral
cancer, “-1” represents a compound lacking any anticancer activity.

‘w’ is the weight assigned to each target gene.
‘i’ is the index (or compound id) of the compound from P_Matrix.txt
‘a’, ‘b’, ‘c’, ‘d’, . . . are each gene’s compound specific feature value from P_Matrix.txt, where,

“1” indicates that the compound targets gene, and “0”, is otherwise.
As implied by the equation (Eq iv), the model is trained by setting the weights for each tar-

get gene, such that, those weights when combined with individual feature values (1!Presence,
0!Absence of target gene for the particular compound), across all compounds from training
matrix (‘P_Matrix.txt’) should achieve the closest correspondence of the score/class (1, 0, -1)
for each training compound. The ‘leave one out’ cross-validation was used to internally train
the regression model. The feature weights were extracted with the help of command “loading.
weights()”. The weight obtained for a target indicates its contribution towards the activity of
compound for oral cancer treatment. Feature weights were computed with the help of follow-
ing R code:

> library(pls)

> data<- read.table('PLS_Matrix.txt', head = T, sep = "\t")

> y<- as.integer(data$class)

> x<- subset(data,select = -c(Record_ID,class))

> X<- as.matrix(x)
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> weights<- as.numeric(loading.weights(plsr(y~X,ncomp = 1,validation = ‘LOO’)))

The weight of the target gene/protein can be found in ‘PLS_Weights.txt’ (see S16 Text) and
‘PLS_Weights_gs.txt’ (targets represented as Gene Symbol, see S17 Text), available as online
supplementary material.

Computation of Oral Cancer specific score (OC_Score). Compounds sharing indication
area, invariably have a similar target profile, because at the mechanistic level, they are targeting
biological processes involved in the genesis / progression of the same disease. In the current
study, we have computed a target based statistic (or score) which could help in screening com-
pounds with activity against oral cancer. The oral cancer specific feature weights
(‘PLS_Weights.txt’ see S16 Text) were used to compute score, which we named as ‘OC_Score’.

OC Score ¼
Xn

i¼1
w½i� ðVÞ

where,
‘n’ is the number of targets for a query compound.
‘w[i]’ feature weight for ith target.
The steps involved in computation of OC_Score, for a query compound from the training

dataset is as follows:

1. Collect target profile of a query compound.

2. Extract weights for targets of a query compound from ‘PLS_Weights.txt’.

3. Compute OC_Score for the query compound by adding up the weights extracted in step 2.

�Scores thus computed for the training compounds can be found in the file ‘Score_distribu-
tion.txt’ (see S18 Text) available as online supplementary material.

Computation of OC_Score with an example is illustrated in Table 2. OC_Score is generally
higher and positive when the potential of a compound to treat oral cancer is greater, and vice-
versa.

Selection of Potential Compounds for Oral Cancer treatment
OC_Scores were computed for compounds used for training the partial least squares regression
matrix, these compounds were categorized into three classes, oral cancer (represented with a
class label ‘1’), cancer (represented by class label ‘0’) and others (represented by the class label
‘-1’) (see S18 Text). In order to estimate background scores, we first extracted target profile of
compounds from ChEMBL, which were predicted to be in-actives by SVM classifier. OC_Scores
of these compounds were computed, and were considered as background scores. The scores
thus obtained provided us with distribution of OC_Scores among different compound classes
(Table 3). The cutoff score of� 0.67 (mean score of compounds used to treat oral cancer, refer
Table 3) was used for the identification of potential compounds for oral cancer treatment. It can

Table 2. Computation of OC_Score.

Lycopene Zhankuic acid C

Gene Symbol GeneID Weights Gene Symbol GeneID Weights

ABCA1 19 -0.001570518 BCL2 7422 0.248744521

NR1H3 10062 0.003148697 CASP3 1956 0.456548318

PPARG 5468 -0.020447379 PARP1 7010 0.177892451

OC_Score = -0.0188692 OC_Score = 0.883185289

doi:10.1371/journal.pone.0141719.t002

Potential Compounds for Oral Cancer Treatment

PLOS ONE | DOI:10.1371/journal.pone.0141719 November 4, 2015 14 / 31



be seen that with a cutoff value of� 0.67, there is almost negligible overlap between scores of
the compounds for the oral cancer treatment and the scores of the compounds used in other
therapeutic areas (non-cancerous diseases) (Fig 5); barring a couple of outliers from inactive
compounds, this cutoff can be regarded as efficient in filtering out non-relevant compounds.

OC_Score was computed for the non-redundant list of compounds predicted to have anti-
cancer activity by an SVM classifier (see section Association of Predicted Anticancer Com-
pounds with Targets for details about the list of active anti-cancer compounds). The cutoff
score of� 0.67 was used to select compounds from this list, which were regarded as potential
compounds for oral cancer treatment.

Annotation of List of Potential Compounds. Additional information like the associated
GI50 value, physicochemical properties, etc. was gathered for the list of potential compounds.
GI50 is the concentration of test compound required to cause a 50% reduction in the prolifera-
tion of cancer cells. PubChem bioactivity database assigns bioactivity outcome (as ‘active’)
using a� 50μM cutoff based on readouts such as IC50, GI50, EC50 etc. [31]. In the current
study, we have mined GI50 values for the list of potential compounds for oral cancer treatment
(from ChEMBL/PubChem bioassay db), and used the same cutoff of� 50μM to associate
active GI50 assays against them. Compounds from STITCH database are derived from Pub-
Chem, therefore, their compound ids can be converted into corresponding PubChem Com-
pound ID (or cid) [16]. Therapeutic compounds collected from DrugBank and natural sources
(see section Drug-Target Data) were associated with PubChem cid. Bioassay data from Pub-
Chem BioAssay, can be collected with the help PUG/REST structured URLs in the following
format: http://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/<ListOfCIDs>/
assaysummary/CSV

BioAssay data for compounds from ChEMBL were collected by querying ChEMBL data-
base. For an instance, GI50 values of active bioassays associated with resveratrol (chembl_id:
CHEMBL165), were obtained with the help of following SQL query: “select a.assay_id, b.stan-
dard_type, b.standard_value, b.standard_units, a.description from assays a, activities b where a.
assay_id = b.assay_id AND b.standard_type = 'GI50' AND ((b.standard_value< = 50 AND b.
standard_units LIKE 'u%') OR (b.standard_value< = 50000 AND b.standard_units LIKE 'n%'))
AND b.molregno = (select molregno from molecule_dictionary where chembl_id =
‘CHEMBL165');”

Various physicochemical parameters for the list of potential compounds were computed
with the help of python library ‘PyBel’ [27]. The parameters, thus computed, were used for esti-
mation of Lipinski’s ‘rule of 5’ which predicts that poor absorption or permeation is more likely
when there are more than 5 hydrogen-bond donors, 10 hydrogen-bond acceptors, the molecu-
lar weight is greater than 500 and the Log P is greater than 5 [32]. Topological polar surface
area (TPSA) was another physicochemical property which was calculated in the current study.
TPSA is considered to be a good predictor of oral bioavailability. The molecule with TPSA
of� 140 Å2 are likely to exhibit poor intestinal absorption [33]. ChEMBL tags compound with
value ‘Y/N’ (for the field “MedChem Friendly”) based on the absence / presence of functional

Table 3. Descriptive Statistics of OC_Scores for different compound classes.

Min. 1st Quartile Median Mean 3rd Quartile Max.

Oral Cancer 0.00787 0.1944 0.3912 0.6699 1.12 3.144

Cancer -0.8494 0.01261 0.09847 0.3059 0.4644 2.654

Others -2.023 -0.1313 -0.03301 -0.1245 -0.007859 0.6187

Inactives -1.497 -0.004719 0 0.00417 0.003149 0.8895

doi:10.1371/journal.pone.0141719.t003
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groups which are not desirable from the medicinal chemistry perspective (refer link https://
www.ebi.ac.uk/chemblntd/glossary). We have collected SMARTS string of the undesirable
functional groups used by ChEMBL, and used them to screen the list of potential compounds.
This screening was conducted with the help of python script ‘Check_MedChemFriendly_py.
txt’ (see S19 Text) available online as supplementary material. The smiles strings of the list of
potential compounds obtained in the current study were given as a input to CDRUG [17], with
an objective to flag out possible false positives.

Fig 5. Distribution of oral cancer specific statistic ‘OC_Score’. Box-plots depicting score distribution of compounds belonging to groups formed on the
basis of differences in drug indication area. Horizontal line indicates the cutoff used in the current study to select potential compounds.

doi:10.1371/journal.pone.0141719.g005
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The common names of the compound derived from PubChem/ChEMBL were retrieved
from respective databases. PubChem allows retrieval of compound names for an input list of
compound ids (PubChem CID), with the help of PUG/REST structured URLs in following for-
mat: https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/cid/<ListOfCIDs>/description/
XML. The XML file consists of compound name enclosed between<Title>cname</Title>
tags, the perl library ‘XML::Simple’ was used to parse xml file and collect common names of
the list of compounds with PubChem cid. The common names of the compounds from
ChEMBL database can be obtained by querying ChEMBL database table ‘molecule_dictionary’
and is available in the field ‘pref_name’. For an instance, common name for compound id
‘CHEMBL165’ (compound id for resveratrol) can be retrieved with the help of SQL query
‘select pref_name from molecule_dictionary where chembl_id = “CHEMBL165”’.

The NCBI-PubMed was queried to get overview of supporting publication evidences for
potential compounds, identified in the current study. The PubMed search was conducted with
the help of specific queries, structured to retrieve relevant articles which mention the therapeu-
tic role of a compound with respect to oral cancer. For an instance, following PubMed search
query can be used to retrieve research articles relevant to the therapeutic role of resveratrol
with respect to oral cancer: “(Resveratrol [TIAB] AND mouth neoplasms[MH] AND (Thera-
peutic [TIAB] OR Therapy [TIAB] OR Treatment[TIAB])) NOT Review[PT]”.

Results and Discussion
The SVM classifier predicted 34,597,939 (~34.60 million) compounds as anti-cancer com-
pounds among 82.84 million compounds collected from STITCH database. Among these pre-
dicted anti-cancer compounds (~34.60 million), the target information of 231,123 compounds
meeting internal selection criteria was collected (interaction gathered from pathways/databases
were considered, see the section Association of Predicted Anticancer Compounds with Targets
for details). The SVM classifier predicted 620,273 compounds to be anti-cancer compounds
among the 1.4 million compounds from ChEMBL database. Among these predicted anti-can-
cer compounds (620,273 compounds), the target information of 91,795 compounds meeting
internal selection criteria was collected by querying ChEMBL database (protein assays with
IC50 value of� 1 μM, see the section Association of Predicted Anticancer Compounds with Tar-
gets for details). The unique list of compounds with target profile was obtained by merging
compound-target dataset of predicted anticancer compounds from ChEMBL (91,795 com-
pounds) and STRING (231,123 compounds) database (Tanimato coefficient of 1 between com-
pounds from two data sources was used to identify duplicate compounds, see the section
Association of Predicted Anticancer Compounds with Targets for details). The merged list of
predicted anti-cancer compounds consisted of 199,572 compounds.

The target weights obtained from the partial least squares regression modelling was used to
compute oral cancer specific statistic ‘OC_Score’, for the merged list of predicted anti-cancer
compounds. The OC_Scores thus obtained for the merged list of predicted anti-cancer com-
pounds can be found by uncompressing zipped file ‘Ch_Pub_consolidate_list.zip’ (see S20 Text)
available online as supplementary material. A total of 311 compounds were selected, based on
OC_Score cutoff of� 0.67, and were regarded as compounds with potential to treat oral cancer.
Quality check of this list, of 311 compounds was conducted and it was observed that quite a few
duplicate compounds from STITCH database were still present in this list. Few compounds in
STITCH database are represented by two records which correspond to its stero-specific and flat
structure (refer to: http://stitch.embl.de/download/README). Such duplicate compounds were
identified and removed based on their structural similarity to retrieve the list of unique com-
pounds (Fig 6). After removal of duplicates among this list, we got 218 compounds (80
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compounds from ChEMBL, and 138 compounds from PubChem/STITCH database). The com-
pounds used for building partial least squares regression model were also interrogated to check
their potential to treat oral cancer (see S18 Text). A total of 100 compounds with an OC_Score
cutoff of� 0.67 were collected, these consisted of compounds from DrugBank database [3] and
manually curated list of plant based natural products with anticancer activity. The list of poten-
tial compounds derived from different sources (ChEMBL, STITCH / PubChem compounds,
DrugBank and manually curated anticancer natural products) were consolidated, and com-
pound duplicates, if any, were removed from this list. The consolidated list has 288 potential
compounds with OC_Scores ranging from 0.67 to 3.14 (Fig 7). These compounds were anno-
tated with associated attributes related with their bioactivity against cancer cells and physico-
chemical parameters (see section Annotation of List of Potential Compounds). The detailed
information about active BioAssays associated with these compounds can be found in
‘GI50_BioAssays.xlsx’ (see S21 Text), available as online supplementary material. The possible
false positives were identified by CDRUG tool [17]; the result of this analysis can be found in
‘Lead_cmpds_cdrug_result.txt’ (see S22 Text), available as online supplementary material.

The complete list of these compounds along with associated annotations can be found in
‘OC_LeadCompounds_1.1.xlsx’ (see S23 Text), available as online supplementary material.
The statistic regarding potential compounds identified in the current study can be found in
Table 4.

Fig 6. Algorithm for finding duplicates in the list of compounds.

doi:10.1371/journal.pone.0141719.g006
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It can be seen that, majority of compounds obtained are of natural origin. The annotations
associated with the compounds in this spreadsheet (see S23 Text) were utilized, to further filter
the list of potential compounds. Within this list, the potential compounds were selected based
on following criteria:

1. BioAssay Data: Compound with significant bioactivity against cancer cells has a higher
probability to successful transition into anti-cancer drug.

Fig 7. Distribution of oral cancer specific statistic ‘OC_Score’. Box-plots depicting score distribution of compounds belonging to different groups,
compared with those identified as potential compounds for oral cancer treatment. Horizontal line indicates the cutoff used in the current study to select
potential compounds.

doi:10.1371/journal.pone.0141719.g007
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2. Significance value (p value) cutoff of� 0.05.

3. Optimal physicochemical properties or compound satisfying rule of five criteria [32], and
without undesirable functional groups.

4. Target profile relevant to oral cancer, measured by OC_Score. The compounds with higher
OC_Scores generally have higher potential to treat oral cancer.

5. Prior evidence of compound’s activity against oral cancer cells.

The manual review of the set of articles retrieved by specific PubMed queries (see section
Annotation of List of Potential Compounds), used for annotating the list of compounds was
conducted to validate the therapeutic role of compounds with respect to oral cancer. Some of
the potential compounds satisfying the aforementioned majority of the selection criteria are
resveratrol, nimbolide, luteolin, phenethyl isothiocyanate, aloe emodin, quercetin, ellagic acid,
staurosporine, bortezomib, gefitinib, genistein, biocalien, berberine, colchicine, lovastatin, vori-
nostat, pterostilbene, deguelin, and andrographolide (Figs 8 and 9). Compounds like butein,
curcumin, paclitaxel, docetaxel and azadirachtin represent the set of compounds with a poten-
tial to treat oral cancer albeit with shortcomings in physicochemical parameters. Compounds
like butein, curcumin, and azadirachtin, were identified to be not medicinal chemistry friendly
because of the presence of undesired functional groups. SMARTS strings of undesired func-
tional groups present in these compounds were illustrated with the help of visualization tool—
SMARTSviewer [34] (Fig 10).

Resveratrol is a natural product identified in the current analysis with a high potential to
treat oral cancer. It has shown activity against various cancers, including oral cancer [35]. The
diversity of molecular targets for resveratrol suggests that it controls cancer through multiple
pathways. Its ‘OC_Score’ is second highest among all the compounds identified in the current
analysis. Its physicochemical properties are well within the range reported for the therapeuti-
cally active drugs [32], thus making it an ideal candidate for small molecule based targeted
therapy for oral cancer. Nimbolide is a natural bioactive compound (extracted from neem tree)
identified in the current analysis with a high potential to treat oral cancer. It has been reported
to induce apoptosis and inhibit cell proliferation in an animal model for oral carcinogenesis
[36]. It controls growth of cancer cells by modulating range of targets, including p53, Survivin,
and Caspases involved in key hallmark events such as cell proliferation and apoptosis. Luteolin
is another natural compound identified in the current study with a potential to treat oral can-
cer. It has been reported to induce apoptosis in cancer cells [37]. It has shown activity against
various cancers (see S21 Text). Phenethyl isothiocyanate a natural compound identified in the
current analysis as potential compound has been reported to suppress invasion of oral squa-
mous carcinoma cell [38]. Aloe emodin a natural compound identified in the current analysis
has been reported to regulate growth of oral cancer cells by disrupting DNA repair mechanism

Table 4. Details about potential compounds for oral cancer treatment identified in current study.

Description Counts#

Total no. of Compounds 288

Active BioAssays (GI50) 53

Natural Products 155

Compounds with Oral Cancer Evidences 85

Medicinal Chemistry Friendly 229

CDRUG (Significant) 116

Rule of Five 188

doi:10.1371/journal.pone.0141719.t004
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[39]. Quercetin is a natural compound identified in the current analysis with a potential to
treat oral cancer. It has significant bioactivity against various cancer cell-lines (see S21 Text),
including oral cancer [40]. It targets proteins involved in diverse hallmark events like metasta-
sis, cell proliferation and apoptosis. Ellagic acid is another natural bioactive compound

Fig 8. Compound structures of potential compounds with supporting evidences about their activity against oral cancer. The name of compound
with natural origin is distinctly highlighted with green color.

doi:10.1371/journal.pone.0141719.g008
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identified with the potential to treat oral cancer. It has significant bioactivity against various
cancer cell-lines (see S21 Text), including oral cancer [41], [42]. Staurosporine is a natural
compound identified in the current study with a potential to treat oral cancer. It is active
against various cancer cell lines (see S21 Text), including oral cancer [43]. Baicalein is a natural
compound identified in the current analysis with a potential to treat oral cancer. It has signifi-
cant bioactivity against various cancer cell-lines (see S21 Text), including oral cancer [44]. Its
molecular targets are involved in key hallmark events like apoptosis, and cell-growth. Berberine
is a natural compound identified in the current analysis with a potential to treat oral cancer. It
has significant bioactivity against various cancer cell-lines (see S21 Text), including oral cancer
[45]. Genistein is a natural compound identified in the current analysis with a potential to treat
oral cancer. It has significant bioactivity against various cancer cell-lines (see S21 Text), includ-
ing oral cancer [46]. Gefitinib was identified as a potential compound in the current study; it is
active against various cell-lines, (see S21 Text) including oral cancer [11]. Bortezomib was
identified as a potential compound in the current study; it is active against various cell-lines
(see S21 Text) including oral cancer [47]. Lovastatin is a hypolipidemic agent, which was iden-
tified as potential compound in the current study. It has significant bioactivity against various
cancer cell-lines (see S21 Text), including oral cancer [48]. Vorinostat is a histone deacetylase
inhibitor, which is also known as suberanilohydroxamic acid (abbreviated as SAHA); it was
identified as potential compound in the current study. It has significant bioactivity against

Fig 9. Compound structures of potential compounds with supporting evidences about their activity against oral cancer. The name of compound
with natural origin is distinctly highlighted with green color.

doi:10.1371/journal.pone.0141719.g009
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various cancer cell-lines (see S21 Text), including oral cancer [49, 50]. Pterostilbene was identi-
fied as a potential compound in the current study, it has significant bioactivity against various
cancer cell-lines. It was reported to suppress invasion of oral cancer cells by inhibiting the
expression of MMP-2 [51]. Deguelin was identified as a potential compound in the current
study, It was reported to T suppress the invasion and migration of oral cancer by downregulat-
ing TNF-alpha-induced NF-kB signaling [52]. Andrographolide was identified as potential
compound in the current study. It has significant bioactivity against various cancer cell-lines
(see S21 Text). It was reported to inhibit oral squamous cell carcinogenesis through NF-kB
inactivation [53]. Colchicine was identified as potential compound in the current study. It has
significant bioactivity against various cancer cell-lines (see S21 Text), including oral cancer
[54]. In a comparative study it was found to have better therapeutic potential when adminis-
tered to patients with Oral Submucous Fibrosis (OSF), which is pre-cancerous condition of
oral mucosa [54].

Curcumin was identified as a potential compound in the current study; it is active against
various cell-lines (see S21 Text) including oral cancer [55]. Azadirachtin is another neem based
bioactive compound identified in the current study as a potential compound for oral cancer
treatment. It has been reported to induce apoptosis and inhibit cell proliferation in animal

Fig 10. Compound with undesirable functional groups. From the medicinal chemistry perspective, these functional groups in compounds are
undesirable.

doi:10.1371/journal.pone.0141719.g010
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model for oral carcinogenesis [36], however the presence of undesirable functional groups
(Fig 9), and its poor physicochemical properties may limit its chance of clinical success.

To our knowledge, this is the first study in which such a huge number of compounds (~84
million) were interrogated in an unbiased manner for the possibility of their application in oral
cancer treatment. The underlying datasets used for prediction were carefully selected to make
reliable and biologically meaningful predictions. We have carefully reviewed list of 288 poten-
tial compounds obtained in the current study, most of them are actively investigated for treat-
ment of various cancers. The result presented herein, reaffirms the indispensable role played by
natural products in cancer therapeutics. The poor bioavailability of natural products is often a
common challenge in their clinical application [56]; it can be addressed through various struc-
tural optimization, or through the use of novel and innovative drug delivery systems [57].

The analytical approach presented here is robust and powerful, which can be applied to gen-
erate potential leads for other therapeutic areas, as well. The SVM classifier trained on func-
tional groups based features has proven to be an effective filter to mine anticancer compounds
from a huge pile of compounds. The data used for training the partial least squares regression
model is carefully mined from reliable sources, and can be used by researchers working in the
field of other cancer types by appropriately changing the class label. The analytical framework
presented for the regression based computation of target weights is flexible enough to include
prior knowledge about targets known to be associated with the disease. The computation of sta-
tistic specific to disease type is logical and straightforward, and has proven to be powerful in
generating potential leads. The score is computed in such a way that the target relevant to oral
cancer, contributes towards the increment of the compound’s score, whereas, the irrelevant tar-
get or off-target brings down the overall score; thus the compounds with high scores should be
more effective with minimal toxicities (which are mostly attributed to the compound’s off-
targets).

The current study has identified potential compounds for oral cancer treatment. Some of
the potential therapeutic compounds identified in the current study are resveratrol, nimbolide,
lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and
colchicine. The compounds identified in this study are based on relative importance of their
targeted protein(s) in oral carcinogenesis, thus making them strong candidate for oral cancer
treatment. Our future efforts would be to understand the mechanism of action of compounds
identified in this study by linking their target profile with molecular pathways, cancer hallmark
events.

Supporting Information
S1 Text. List of anticancer drugs extracted from DrugBank database. File contains following
columns: (i) "DrugName"!Common name of the drug; (ii) "ICD10"!ICD10 disease code(s)
of indication(s) for the drug; (iii) "CAS_No"!CAS Registry no. of chemical compound, and be
searched @ www.commonchemistry.org, this field is left blank for biotech drugs; (iv) "Pub-
ChemCID"!NCBI-PubChem CID, can be searched @ https://pubchem.ncbi.nlm.nih.gov/,
this field is left blank for biotech drugs; (v) "Smiles"!SMILES string of chemical compound;
(vi) "Targets "!Entrez GeneID of the drug target(s); (vii) "Targets(GeneSymbol)"!Gene Sym-
bol of the drug target(s).
(TXT)

S2 Text. List of Drugs from other indication areas (i.e. non anti-cancer drugs) extracted
from DrugBank database. File contains following columns: (i) "DrugName"!Common name
of the drug; (ii) "ICD10"!ICD10 disease code(s) of indication(s) for the drug; (iii) "CAS_-
No"!CAS Registry no. of chemical compound, and be searched @ www.commonchemistry.
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org, this field is left blank for biotech drugs; (iv) "PubChemCID"!NCBI-PubChem CID, can
be searched @ https://pubchem.ncbi.nlm.nih.gov/, this field is left blank for biotech drugs; (v)
"Smiles"!SMILES string of chemical compound; (vi) "Targets "!Entrez GeneID of the drug
target(s); (vii) "Targets(GeneSymbol)"!Gene Symbol of the drug target(s).
(TXT)

S3 Text. List of Natural Anticancer compounds for various cancer-types. File contains fol-
lowing columns: (i) "ICD10"!ICD10 disease code(s) of the cancer-type, corresponding name
of cancer-type can be searched @ http://apps.who.int/classifications/icd10/browse/2010/en; (ii)
"References"!External reference id (PubMed ID/DOI) of the research article used for inferring
relationship between cancer and natural compound; (iii) "Compound_Name "!Name of the
natural anti-cancer compound; (iv) “PubChem_cid”!NCBI-PubChem CID; (v) "CAS_-
No."!CAS Registry no. of chemical compound; (vi) "Target(s)"! Entrez GeneID of the com-
pound’s molecular target(s); (vii) ‘Target_Ref’!External reference id (PubMed ID/DOI) of the
research article used for inferring relationship between natural compound and its molecular
target(s).
(TXT)

S4 Text. List of Natural Anticancer compounds manually extracted from published articles.
File contains following columns: (i) "DrugName"!Common name of the natural compound;
(ii) "ICD10"!ICD10 disease code(s) of indication(s) for the natural compound; (iii) "CAS_-
No"!CAS Registry no. of the compound; (iv) "PubChemCID"!NCBI-PubChem CID; (v)
"Smiles"!SMILES string of the compound; (vi) "Targets "!Entrez GeneID(s) of the com-
pound’s target(s); (vii) "Targets(GeneSymbol)"!Gene Symbol(s) of the compound’s target(s).
(TXT)

S5 Text. SMARTS pattern of the functional groups used in the current study. The file con-
tains following columns: (i) ‘FuntionalGroup’!Functional group name; (ii) ‘SMARTS’!S-
MARTS representation of the functional group.
(TXT)

S6 Text. SVMModel Building files. Compressed file, consisting of intermediate files gener-
ated during the grid search process, and final model/classifier ‘cancer.model’ used in the cur-
rent study.
(ZIP)

S7 Text. List of anti-cancer compounds used for method validation/comparison. The file
consists of two columns, the first column is a SMILES string of the compound, and the second
column is a compound name.
(TXT)

S8 Text. List of non anti-cancer compounds used for method validation/comparison. The
file consists of two columns, the first column is a SMILES string of the compound, and the sec-
ond column is a compound name.
(TXT)

S9 Text. Anticancer activity prediction on validation dataset by CDRUG. In the current
study, compounds with p_value of� 0.05 were considered to have anti-cancer activity.
(TXT)

S10 Text. Feature Matrix of the compounds from validation dataset. First column of this file
represents a compound name, rest of the columns except last represents functional groups, and
the last column (‘Active’) can have following value: 1! indicates compound has anti-cancer

Potential Compounds for Oral Cancer Treatment

PLOS ONE | DOI:10.1371/journal.pone.0141719 November 4, 2015 25 / 31

http://www.commonchemistry.org
https://pubchem.ncbi.nlm.nih.gov/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s003
http://apps.who.int/classifications/icd10/browse/2010/en
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0141719.s010


activity, and -1! indicates compound doesn’t have anti-cancer activity; Each row of this file
represents feature vector of the compound, it consist of list of binary values (0!indicates
absence of functional group in the compound; 1! indicates presence of functional group in
the compound).
(TXT)

S11 Text. Feature matrix of validation dataset transformed into the format used by SVM
classifier for prediction.
(TXT)

S12 Text. Anti-cancer activity prediction on validation dataset by SVM classifier. ‘1’! indi-
cates compound predicted to have the anti-cancer activity, ‘-1’! indicates compound pre-
dicted to lack the anti-cancer activity.
(TXT)

S13 Text. Perl script used for extracting targets for the list of compound from ChEMBL
database. Script mines target information by querying locally installed ChEMBL database.
(TXT)

S14 Text. Input matrix used for the partial least squares regression. First column of this file
represents the compound id, the second column represents a compound’s class (which can
assume three values: 1! indicates compound has activity against oral cancer, 0! indicates
compound has activity against cancer-types other than oral cancer, and -1! indicates com-
pound doesn’t have anti-cancer activity), and the rest of the columns represents the presence
(indicated by 1) or absence (indicated by 0) of target associated with the compound.
(TXT)

S15 Text. Details of compounds used for the partial least squares regression. File contains
following columns: (i) ‘Record_ID’!ID of the compound used for partial least squares regres-
sion, this id can be used for cross-referencing the record in PLS_Matrix.txt (or S14 Text); (ii)
‘class’!: 1! indicates compound has activity against oral cancer, 0! indicates compound has
activity against cancer-types other than oral cancer, and -1! indicates compound doesn’t have
anti-cancer activity; (iii) ‘CompoundName’!common name of the compound; (iv) ‘Tar-
gets’!Entrez GeneID of the compound’s target(s).
(TXT)

S16 Text. Target weights obtained from the partial least squares regression. File contains
following columns: (i) ‘features’!Entrez Gene ID of the target; (ii) ‘weights’!weights
obtained from pls modeling.
(TXT)

S17 Text. Target (with Gene Symbol) weights obtained from the partial least squares
regression. The file contains following columns: (i) ‘features’!Gene Symbol of the target; (ii)
‘weights’!weights obtained from pls modeling.
(TXT)

S18 Text. Computation of OC_Score for the list of compounds used for partial least
squares regression. File contains following columns: (i) ‘Class’! 1! indicates compound has
activity against oral cancer, 0! indicates compound has activity against cancer-types other
than oral cancer, and -1! indicates compound doesn’t have anti-cancer activity; (ii) ‘Com-
poundName’!common name of the compound; (iii) ‘OC_Score’!oral cancer specific statis-
tic/score.
(TXT)
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S19 Text. Python script used for checking whether a compound is a medicinal chemistry
friendly or not?. Script to check if compound is medical chemistry friendly based on absence
or presence of undesirable functional group(s).
(TXT)

S20 Text. Computation of OC_Score for the list of compounds predicted by the SVM classi-
fier to have the anti-cancer activity. The file obtained after uncompressing this file contains
following columns: (i) ‘CompoundId’!ChEMBL ID or STITCH compound id; (ii) ‘Smi-
les’!SMILE string of the compound; (iii) ‘Targets’!Entrez GeneID(s) of the compound’s tar-
get(s); and (iv) ‘OC_Score’!oral cancer specific statistic/score.
(ZIP)

S21 Text. Cancer specific bioactivity records of the potential compounds. The file contains
following columns: (i) ‘CompoundName’!common name of the compound; (ii) ‘Compoun-
dId’!ChEMBL ID or PubChem compound id; (iii) ‘CompoundSource’!Source of the com-
pound from which it was derived in the current study, it can have one of the three sources i.e
ChEMBL or PubChem or from DrugBank/Natural compound list collected in the study; (iv)
‘BioAssaySource’!Reference bioassay database (ChEMBL or PubChem BioAssay); (v)
‘AssayID’!Record ID of the assay, it can be used to search the record in corresponding bioas-
say database; (vi) ‘AssayType’!GI50 assay; (vii) ‘AssayValue’!activity value for the bioassay;
(viii) ‘AssayUnits’!unit used for activity measurement; (ix) ‘AssayDescription’! Description
of the assay.
(XLSX)

S22 Text. Anticancer activity prediction on the list of potential compounds by CDRUG. In
the current study, compounds with p_value of� 0.05 were considered to have anti-cancer
activity.
(TXT)

S23 Text. List of potential therapeutic compounds for oral cancer. Contains four sheets
'Potential_Compounds', ‘ChEMBL_Compounds’, ‘PubChem (STITCH db)_Compounds’, and
' NAT_DB'. ''Potential_Compounds' contains list of therapeutic compounds for oral cancer
found to be most potential. This sheet contains following columns: (a) ‘CompoundNa-
me’!common name of the compound; (b) ‘CompoundId’!ChEMBL ID or PubChem com-
pound id; (c) ‘CompoundSource’!Source of the compound from which it was derived in the
current study, it can have one of the three sources i.e ChEMBL or PubChem or from Drug-
Bank/Natural compound list collected in the study; (d) ‘Smiles’!SMILE string of the com-
pound; (e) ‘Targets’!Gene Symbol(s) of the compound’s target(s); (f) ‘OC_Score’!oral
cancer specific statistic/score; (g) ‘Active_GI50_assay’! Compound’s bioactivity against can-
cer cells, this field can have two values:’1’! indicates compound was report to have active
GI50 assay, or ‘0’! indicates compound was not reported to be active in GI50 assay; (h) ‘Nat-
uralCompound’!Compound with natural origin are marked as ‘1’, and ‘0’ indicates otherwise;
(i) ‘OC_train_compound’! Compound known to be active against oral cancer and which
were used during regression process are marked as ‘1’, and ‘0’ indicates otherwise; (j)
‘Med_chem_friendly’! Compound which doesn’t have any undesirable functional groups are
marked as ‘Y’ indicating that it is medicinal chemistry friendly, and ‘N’ indicates otherwise; (k)
‘p_value’!p value for the compound computed by CDRUG; (l) ‘PubMed Hits #’!No. of arti-
cles related with the therapeutic role in oral cancer for the compound retrieved on querying the
PubMed database; (m) ‘TPSA to NROT’!Various physicochemical properties computed for
the compound, where TPSA!Topological Surface Area, HBD!Hydrogen Bond Donor,
MW!Molecular Weight, logP!Partition coefficient, HBA!Hydrogen Bond Acceptor,
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NROT!Number of rotatable bonds; (n) ‘RuleOfFive_Pass’! Compounds with physicochem-
ical properties within cutoff suggested by Lipinski et al. are marked as ‘TRUE’, and ‘FALSE’
indicates otherwise. The rest of the sheets corresponds to the list of potential compounds
grouped based on the source, for e.g. compounds listed in the ‘ChEMBL_Compounds’ were
derived from ChEMBL database.
(XLSX)
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