
Assignment of structural domains 
in proteins using diffusion kernels on graphs
Mohammad Taheri‑Ledari1†, Amirali Zandieh2†, Seyed Peyman Shariatpanahi2 and Changiz Eslahchi3,4* 

Abstract 

Though proposing algorithmic approaches for protein domain decomposition has 
been of high interest, the inherent ambiguity to the problem makes it still an active 
area of research. Besides, accurate automated methods are in high demand as the 
number of solved structures for complex proteins is on the rise. While majority of the 
previous efforts for decomposition of 3D structures are centered on the develop‑
ing clustering algorithms, employing enhanced measures of proximity between the 
amino acids has remained rather uncharted. If there exists a kernel function that in its 
reproducing kernel Hilbert space, structural domains of proteins become well sepa‑
rated, then protein structures can be parsed into domains without the need to use a 
complex clustering algorithm. Inspired by this idea, we developed a protein domain 
decomposition method based on diffusion kernels on protein graphs. We examined all 
combinations of four graph node kernels and two clustering algorithms to investigate 
their capability to decompose protein structures. The proposed method is tested on 
five of the most commonly used benchmark datasets for protein domain assignment 
plus a comprehensive non‑redundant dataset. The results show a competitive perfor‑
mance of the method utilizing one of the diffusion kernels compared to four of the 
best automatic methods. Our method is also able to offer alternative partitionings for 
the same structure which is in line with the subjective definition of protein domain. 
With a competitive accuracy and balanced performance for the simple and complex 
structures despite relying on a relatively naive criterion to choose optimal decompo‑
sition, the proposed method revealed that diffusion kernels on graphs in particular, 
and kernel functions in general are promising measures to facilitate parsing proteins 
into domains and performing different structural analysis on proteins. The size and 
interconnectedness of the protein graphs make them promising targets for diffusion 
kernels as measures of affinity between amino acids. The versatility of our method 
allows the implementation of future kernels with higher performance. The source code 
of the proposed method is accessible at https:// github. com/ taher imo/ kludo. Also, the 
proposed method is available as a web application from https:// cbph. ir/ tools/ kludo.

Keywords: Protein structure, Graph node kernel, Protein domain assignment, 
Clustering, Diffusion kernel

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Taheri‑Ledari et al. BMC Bioinformatics          (2022) 23:369  
https://doi.org/10.1186/s12859‑022‑04902‑9

BMC Bioinformatics

†Mohammad Taheri‑Ledari and 
Amirali Zandieh have equal 
contribution

*Correspondence:   
ch‑eslahchi@sbu.ac.ir

1 Department of Bioinformatics, 
Institute of Biochemistry 
and Biophysics (IBB), University 
of Tehran, Tehran, Iran
2 Department of Biophysics, 
Institute of Biochemistry 
and Biophysics (IBB), University 
of Tehran, Tehran, Iran
3 Department of Computer 
and Data Sciences, Faculty 
of Mathematical Sciences, Shahid 
Beheshti University, Tehran, Iran
4 School of Biological 
Sciences, Institute for Research 
in Fundamental Sciences (IPM), 
Tehran, Iran

https://github.com/taherimo/kludo
https://cbph.ir/tools/kludo
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04902-9&domain=pdf


Page 2 of 28Taheri‑Ledari et al. BMC Bioinformatics          (2022) 23:369 

Background
The first step in understanding protein function, evolution, and three-dimensional 
organization is typically to partition its structure into more elementary units called 
domains. Protein domains are compact and recurring units of proteins that are able 
to fold and function independently. Though it has been almost half a century since 
the introduction of the concept in 1973 by Wetlaufer [1], to define structural domains 
is still the subject of much debate. Generally, protein domain can be characterized 
from three different yet related standpoints [2–4]: (1) thermodynamic stability, fold-
ing autonomy, and compactness which reflect structural properties, (2) recurrence 
of conserved and genetically reused traits that represent evolutionary features, and 
(3) specific role in molecular mechanisms that corresponds to functional semi-
independence. The delineation of these structurally meaningful sub-units facilitates 
many proteomics investigations, including establishing the evolutionary relationship 
of the  structures [5], protein-protein interactions [6], de novo prediction of protein 
structure and function [7], and molecular dynamics studies [8, 9], which otherwise 
would be all challenging tasks in a full-length protein.

Though there exist several methods that attempt to predict domain boundaries 
from amino acid sequences, experimentally determined 3D structures of proteins 
provides rich information of atom coordinates that makes it a better starting point for 
delineation of the chains with readily available spatial structure. Generally, there are 
three types of approaches for the systematic identification of structural domains from 
3D structure [10]: manual, semi-manual, and automated. In manually curated clas-
sification databases, structural domains are basically assigned by visual inspection of 
human experts. SCOP [11] is the most extensive database of this kind, which mainly 
deals with recurrence properties and evolutionary aspects of structural domains. 
AUTHORS is another database that refers to a set of manually solved domain assign-
ments collected by Islam et al. [12]. Semi-manual databases are those that primarily 
employ automated methods for protein decomposition, but for instance, in the case 
of the CATH database, the inconsistencies between the methods in the first stage are 
resolved by experts’ supervision [13]. Efforts for proposing algorithmic methods for 
domain identification started almost immediately after introducing the concept itself 
[14–17]. However, it was not until the debut of Parser for Protein Unfolding Unit 
(PUU) [18] in 1994 that the use of separate extensive datasets for parameter opti-
mization and evaluation of automated methods became practicable. This, along with 
DETECTIVE [19], DOMAK [20], and DAD [12] marked the start of the second gen-
eration of automated methods for protein domain assignment and were implemented 
in the CATH database.

Exponential growth in the number of solved protein structures in the last two 
decades overwhelms human expert inspection and thus favors fully automated 
approaches [21]. In fact, new algorithms are being introduced almost every year 
since the first methods were launched. This diverse range of strategies includes but 
is  not limited to graph theoretical approaches [22–27], Gaussian network models 
[28, 29], Van der Waals interactions and hydrogen bonds analysis [30, 31], Ising mod-
els [29, 32], fuzzy clustering [33], and inspection of secondary structures [34–36]. 
Many methods, however, try to minimize the inter-domain interface and make use of 
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structurally compact regions [37–40]. Veretnik et al. provided a comprehensive com-
parison of the proposed algorithms [10], and dConsensus implemented a consensus 
of publicly open methods until 2010 [41].

Despite the rich history of domain assignment techniques, agreement among the dif-
ferent algorithms over a dataset rarely exceeds 80 percent of the consisting structures 
[42] as it is also the case for unanimity between the expert methods of SCOP and CATH. 
This mirrors the subjectivity of the task that stems from distinct criteria for domain 
definition, as described above. SWORD [43] is one of the latest automated methods 
that addressed this problem by offering alternative decompositions for a protein chain, 
though producing multiple parsing is not unprecedented among the previous methods 
[44, 45]. Nevertheless, presenting new algorithmic methods of protein decomposition is 
desirable since each approach bears certain disadvantages [46] and complex structures 
are often required to be tackled with different strategies for a convenient partitioning.

From the viewpoint of computer science, protein domain assignment is a clustering 
problem, therefore as a matter of course, the main focus of the previous methods was 
the clustering algorithms they employed for protein partitioning. While most authors 
have tried to develop complex clustering algorithms, but designing a measure of affin-
ity (proximity) between the amino acids that eases the clustering problem has remained 
rather uncharted.

Introduction to kernels

Given a set of n data points � = {x1, ..., xn} , a kernel function k : �×� → R expresses 
affinity between each pair of points in � . For any kernel function, there exists an implicit 
function φ : � → Hk that maps every data point xi ∈ � to a very high (or possibly infi-
nite) dimensional Hilbert space Hk where for each couple of points xi and xj in � the ker-
nel function k appears as the inner product k(xi, xj) =< φ(xi),φ(xj) > . Notice that using 
the kernel function k(., .) we are able to obtain affinity between each pair of points in the 
unknown space Hk without explicitly knowing this space [47]. Heretofore, several kernel 
functions have been introduced for clustering and classification of data points in various 
disciplines [48, 49].

Graph node kernels express affinity between each pair of nodes in a graph. A kernel 
matrix K on a graph is a symmetric positive semi-definite matrix, with entries [K ]ij as 
an indicative similarity coefficient between the nodes vi and vj . Among the graph node 
kernels  already presented, diffusion kernels are most frequently used in the literature 
[50]. The core idea is to let an initial quantity, like heat, to diffuse from each node to the 
neighboring vertices. The amount of heat exchanged between the nodes vi and vj over 
a time interval can then be a measure of similarity between vi and vj . Alternatively, this 
measure can be perceived as the probability of an initialized random walker on one of 
the starting nodes to meet another vertex. This essentially allows the measure to be more 
robust to noises by capturing the affinity through all the connecting paths between the 
two nodes. Though the primary affinity coefficient is defined locally, diffusion models 
reveal the graph’s overall structure at greater scales by running the process forward in 
time. This enables these methods to characterize a sound notion of global similarity 
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besides describing clusters as regions with a low probability of escaping for the random 
walker.

Protein decomposition using graph node kernels

Structural domains of proteins are so entangled that, in most cases, clustering of the 
amino acid residues using the Euclidean distance measure would not lead to appropri-
ate results [43]. In practice, kernel-based clustering methods are very useful when the 
structure of the individual clusters is highly non-convex or, broadly speaking, when the 
measures of dispersion or centrality are not valid descriptors of the actual clusters.

If there exists a kernel function that in its reproducing kernel Hilbert space (RKHS), 
structural domains of proteins become well separated, then protein structures can be 
parsed into domains without the need to use a complex clustering algorithm. Inspired 
by this idea, we developed a protein domain decomposition method based on diffu-
sion kernels on protein graphs. We examined all combinations of four graph node 
kernels and two clustering algorithms to investigate their ability to decompose pro-
tein structures into structural domains.

The performance of our method is tested on five of the most widely used bench-
mark datasets plus a set of protein chains with less than 40% homology based on 
SCOPe v2.07 [51]. The results are evaluated by a criterion commonly used to evalu-
ate domain assignment algorithms as well as an extrinsic clustering validity measure. 
Next, based on the evaluations, one of the kernels was selected to contrast KluDo’s 
accuracy against the four well-known available methods: DomainParser [22, 23], PDP 
[40], DDomain [39], and SWORD [43]. Moreover, we have discussed how the power 
of our method to provide alternative partitioning for a protein structure can address 
the concept of uncertainty in protein delineation and boost its compatibility with the 
various interpretations of a structural domain.

Methods
In this section we present our proposed method: Diffusion Kernel-based Graph Node 
Clustering for Protein Domain Assignment (KluDo). For a protein chain this method 
consists of 6 steps: (1) collecting structural information, (2) graph construction, (3) 
single/multi-domain classification, (4) kernel matrix calculation, (5) obtaining candi-
date clusterings, and (6) determining the number of domains. Figure 1 illustrates the 
overall workflow of KluDo for protein domain partitioning.

Collecting structural information

In the first step, required structural information about the protein structure are 
obtained. Secondary structure and accessible surface area information are extracted 
from the protein structure using the DSSP tool [52, 53]. Relative accessible surface for 
each residue is calculated via dividing its accessibility value to its maximum possible 
accessibility provided by Miller et al. [54]. The hydrophobicity of each residue is also 
assigned according to the Kyte-Doolittle scale [55]. Finally, radius of gyration [56] of 
the protein structure is calculated.
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Graph construction

A weighted undirected graph is constructed based on the protein structure such that 
each node represents an amino acid residue, and each pair of nodes is connected 
through an edge if there exists at least one atomic contact between the two amino 
acids. In our case, it is assumed that two atoms are in contact if their Euclidean dis-
tance is equal to or less than 4 Å. The number of atomic contacts between each pair 
of residues is considered as the weight of the edge between the two corresponding 
nodes. Further, to evaluate the plausibility of our approach for constructing the pro-
tein graphs a set of randomization tests were performed (see Additional file 1).

Single/multi‑domain classification

In this step, a bagging (bootstrap aggregating) classifier is used to categorize the input 
protein structure into either single or multi-domain classes. The classifier consists of a 
set of weak binary classifiers each trained on a balanced bootstrap sample of the training 
set (described below). This way, balanced sets are generated (by resampling) while avoid-
ing to neglect any part of data (by multiple bootstrapping).

To provide training data for the classifier, we subtracted ASTRAL40 (v2.07) and five 
well-known protein domain assignment benchmark datasets (described in the section 
“Test datasets”) from ASTRAL95 (v2.07), which led to a set of 13,350 proteins. From 

Fig. 1 The overall workflow of KluDo. Each box represents a step in the KluDo pipeline. The arrows link 
algorithmically consecutive steps. S and M stand for single‑ and multi‑domain, respectively. Also, M(=1) and 
M(>1) show a single clustering and a set of candidate clusterings, respectively. The arrow from the step 5 
(candidate clusterings) to single‑domain output is drawn to show the cases for which no possible clustering 
exist and thus the protein structure is reconsidered as single‑domain. The dashed arrow from the step 2 to 
the step 4 shows a special case where the number of domains is specified beforehand, so there is no need to 
use the single/multi‑domain classifier
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these proteins the ones that were considered as single-domain in both SCOP (SCOPe 
v2.07) and CATH (v4.2.0)  were labeled as single-domain and the ones that were con-
sidered as multi-domain in either SCOP or CATH were labeled as multi-domain. This 
resulted in a set of 11,546 protein chains consisting of 6862 single-domain and 4684 
multi-domain structures. To overcome the imbalancedness of the two classes a resam-
pling procedure was performed on each bootstrap before training (see Additional files 
1, 2).

Based on an 80%-20% train-test split evaluation, decision tree was chosen as the base 
estimator type from a set of candidate models. Also, the bootstrap size was set equal to 
the size of the training set to cover all data as much as possible. In order to set the two 
other hyper-parameters, namely, the number of decision trees and the resampling pro-
cedure (to balance bootstrap samples), a grid search over the training set using 5-fold 
cross-validation was performed. As a result, the combination of 190 decision trees and 
SMOTE resampling algorithm [57, 58] was selected as the best choice (see Additional 
file 1).

The input features for the single/multi-domain classifier can be grouped into three 
(overlapping) types: (1) biological features, (2) network-based features, and (3) cluster-
ability assessment features. Figure 2 shows a Venn diagram of the feature sets. In general 
78 features are used for the single/multi-domain classifier (see Additional file 1). Accord-
ing to Fig. 2, a portion of the features are quite self explanatory: the protein size (in terms 
of the number of residues), the radius of gyration [56] (as a measure of protein compact-
ness), mean and variance of hydrophobicity and surface accessibility of the residues, sum 
of edges and the ratio of the sum of edges to the number of nodes.

Fig. 2 Venn diagram of the input features for the single/multi‑domain classifier. Each label represents a 
group of one or more features (refer to Additional file 1)
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To calculate 42 of the features, three network centrality measures are used: degree, close-
ness [59] and betweenness [60]. Also, to calculate 30 of the features (most of which involve 
variance of alpha-carbon coordinates as a measure of clusterability), a principal component 
analysis (PCA) is performed on alpha-carbon coordinates. Moreover, Hopkins [61] and dip 
statistics [62] (as the measures of clusterability) are computed based on alpha-carbon coor-
dinates. In addition, network clustering coefficient (global and average local) [63, 64] is cal-
culated as a measure of network clusterability (see Additional file 1).

Since the constructed network in the previous step is weighted, in most cases there are 
two weighted and unweighted versions for the network-based features. Also as a vari-
ance can be calculated in two weighted and unweighted manners, a set of biological and 
network-based values are considered as weights when calculating weighted variances (see 
Additional file 1).

Kernel matrix calculation

In this step, a kernel matrix is calculated according to the one of the graph node kernels 
described below. In this study four graph node kernels were examined: Laplacian exponen-
tial diffusion kernel, Markov diffusion kernel, Markov exponential diffusion kernel and reg-
ularized Laplacian Kernel [49].

Laplacian exponential diffusion Kernel (LED) is computed as:

where β (the bandwidth parameter) can both serve as time parameter and scale param-
eter and L is the Laplacian matrix of the network. The value of the parameter β is speci-
fied according to the section “Bandwidth determination”). The Laplacian matrix L is 
defined as L = D − A , where D and A are degree and adjacency matrices, respectively. 
In the case of a weighted network, Aij is equal to weight of the edge between the nodes 
vi and vj , and zero if the two nodes are not connected. Also D is a diagonal matrix with 
the degree of the vertex i for Dii and zero for all off-diagonal elements. For a weighted 
network, Dii is computed as the sum of the weights of all edges linked to the node i. The 
exponential for the matrix −βL can be calculated by the Maclaurin series:

In fact the term (−βL)p counts the number of paths of length p between each pair of 
nodes while the denominator p! normalizes path counts by path lengths. With L as a sym-
metric matrix, KLED becomes a positive semi-definite matrix, as proved in [50].

Markov diffusion kernel (MD) defines a discrete-time counterpart of diffusion distance 
between the nodes of a graph in a diffusion model [65, 66]. With the help of periodic 
Markov chains, the kernel measures the similarity between the pattern of heat diffu-
sion between a pair of nodes. Thus, a zero distance is assigned when two nodes diffuse 
through the graph in exactly the same way [48]. MD kernel matrix is computed as:

(1)KLED = e−βL

(2)KLED =

∞

p=0

1

p!
(−βL)p

(3)KMD = Z(t)ZT (t)
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where Z(t) = 1
t

∑t
τ=1 P

τ with t as time (bandwidth parameter) and P as transition-
probability matrix for the Markov chain process that is defined as P = D−1A.

Markov exponential diffusion kernel (MED) was introduced to balance the similar-
ity measure in LED with respect to degree of vertices [67]. It modifies LED to prevent 
assigning higher similarity between central nodes compared to peripheral nodes:

where Markov matrix M is defined as M = D−A−nI
n  with I as identity matrix and n as 

the number of vertices in the graph. Here, n is in fact the maximum possible degree 
(i.e. n− 1 ) plus one for a simple (unweighted) graph. Since in the proposed method a 
weighted graph is constructed, naturally we need to substitute n with the potential maxi-
mum weighted degree plus one. Nevertheless, in this study, we considered de facto max-
imum weighted degree plus one instead of n.

Regularized Laplacian kernel (RL) was first designated in the context of regulariza-
tion operators as a kernel that counts all the paths between a couple of nodes in a graph, 
regardless of the path length [68] (refer to Eq.  2). This similarity measure can also be 
interpreted as relative forest accessibilities between nodes in terms of matrix-forest the-
orem [69]:

where 0 ≤ β ≤ 1 (and equivalently α > 0 ) limits the number of the edges in each forest 
as described in [69]. This kernel is also closely related to the well-known random walk 
with restart similarity and the commute-time kernel [70].

Bandwidth determination

Each of the four kernel functions possess a bandwidth parameter that its magnitude 
can be interpreted as the time of the diffusion or its corresponding random walk. 
Thus, this pre-set time must accord with the size of the graph so that the random 
walker has enough time to search the whole protein. Since our primary criterion for 
laying the edges in the graph is the Euclidean distance between each pair of residues 
(atomic contact), the radius of gyration [56] of a protein structure can be a proper 
indicator for the size of its respective graph. For a protein, this value is defined as the 
root mean square distance between each atom of the structure to its centroid and is 
proportional to the number of residues to the power of 0.5 to 0.6 [71]. The displace-
ment length of a random walker on the graph, on the other hand, is proportional to 
the square root of the time of the random walk. Therefore, it is a reasonable approxi-
mation to assume a simple quadratic relationship between the bandwidth parameter 
and the radius of gyration, i.e. η × Rg

2 where Rg is the radius of gyration and η is the 
proportionality constant. For each combination of a  kernel function and a  cluster-
ing method, to choose the value of η , the accuracies resulted of using predefined sets 
of values for η were calculated over the multi-domain structures (assigned as multi-
domain by both SCOP and CATH) of the training set provided in the section “Single/

(4)KMED = e−βM

(5)KRL =

∞
∑

p=1

(−βL)p = (I + αL)−1
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multi-domain classification”, assuming all structures as multi-domain. For each ker-
nel function and clustering method composition, three values of η that led to highest 
accuracies were obtained, and among them,  the value that best performed over the 
multi-domain structures of ASTRAL40 was selected. The determined values of η as 
well as the other parameter values of KluDo can be found in Table 1 (see Additional 
file 1).

Obtaining candidate clusterings

Given a kernel matrix obtained in the previous step, several clustering algorithms 
(desirably kernel-based) can be used to parse the protein structures. In this study 
we incorporated two clustering algorithms: kernel k-means [72] and spectral clus-
tering [73]. Both of these algorithms take the number of clusters, m, as an input 
parameter. In our method, starting from m = 2 , clustering is performed for larger 
values of m to the extent that is feasible (considering the the parameter values).

The kernel k-means algorithm works like the regular k-means algorithm in the fea-
ture space corresponding to a kernel function. Since cluster centers are not obtainable 
from the kernel matrix, the kernel k-mean algorithm uses a kernel trick to implicitly 
calculate the distance of the points to cluster centers. To reduce the sensitivity to ran-
dom initial partitioning, we repeat the algorithm for 100 times and then select the 
best output in terms of within-cluster sum-of-squares.

Also, spectral clustering operates on a similarity matrix (in our case, kernel matrix). 
It first forms a similarity graph based on the similarity matrix, then uses spectral 
decomposition of the graph Laplacian to obtain a spectral embedding of the points. 
Finally it employs a clustering algorithm to cluster the points based on their spectral 
embedding. For this purpose we chose the standard k-means algorithm. Similar to 
using the kernel k-means algorithm, here the k-means algorithm is also repeated for 
100 times and the best partitioning is selected.

Due to nature of the protein structures, some post-processing procedures are nec-
essary after clustering of the amino acids. Figure 3 shows the flowchart of the cur-
rent step including the post-processing procedures. A clustering of a protein chain 
of size n can be shown by a list of cluster labels: L =< l1, l2, . . . , ln > where li shows 

Table 1 Default parameter values

For each kernel function a couple of values are provided for η (the proportionality constant of the bandwidth parameters) 
that indicate the values for kernel k‑means (KK) and spectral clustering (SP), respectively

Parameter Default value Description

ηLED 6× 10
−3 (KK), 4× 10

−3 (SP) The bandwidth coefficient of the LED kernel

ηMD 2.5× 10
−1 (KK), 8× 10

−1 (SP) The bandwidth coefficient of the MD kernel

ηMED 4× 10
−1 (KK), 3.5× 10

−1 (SP) The bandwidth coefficient of the MED kernel

ηRL 2.1× 10
−2 (KK), 2.2× 10

−2 (SP) The bandwidth coefficient of the RL kernel

MDS 27 The minimum domain size

MHS 30 The maximum alpha‑helix size to merge

MSS 27 The minimum segment size

SDR 1.5 The maximum segment to domain count ratio
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the cluster label of ith residue in the protein chain. Following each clustering, to 
avoid splitting alpha-helices among multiple domains, each divided alpha-helix of 
size less than or equal to the parameter maximum alpha-Helix size to merge (MHS) 
is reassigned to the domain that comprises the major fraction of its residues (L is 
updated).

Fig. 3 The flowchart of obtaining candidate clusterings. The figure depicts the procedure of obtaining the 
set of candidate clusterings. Based on the kernel matrix (calculated in the previous step), for each value 
of m, the protein structure is first split into m clusters (using either kernel k‑means or spectral clustering). 
Next, the divided alpha‑helices with a maximum size of MHS are merged with their adjacent segments. In 
the subsequent steps the short and excessive segments (with respect to the MSS and SDR, respectively) 
are removed. The process is then repeated with increasing m until the generated partitioning is rejected 
according to the MDS parameter (designated as the accept step in the flowchart)
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Given the list L, the protein chain can be sliced into segments such that each seg-
ment consists of a set of consecutive residues that belong to the same cluster and no 
two consecutive segments are members of the same cluster. If we denote the number 
of segments by t it is obvious that t ≥ m . The segments can be shown by an ordered 
list S =< s1, s2, ..., st > in which si = (bi, ei) where bi and ei represent index of the first 
and last residues of the segment in the protein sequence, respectively.

Minimum segment size (MSS) is a main parameter of our algorithm that implies there 
should not be any segment with the size less than this value. As a result of clustering, short 
segments (with the size less than MSS) may be generated, which are removed in a greedy 
manner: starting with the shortest, the segment is merged with the adjacent ones. The pro-
cedure is repeated until no short segment is left. The maximum segment count to domain 
count ratio (SDR) serves as another input parameter of our algorithm. To meet this condi-
tion, the process of removing short segments is continued until the given ratio is fulfilled 
(designated as remove excessive segments in Fig. 3). Algorithm 1 describes the procedure of 
removing short segments.

In Algorithm 1 the Merge function takes a list of segments S and a segment si as input 
and merges the segment si with its adjacent segments ( si−1 and/or si+1 ) according to the 
procedure that is shown in Algorithm 2. The function d̄(., .) denotes the distance between a 
pair of segments, which in this study is the average distance between all pairs of residues in 
two segments. In other words, if we denote the matrix of distances between all residue pairs 
by D, the distance between two segments is calculated as:

The distance matrix D that shows the distance between all pairs of residues is calculated 
as:

where K is one of the kernel matrices described in the section “Kernel matrix calcula-
tion”. In Algorithm  2, the predecessor (successor) of a segment will be assumed to be 
NULL if the segment is at the start of (end of ) a protein chain. Also the cluster label of a 
segment si is denoted by L[si].

(6)d̄(sk , sp) =

∑sk
i

∑sp
j [D]ij

|sk |.|sp|

(7)[D]ij = [D]ji =
√

[K ]ii − 2[K ]ij + [K ]jj
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For a clustering  that consists of m clusters C1,C2, . . . ,Cm , if there exists a cluster Ci 
with the size less than the minimum domain size (MDS) parameter (i.e. |Ci| < MDS ), the 
whole clustering is rejected. As a general rule, the clustering process is dismissed if no 
feasible partitioning exists with respect to the input parameters of our method. In such 
case all the obtained clusterings up to m− 1 are considered as candidates. Otherwise the 
algorithm proceeds with m+ 1 . Note that if there is no feasible partitioning for m = 2 , 
the algorithm rejects the multi-domain assumption of the single/multi-domain classifier 
and the chain is reconsidered to be single-domain.

Determining the number of domains

Given a set of candidate clusterings (obtained from the previous step) and a matrix of 
pairwise distances between the residues (calculated using the Eq.  7) optimal number of 
domains is calculated in this step. To do so, we only consider hydrophobic amino acids 
(with a hydrophobicity index greater than 2) to calculate optimal clustering since their dis-
tribution is a stronger measure of structural modularity. So, from n amino acids, nh hydro-
phobic residues are selected ( nh < n ). Then the silhouette index [74] (a clustering validity 
measure) is calculated for each candidate clustering as:

where a(i) is the mean distance between the ith amino acid and all other amino acids in 
the same cluster and b(i) is the smallest mean distance of the ith amino acid to all amino 
acids in any other cluster, of which ith residue is not a member. Finally, the number of 
domains, is chosen such that the silhouette score is maximized:

(8)SLm =
1

nh

nh
∑

i=1

b(i)− a(i)

max {a(i), b(i)}

(9)mopt = argmax
m

{SLm}
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Results and discussion
Assessment method

In this study two methods were used to measure the correctness of a predicted 
decomposition with respect to a target one: domain overlapping score and adjusted 
Rand index. For both of these measures (described below) a certain threshold can be 
used to consider a predicted assignment as true. We used SCOP (SCOPe) [51] and 
CATH [75] assignments as the references for the evaluation. More precisely, we con-
sidered an assignment as true if it accords with the assignments in SCOP or CATH 
databases.

Domain overlapping score

This method is first presented by Jones et al. [76]. To compute the overlapping score 
(OL), a one-to-one optimal matching between the identified and target domains is 
first established (using the overlap table [76]). Then the percentage of the residues 
that fall in the same domains in both assignments is considered as the OL score. In 
other words, given a pair of predicted and true domain decompositions (depicted by 
A and P in Fig. 4, respectively) for a protein of size n, one can form an overlap table 
in which each element nij shows the number of the residues that are members of the 
domains i and j in the predicted and true decompositions, respectively. After obtain-
ing the optimal matching between the two decompositions, OL score is calculated as:

where Mopt is the optimal matching between the two assignments. An optimal match-
ing is a matching M where the overlapping between the two partitionings is maximized:

(10)OL =

∑

ij∈Mopt
nij

n

(11)Mopt = argmax
M

∑

(i,j)∈M

nij

Fig. 4 Overlap table. For a pair of domain decompositions (predicted versus actual) with equal number of 
domains (q domains), an overlap table is a square q× q matrix in which each element nij shows the number 
of the amino acids that are members of the domain i in the predicted decomposition and the domain j in the 
actual decomposition
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Thus, an assignment is considered to be true if: (1) the number of domains complies 
with the target assignment, and (2) the overlapping between the identified and reference 
assignments is not less than a certain threshold. In this paper the threshold of 85% is 
used to report the main results.

Adjusted Rand index

By having ground-truth domain decomposition of the protein structures, extrinsic 
methods of clustering evaluation are applicable to score predicted partitionings. A limi-
tation of the OL score is that it requires equality between the number of domains in 
the predicted and target assignments whereas there exist several extrinsic clustering 
validity indices that do not have such a limitation. To evaluate our method, we chose the 
adjusted Rand index (ARI) [77–79] which is one of the widely used extrinsic metrics to 
measure clustering performance. Given a protein chain of size n and a pair of its domain 
decompositions (predicted and true decompositions) a contingency table can be calcu-
lated in which each element nij shows the number of the residues that are members of 
the domains i and j in the predicted and true decompositions, respectively. So the main 
diagonal of the contingency matrix shows the pairs of residues that are assigned to the 
same domains. According to Fig. 5, ai and bi are the sum of rows and columns, respec-
tively. ARI was introduced to correct the Rand index (RI) [77] for chance. Based on the 
contingency table, ARI is calculated as follows:

To report the main results in this paper the threshold of 50% is used for the ARI meas-
ure. Since it is possible to calculate the ARI measure for any domain decomposition, in 

(12)ARI =

∑
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Fig. 5 Clustering contingency table. For a pair of domain decompositions (predicted versus actual) with w 
and q domains, respectively, a contingency table is a (w + 1)× (q+ 1) table (including summation row and 
column) in which each element nij shows the number of the amino acids that are members of the domain i 
in the predicted decomposition and the domain j in the actual decomposition. Also, ai and bi show the sum 
of the values in ith row and column, respectively
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this study the performance in terms of mean and standard deviation of the ARI score 
over each dataset is also presented.

Test datasets

Five of the most commonly used datasets for protein domain assignments plus a subset 
of latest release of ASTRAL SCOP were used as test sets. Benchmark_1  is a set of 467 
consensus chains between AUTHORS, CATH, and SCOP provided by Veretnik et  al. 
[80] via excluding chains with more than 90% identity. The chains in Benchmark_2 and 
Benchmark_3 are provided by Holland et al. with some rigorous criteria [2]. The number 
of domains agrees among SCOP, CATH, and the assignments by authors of the crystal-
lographic or NMR structures in literature. Besides, the included domains were selected 
as the representatives of different homology groups. The Benchmark_3 further meets 
the agreement of domain overlap between 3 domain assignments and is more consistent 
with SCOP and CATH databases. Only half of these two datasets are publicly available 
by the authors with 156 and 135 chains for Benchmark_2 and Benchmark_3, respec-
tively. The other two sets are the non-redundant set of 90 protein chains with a maxi-
mum sequence identity of 30% provided by Islam et al. [12] that here is referred to as 
Islam, and a frequently used benchmark of 55 proteins provided by Jones et al. [76] that 
here is referred to as Jones. Further, we utilized the latest release of ASTRAL SCOPe 
(version 2.07) to build our most comprehensive non-redundant set by removing the 
chains with more than 40% sequence identity; here is referred to as ASTRAL40. After 
removing the entries with missing chain IDs, this resulted in a set of 11958 chains, which 
is also used here to report the performance of different methods based on the number of 
domains.

Evaluation of diffusion kernels and clustering methods

We examined the capability of KluDo to assign protein domains in the case of using 
each pair of diffusion kernels (LED, MD, MED and RL) and clustering methods (ker-
nel k-means and spectral clustering) utilizing the parameter values of Table 1. For any 
of the eight cases, the performance was first measured on multi-domain structures 
of ASTRAL40 (those considered as multi-domain by both SCOP and CATH) by the 

Fig. 6 KluDo’s performance in the case of assuming all structures as multi‑domain over the multi‑domain 
structures of ASTRAL40. From the ASTRAL40 dataset, 2208 chains that were recognized as multi‑domain 
by both SCOP and CATH were considered. The accuracy (as the percent of true decompositions) for each 
combination of the four kernels (LED, MD, MED and RL) and two clustering algorithms (kernel k‑means and 
spectral clustering denoted by KK and SP, respectively) is presented. The accuracies are based on the OL and 
ARI scores with the thresholds of 85% and 50%, respectively (see Additional file 3)
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assumption that all protein chains consisted of at least two domains. This way, the dif-
ference between the efficiency of the kernels/clustering methods is elucidated by elimi-
nating the effect of the single/multi-domain classifier in the overall performance of the 
method (see the dashed arrow in Fig.  1). Figure  6 shows the accuracies based on the 
OL and ARI scores (using the thresholds of 85% and 50%, respectively) on 2208 multi-
domain chains from the ASTRAL40 dataset. According to the figure, while the kernel 
k-means algorithm shows a marginally better performance compared to spectral clus-
tering, the three kernels LED, MD and MED exhibit a higher accuracy compared to the 
RL kernel. Also, no significant difference can be observed in the performance of the 
three kernels LED, MD and MED. Also, the accuracies based on a range of thresholds 
of the OL score (from 5% to 95%) in the case of using each of the kernels with the kernel 
k-means algorithm are presented in Fig. 7. Again, no significant difference in the thresh-
old-independent performance of the LED, MD and MED kernels can be observed while 
RL under-performs considerably (see Additional file 3).

In order to analyze the performance of the whole pipeline (including the single/multi-
domain classifier), KluDo was executed on the five widely used benchmarks plus the 
ASTRAL40 dataset. According to Table  2, unlike the previous analysis, here spectral 
clustering has performed better in most cases compared to kernel k-means. Also, in all 
cases employing the LED kernel has led to a better or equal performance compared to 
the other three kernels with either of the two clustering algorithms (see Additional files 
4–6).

Finally, we inspected the performances over four extracted subsets of ASTRAL40 
based on the number of domains. The result of the benchmarking using the spectral 

Fig. 7 KluDo’s performance in the case of assuming all structures as multi‑domain over the multi‑domain 
structures of ASTRAL40 for different thresholds of the OL score. KluDo’s performance for each of the four 
diffusion kernels with kernel k‑means based on a range of thresholds for the OL score (from 5 to 95%) is 
tested over the set of 2208 structures from ASTRAL40 that were considered as multi‑domain by both SCOP 
and CATH (see Additional file 3)
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clustering algorithm and the OL score (with the threshold of 85%) on each subset (based 
on the SCOP assignments) is summarized in Fig.  8. Incorrect assignments are sorted 
into overcuts (assigning a higher number of domains than both of the SCOP and CATH 
assignments), undercuts (fewer domains than both of the SCOP and CATH assign-
ments), boundary inconstancies (less than 85% domain overlapping with either of the 
SCOP or CATH assignments) and other cases. All kernels show fairly similar precision 
on single- and two-domain chains. The majority of erroneous delineations in multi-
domain chains consist of undercuts and overcuts which in most cases are related to the 
performance of the single/multi-domain classifier. Also, boundary inconsistencies which 
are related to the clustering procedure have a low contribution in the false decomposi-
tions of the 3- and 4-domain chains (see Additional file 7).

Comparison with the other methods

Because of the relative superiority of the LED kernel compared to the other ones in 
the preceding evaluations, in the next step, we contrasted the performance of KluDo 
in the case of using the LED kernel (with both of the clustering methods) against four 
well-known available methods: DomainParser [22, 23], PDP [40], DDomian [39], and 
SWORD [43]. DomainParser works based on recursively bipartitioning of a weighted 
graph (flow network) using the Ford-Fulkerson algorithm: after setting a pair of artificial 
source and sink nodes in the protein graph, the minimum set of edges that disconnects 
the source and sink nodes are removed which results in two sub-graphs. This procedure 
is then repeated on each sub-graph until its stopping criteria are satisfied. DomainParser 

Table 2 KluDo’s performance over the test datasets

KluDo’s accuracy for all combinations of the four kernels (LED, MD, MED and RL) and two clustering algorithms (kernel 
k‑means and spectral clustering denoted by KK and SP, respectively) against the datasets Benchmark_1, Benchmark_2, 
Benchmark_3, Islam, Jones and ASTRAL40. The accuracies are based on the OL and ARI scores with the thresholds of 85% 
and 50%, respectively. The maximum accuracy in each row is illustrated in bold

LED MD MED RL

KK SP KK SP KK SP KK SP

Benchmark_1
OL 89.9 91.2 90.1 90.3 89.7 90.9 88.6 89.7

ARI 92.5 93.8 92.5 92.5 92.2 93.8 92.0 92.5

Benchmark_2
OL 77.6 79.5 76.9 77.6 78.2 79.5 74.4 74.4

ARI 85.3 85.9 85.9 85.3 85.9 85.3 84.0 82.1

Benchmark_3
OL 80.7 83.7 80.7 82.2 81.5 83.7 77.0 79.3

ARI 87.4 88.9 87.4 88.9 87.4 88.1 85.2 85.2

Islam
OL 88.0 89.3 86.7 86.7 89.3 88.0 82.7 82.7

ARI 92.0 93.3 90.7 93.3 90.7 93.3 90.7 92.0

Jones
OL 94.5 92.7 89.1 92.7 90.9 92.7 90.9 92.7

ARI 96.4 98.2 96.4 98.2 94.5 98.2 98.2 98.2
ASTRAL40
OL 84.0 84.7 84.0 84.7 84.1 84.7 83.2 83.8

ARI 87.3 87.8 87.4 87.1 87.4 87.7 86.9 86.9
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tries to avoid splitting of alpha-helices and beta-sheets using its graph construction pro-
cedure and stopping criteria. PDP attempts to decompose protein structures into smaller 
fragments based on the assumptions of compactness. By means of a series of cuts, it tries 
to maximize the inter-domain to intra-domain contact ratio. Another objective of the 
method is optimizing the number of expected contacts for a domain based on its sur-
face area. In PDP, alpha-helices and beta-sheets are more prone to be split into different 
domains, compared to DomainParser. Though proper domain boundaries occasionally 
fall within secondary structures, this feature, besides the compactness assumption, may 
lead to faulty divisions of proteins in the case of loose structures. Similar to PDP, the 
DDomain algorithm also divides protein structures by maximizing the intra-domain 
contacts. However, this method uses a pairwise statistical potential based on a normal-
ized contact-based domain-domain interaction profile rather than mere contact count 
in PDP. DDomain limits each structural domain to a continuous segment, which is not 
a valid assumption for many protein chains. SWORD makes use of evolutionarily pre-
served substructures (obtained by protein peeling [81]) to reconstruct protein domains 
in an agglomerative approach. These protein units represent protein architecture at a 
scale between secondary structure elements and domains. Alternative assemblies of 
these components allow multiple decompositions for a chain, which is introduced as a 
measure of ambiguity for a protein structure in this method. Unlike KluDo that uses flat 

Fig. 8 KluDo’s performance based on the number of domains over ASTRAL40. For each of the four diffusion 
kernels alongside spectral clustering, the plots A to D show the percent of the correct assignments (the 
cases of compliance with SCOP or CATH based on the OL score using an 85% threshold), overcuts (the 
cases of assigning a higher number of domains than both SCOP and CATH), undercuts (the cases of fewer 
domains than both SCOP and CATH), boundary inconsistencies (the cases of incorrect assignment where the 
number of domains complies with SCOP or CATH) and other cases, over the 1‑ to 4‑domain subsets (based 
on SCOP) of ASTRAL40. CA, OC, UC, and BI represent correct assignments, overcuts, undercuts and boundary 
inconsistencies, respectively (see Additional file 7)
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clustering methods, all four described methods are hierarchical methods, from which 
DomainParser, PDP and DDomain are top-down and SWORD is bottom-up.

The performance of each method along with KluDo (using the LED kernel and both 
clustering methods) based on the OL (85% threshold) and ARI scores (%50 thresh-
old) are illustrated in Fig.  9A, 9B, respectively. According to Fig.  9A, KluDo (using 
kernel k-means) along with PDP could obtain the best accuracy over Jones. Also, in 
Benchmark_1, KluDo (using spectral clustering) was able to get a score close to the 
best performing method, DomainParser. KluDo could also achieve the second high-
est score over the rest of datasets by employing spectral clustering. Moreover, Fig. 9B 
shows that KluDo in the case of using spectral clustering could attain the best accu-
racy over Benchmark_1, Islam and Jones (see Additional files 5, 6).

Fig. 9 Comparison of KluDo’s performance with that of four automatic methods over the test datasets. 
KluDo’s accuracy in the case of using the LED kernel with the two clustering methods is compared against 
the methods PDP, DomainParser, DDomain, and SWORD, over the test datasets. The accuracies are plotted 
based on the (A) OL and (B) ARI scores, with the thresholds of 85% and 50%, respectively. KK and SP stand for 
kernel k‑means and spectral clustering, respectively (see Additional file 5)
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Furthermore, Table 3 shows the accuracies based on the OL score (85% threshold) 
over ASTRAL40, separated by the number of domains (based on both SCOP and 
CATH). According to the table, using kernel k-means has led to a better performance 
compared to spectral clustering on the 2-domain structures, and the best perfor-
mance among all methods over the structures considered as 2-domain by CATH. On 
the other hand, using spectral clustering has resulted in a better accuracy on 3- and 
4-domain structures compared to kernel k-means. Despite having the same single/
multi-domain classifier, a minor difference in the single-domain accuracy between the 
two clustering methods can be observed. This drives by the cases in which the multi-
domain partitioning by the clustering algorithm cannot pass the assumed condition 
for a structural domain. These dismissed decompositions revise erroneous classifi-
cation of the structures as multi-domain. In addition, high accuracy of the method 
on single-domain structures suggests the potential role of the false negative predic-
tions (considering the single-domain structures as the negative class) by the single/
multi-domain classifier in the general performance of the method. As expected, PDP 
under-performed on single-domain chains as it tends to split non-compact struc-
tures illogically. Thus, the main reason of PDP’s lower precision over ASTRAL40 
(Fig. 9A) compared to the other methods is the high single- to multi-domain ratio in 
ASTRAL40. On the contrary, DomainParser displays an inferior accuracy against the 
other methods on the 4-domain chains due to its inability to cut through secondary 
structure elements. Nevertheless, it functions best in terms of overall performance 
based on the OL score and is only bettered by spectral clustering-powered KluDo on 
ASTRAL40. According to Table 3, there seems a balance in Kludo’s efficiency over the 
number of domains in the case of using the LED kernel and spectral clustering com-
bination. In general, the results indicate a competitiveness between the prediction 
power of the proposed method compared to the best available methods (see Addi-
tional files 1, 7).

Diffusion kernels on protein graphs

Graph representation provides a rich context for processing heterogeneous biological 
data. Although the graph node kernels used in this study are powerful measures of node 

Table 3 Comparison of KluDo’s performance with that of four automatic methods over ASTRAL40 
separated by the number of domains

KluDo’s accuracy in the case of using the LED kernel with the two clustering methods is compared against four automated 
methods over ASTRAL40 based on the OL score (considering an 85% boundary consistency threshold). The results are 
presented both overall and separated by the number of domains according to both SCOP and CATH. The maximum 
accuracy in each column is depicted in bold. KK and SP stand for kernel k‑means and spectral clustering, respectively

1‑domain 2‑domain 3‑domain 4‑domain Total

SCOP CATH SCOP CATH SCOP CATH SCOP CATH

KluDo (LED, KK) 91.1 92.4 70.3 78.1 44.7 48.2 16.5 27.7 84.0

KluDo (LED, SP) 91.1 93.2 66.9 76.4 51.1 52.1 39.6 41.1 84.7

DomainParser 93.1 94.7 76.4 75.3 76.8 56.9 38.9 35.1 85.5
PDP 85.8 89.3 78.4 74.4 76.4 57.8 58.3 47.0 82.1

DDomain 95.0 96.2 72.1 69.1 69.3 50.7 47.2 43.6 84.7

SWORD 90.1 93.1 74.9 71.6 73.9 53.1 50.7 35.1 83.2
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similarity, they suffer when applied to sparse graphs with a low number of links. Owing 
to their nature, which is based on the notion of heat diffusion, they are vulnerable to 
missing links in such graphs [82]. In the case of protein domains, however, correspond-
ing graphs represent dense structures that contain a well-interconnected network of res-
idues. Thus, diffusion kernels are not affected by noise in the form of missing links when 
implemented in protein decomposition.

Another limitation of such kernels is their time complexity, which scales more than 
quadratically in the number of nodes. More precisely, matrix exponentiation in the case 
of the LED and MED kernels has a computational complexity of O(n3) where n is the 
number nodes in the graph. The MD kernel computes t matrix multiplications, each one 
with a cost of O(n2.373) in the fastest algorithm [83]. The matrix inversion in the RL ker-
nel is also computed with a similar complexity to the matrix multiplication, all of which 
may be a computational burden with large networks. Again, this is not prohibitive when 
dealing with protein graphs. A figure in the range of 50 to 2000 residues for the majority 
of the proteins (with a median around 300 [84]) is well below a restrictive threshold for 
the computational complexity of the graph node kernels.

Also, to intuitively show whether diffusion kernels on protein graphs would lead to a 
better separation of the structural domains compared to the original 3D structures, the 
proteins can be visualized in both cases. To view projection of the protein structures in 
RKHS of the kernels, several methods are applicable from which we use kernel principal 
component analysis (kPCA) [85, 86]. Figure 10 shows the structure of a protein (PDB: 
1d0n, chain: A), in the original 3D space (by considering center of mass of each amino 
acid as its corresponding data point) and its projection on the first three principal com-
ponents (PCs) resulting from kPCA over the LED kernel matrix (Eq. 1 with 0.006× Rg

2 
as the bandwidth parameter value). The transformed representation shows a relatively 
better separation of structural domains compared to the original 3D structure.

Fig. 10 Visualization of a protein structure in RKHS of a kernel. The left plot (A) shows 3D structure of a 
protein (PDB: 1d0n, chain: A) based on center of mass coordinates of its amino acid residues. The right plot (B) 
shows the same structure transformed by the LED kernel (using 0.006× Rg

2 as bandwidth parameter value) 
and visualized using the three first PCs resulting from kPCA
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Alternative decompositions

As described in the “Methods” section, KluDo attempts to delineate the multi-
domain protein structures into two up to the highest possible number of domains. 
The results are then sorted based on the silhouette score over the hydrophobic resi-
dues to achieve the optimum partitioning. This generates a number of partitionings 
that their corresponding silhouette score can serve as a possible index of agreement 
with experts’ opinion. This enables our method to offer alternative partitioning for 
the same chain. Multiple decompositions are particularly meaningful in the struc-
tures that can be partitioned with different criteria for domain definition or the cases 
with no consensus parsing among experts. Some examples of such proteins along with 
their alternative decomposions by KluDo (using the LED kernel and kernel k-means) 
are presented in Fig. 11.

According to Fig. 11, rat DNA polymerase beta (PDB: 1bpb, chain: A, Fig. 11A) can 
assumed to be composed of three domains as annotated in SCOP and Sarawa et al. 
described: fingers (residues 88–151), palm (152–262), and thumb (263–335) [87]. 
Alternatively, the CATH database partitions this chain into two domains with palm 
and thumb parts as a single domain. As it is evident in the heat map, which illustrates 
the kernel matrix described in the “Methods” section, KluDo can detect both decom-
positions for this protein. A similar example is DNA polymerase IV (PDB: 1jx4, chain: 
A, Fig.  11B) with two structural domains in SCOP. Functional interpretation of its 
crystal structure unveils four domains in accordance with CATH: the finger (1–77), 
palm (78–166), thumb (167–233), and little finger (244–341) domains occur sequen-
tially from the N to C terminus [88]. Again, KluDo is versatile enough to suggest both 
alternatives plus a three-domain decomposition all with narrow silhouette score dif-
ferences. Here the heat map reflects how the first three domains (starting from N ter-
minus) are intertwined with each other.

In the case of egg-white lysozyme (PDB: 1lys, chain: A, Fig. 11C), the structure is anno-
tated as single-domain in both SCOP and CATH. Dynamic simulations and thermody-
namics investigations, however, detect two folding units for this chain [89, 90]. KluDo 
also suggests both the single- and two-domain delineations for lysozyme with a two-seg-
ment domain in the latter case. CFTR (PDB: 2bbo, chain: A, Fig. 11D) is another example 
of capability of KluDo in identifying folding sub-units. Though this chain is annotated 
as a single-domain structure in both SCOP and CATH databases, fluorescence studies 
reveal three folding sub-domains for this protein: [91] an N-terminal sub-domain that 
contains the ATP binding site (389–494), an alpha-helical sub-domain (495–564), and 
a central alpha/beta core analogous to the F1-type ATPase containing a six-stranded, 
largely parallel beta-sheet (565–673) [92]. Folding sub-units are of special importance 
in cystic fibrosis etiology where CFTR folds and misfolds are considered to be the major 
driver of this genetic disorder. Alternative decompositions may also be helpful in identi-
fying protein motions. In the case of elongation factor Tu (PDB: 2c78, chain: A, Fig. 11E) 
a three-domain parsing seems to be an obvious choice as is included in both SCOP and 
CATH. Yet molecular dynamics simulation elucidates how a GTP hydrolysis can induce 
a large conformational change within the protein [93]. The moving domain is also per-
ceivable by comparing PDB entries for GTP (PDB: 1eft, chain: A) and GDP (PDB: 1tui, 
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Fig. 11 Alternative domain decompositions. A to E are some practical cases that demonstrate versatility 
of KluDo in protein delineation. All structures are partitioned using the LED kernel and kernel k‑means 
clustering. The heat maps show the kernel matrices for the protein structures
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homotrimer) bound structures of elongation factor Tu which agrees with alternative 
partitioning found by our method.

Multi-partitioning enables KluDo to generate a rich library of different decomposi-
tions for protein chains. Above examples can certify the value of such library by which 
the problem of multi-criterial definition of structural domain can be addressed. In con-
trast to human perception which generally tends to favor only one solution, an auto-
mated method that allow more than one way for delimitation of a protein domain can 
provide multiple avenue of research for complex structures. To the best of our knowl-
edge, only SWORD and DHcL are capable of offering multi-partitioning among auto-
mated methods, while the latter one suffers from low accuracy on common benchmarks.

Conclusions
Protein domain assignment as an ongoing problem for several decades has been tack-
led by various methods via proposing novel clustering approaches. Alternatively, here 
we focused on the measure of affinity between amino acids instead of the clustering 
algorithm. With a competitive accuracy and balanced performance for simple and com-
plex structures (based on Table 3, considering the number of domains as an indicator 
of protein complexity) despite relying on a relatively naive criterion to choose optimal 
decomposition, KluDo revealed that diffusion kernels on graphs in particular, and kernel 
functions in general are promising measures to facilitate parsing proteins into domains 
and also performing different structural analysis on proteins. Graph node kernels are 
trending tools widely adopted in real-world applications, particularly in biological data 
in recent years; examples are gene association studies [67, 94] and PPI network analysis 
[95]. The size and interconnectedness of protein graphs make them promising targets for 
diffusion kernels as efficient measures of affinity between amino acids. Besides, develop-
ing novel graph node kernels such as the conjunctive disjunctive [96] and MinHash [83] 
kernels is currently a hot topic. Further, efforts for refining diffusion kernels may allow 
attaining higher performance from these techniques. Employing multi-layer graph node 
kernels [97] and link enrichment [82] are two cases of such studies.

Our proposed approach is a versatile framework that is open to implement more 
recent graph node kernels (or kernel functions in general) and can offer even greater 
precision for protein delineation with the help of future progress in this field. Moreover, 
the capacity of KluDo to propose multiple solutions can tackle the problem of biased 
study of ambiguous structures that is caused by considering only a single valid domain 
decomposition for such proteins. The source code of this project (written in Python 3.7) 
is available on Github at https:// github. com/ taher imo/ kludo. KluDo can be executed as 
a Windows/Linux/Mac command-line application. We also developed a web application 
to make KluDo available through the world wide web from https:// cbph. ir/ tools/ kludo. 
All the parameters in Table  1 besides kernel function, clustering method and lower/
upper bound for the number of domains can be set optionally by the users in both com-
mand-line and web applications (see Additional file 1).
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kPCA  Kernel principal component analysis
KK  Kernel k‑means
KluDo  Kernel‑based clustering for protein domain assignment
LED  Laplacian exponential diffusion kernel
MD  Markov diffusion kernel
MDS  Minimum domain size
MED  Markov exponential diffusion kernel
MHS  Maximum alpha‑helix size to merge
MSS  Minimum segment size
OC  Overcut
OL  Overlapping score
PC  Principal component
PCA  Principal component analysis
RKHS  Reproducing kernel Hilbert space
RL  Regularized laplacian kernel
SDR  Maximum segment to domain count ratio
SP  Spectral clustering
UC  Undercut
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Additional file 2. Features extracted from the datasets for the single/multi‑domain classifier. This file includes the 
extracted features for the single/multi‑domain classifier from the datasets ASTRAL95, ASTRAL40, Benchmark_1, 
Benchmark_2, Benchmark_3, Islam and Jones. For each protein structure, 78 features were extracted. The last column 
indicates class label. Refer to Additional file 1for description.

Additional file 3. Results and performance evaluation of KluDo over the multi‑domain structures of ASTRAL40, 
assuming all structures as multi‑domain. This file contains KluDo results as well as accuracy and mean and standard 
deviation of the ARI score over the multi‑domain structures of ASTRAL40, assuming all structures as multi‑domain. 
The accuracy is calculated based on the OL and ARI scores considering the thresholds from 5% to 100% with the 
interval 5%. From the ASTRAL40 dataset, 2208 out of 11958 protein chains that were recognized as multi‑domain 
by both SCOP and CATH were considered. All these structures were assumed as multi‑domain by KluDo (the single/
multi‑domain classifier was not employed). The results and performance for all kernel function‑clustering method 
combinations with the default parameter values are provided. KK and SP stand for kernel k‑means and spectral 
clustering, respectively.

Additional file 4. Results of KluDo along with the other methods over the test datasets. This file encompasses the 
results of KluDo along with the other methods (DomainParser, PDP, SWORD and DDomain)over the datasets Bench‑
mark_1, Benchmark_2, Benchmark_3, Islam, Jones and ASTRAL40. KluDo’s results are presented for all combinations 
of kernel functions and clustering methods using the default parameter values. KK and SP stand for kernel k‑means 
and spectral clustering, respectively.

Additional file 5. KluDo’s performance along with the other methods in terms of accuracy over the test datasets. 
This file comprises the accuracies over the results in Additional file 4. Accuracy is calculated based on both of the OL 
and ARI scores considering the thresholds from 5% to 100% with the interval 5%. In the cases of no agreement in the 
number of domains between predicted and target assignments, the OL score conventionally was set to ‑1. KK and SP 
stand for kernel k‑means and spectral clustering, respectively.

Additional file 6. Kludo’s performance along with the other methods in terms of ARI mean and standard deviation 
over the test datasets. This file includes mean and standard deviation of the ARI score over the results in Additional 
file 4 with respect to SCOP, CATH and the mean score based on SCOP and CATH. KK and SP stand for kernel k‑means 
and spectral clustering, respectively.

Additional file 7. KluDo’s performance based on the number of domains over ASTRAL40. This file consists of the 
accuracies over the results in Additional file 4 separated by the number of domains. Based on each of the SCOP and 
CATH databases, four subsets were extracted from ASTRAL40: 1‑domain, 2‑domain, 3‑domain, and 4‑domain struc‑
tures. For each subset, the percent of the correct assignments (the cases of compliance with SCOP or CATH based 
on the OL score using an 85% threshold), overcuts (the cases of assigning a higher number of domains than both 
SCOP and CATH), undercuts (the cases of fewer domains than both SCOP and CATH), boundary inconsistencies (the 
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