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r e v i e w h i g h l i g h t s 

• The mathematical connection is reviewed between the Volterra series and other nonlinear system identification techniques. 
• Methods developed for the identification of breathing cracks using its nonlinear behavior are summarized. 
• Experimental models developed for nonlinear system identification techniques are explored to evaluate their potential for the simulation of 
breathing crack mechanism. 
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a b s t r a c t 

Swift development of technology for monitoring complex structures demands major attention 
on the precision of damage detection methods. The early detection of any type of deterioration 
or degradation of structures is of paramount importance to avoid sudden catastrophic failure. It 
warns users about the impending state of the system. At the initiation of a crack or some other 
system faults, the system may generate a time-varying state of crack under ambient vibration. 
It represents the nonlinear breathing phenomena of crack. An assessment of this degree of non- 
linearity can be utilized for the detection, localization, and quantification of breathing cracks. 
Appropriate modeling of such cracks is thus necessary to capture distinctive nonlinear features. 
Recognizing this importance, various methods of modeling and nonlinear system identification 
which have been employed in the past for the detection of breathing crack are reviewed. The 
present study also explores some of the available vibration as well as acoustic-based damage 
identification techniques, chronologically connecting their evolutions. It summarizes the advan- 
tages and limitations of the methods to inspect potential future applications. The future scopes 
drawn from this review are highlighted to pave the path of wide-spread applications of nonlinear 
features of crack. 
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Review question: 1. How to apply nonlinear system identification techniques to detect presence of breathing crack in a system and its 

nonlinear behavior 

2. What are the advantages and limitations of different classical methods evolved for the solution of nonlinear 

equation 

3. Which methods among numerical and theoretical solution techniques perform better in capturing actual 

nonlinear phenomena of a system 

4. How nonlinear damage indicator is related to bispectrum and bicoherence analysis in detection of breathing crack 

5. What are the different analytical and numerical procedures available to precisely simulate behavior of breathing 

crack 

6. What are the limitations of different experimental models developed to simulate breathing behavior of crack and 

validate damage indicators’ performance 

Method details 

Background 

Operational environment of a structure may cause rapid degradation in the performance as well as the design life-span. Timely
monitoring is an important task to maintain safety, serviceability, and design life of the structure. Earlier, some in-situ non-destructive
tests were considered as one of the reliable solutions for monitoring a structure. However, to detect an internal or sub-surface flaw of
relatively small size in a complex structure by these methods is a strenuous job. Perceiving this constraint, the past decades have been
marked by a significant increase in research interest on the evaluation of various damage detection methods. Most of such methods
developed till days for monitoring structures are based on linear assumptions [1] . It may mislead the identification of crack initiation
at its incipient state. Apparently, a small crack seems to have insignificant effect on the response and could not be identified by the
minimal changes in linear response parameters. With frequent cyclic or fatigue loading, a crack from its embryonic state may grow up
to severe state within a small time-frame. Thus, detection of crack even at an early state is a priority now-a-days. It prevents the growth
of crack as well as mitigate the risk of collapse by optimizing maintenance of structure. The dire need for fatigue crack detection can
also be gauged by the derailment of a Norfolk Southern train that happened in the United States on 11th July 2012. After a thorough
investigation [2] , it was revealed that several fatigue damages occurred on the surface of rail by moving load of train caused the
fracture of section and consequently led to such incident. An early detection of fatigue crack by its nonlinear characteristics could
have prevented such a tragic incident. The cost involved in repairing severe damage that may have grown gradually from a small
crack can be reduced if the initiation of the crack can be identified in advance. A structure that behaves linearly in its healthy state,
may exhibit nonlinear characteristics with the appearance of small cracks. Several past studies [3] have concluded that the sensitivity
of nonlinear parameters is prominent even at small damage with time varying states of crack. Generation of higher harmonics, shift
of resonance frequency are some of the sensitive nonlinear features that indicate presence of damage or degradation of material.
A fully open model of crack is unable to represent these features. Consideration of nonlinear features of breathing cracks or crack
modulated guided waves enhances early damage detection capability. It in turn safeguards the member against sudden collapse as
well as rings the alarm about faulty members. There may also co-exist many other sources of nonlinearity. Material properties, loose
fixity of joint, etc. are among those which also produce nonlinearity in the response. Extraction of only damage-sensitive features
from the response is thus an exigent task in the detection of fatigue cracks. Before a detailed review, evolution of vibration, acoustic,
and vibro-acoustic based methods originated for early detection of breathing crack is briefly outlined here. 

The effect of local cracks on the vibration characteristics is first studied by Kirmsher [4] in 1944. The theoretical background of
the vibration characteristics of a cracked shaft is then developed by Dimarogonas [5] . Pafelias [6] with the knowledge of vibrational
property of a cracked shaft and extensive experimental analysis, proposed the concept of harmonic generation in presence of a
crack. A few years later, generation of superharmonics by an external compressive-stretching cycle between two unbonded surfaces 
is experimentally investigated by Buck et al. [7] . Afterward, most of the research conducted on dynamic analysis of closing crack
considered this phenomenon as a basic nonlinear feature. Tsyfansky and Beresnevich [8] studied the sensitivity of natural frequency to
damage induced changes. A minimum deviation of 1 % to 1.5 % in natural frequency is observed when crack spreads over 15 % − 20 %
area of the cross-section of a member. Several studies based on natural frequency and mode shape performed at this time are lacking
to precisely identify small cracks due to their low sensitivity to damage. Detection of the most sensitive damage feature that affects
response of a structure with real crack scenarios is yet to be unveiled. An effort is also made to mathematically express the response
obtained from the system in presence of nonlinear crack. Mild crack with minimum degree of nonlinearity is attempted to solve by the
application of perturbation technique. For strongly nonlinear system an exact long-term solution is difficult to predict by this method.
Maezawa et al. in 1980 [9] demonstrated a possible closed-form solution for an un-symmetric piecewise-linear system subjected to 
a periodic response. Fourier series expansion with appropriate coefficients is employed to obtain steady-state solution of a single
degree-of-freedom (DoF) system with two distinct boundary conditions. The convergence of the solution is further improved by series 
transformation for the analysis of higher-order harmonics [10] . The assumed solution procedures require exact time of contact of
two cracked surfaces; deviation of which may result increased uncertainty in the solution . It also couldn’t incorporate every type of
nonlinear feature in the predicted solution. Satio [11] in 1985, used a complex form of variable and fast Fourier transformation (FFT)
for the solution of vibration response of Jeffcott model. Subharmonic phenomenon is not included in this solution. Drawbacks of
these solutions are addressed in the work of Choi and Noah [12] by using harmonic balance Newton-Raphson method along with FFT
algorithm. The solution of nonlinear equations by this method shows that the occurrence of superharmonic resonance is limited to
2 
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some specific range of frequency. Subharmonic resonant frequency is also evaluated by this method. In another study, the probability
of the detection of closing crack and the reliability of measured crack size are experimented by Clark et al. [13] with different testing
procedures. Both magnetic particle inspection (MPI) and alternating current field measurement (ACFM) non-destructive techniques 
exhibited 100 % reliability in predicting crack length with ±10 % variations during opening and closing of crack. On the other hand,
dye penetration and Rayleigh wave failed to determine the crack length in the closing cycle with a fair amount of reliability. The
formulation of advanced methods for the localization and estimation of breathing crack depth has been taken up in numerous research
following previous works [14–16] . However, the nature of nonlinear vibration makes it difficult to develop a single methodology
for all types of problems. The characteristics of nonlinear vibration for different range of parameters of the system is still being
investigated to find either a common solution technique or a damage-sensitive feature [17–20] . 

Advancement in various nonlinear system identification techniques also extended its application area to detection of cracks with 
nonlinear characteristics. A detailed discussion on various nonlinear system identification techniques has been presented in a review 

by Kerschen et al. [21] . Peng et al. in 2007 [22] introduced nonlinear output frequency response function (NOFRF) to detect the
presence of cracks and investigated the impact of the crack size on different frequency peaks. Precise estimation of nonlinear response
is the main constraint for the successful application of damage indicators developed in the past. Investigation on the development
of advanced nonlinear solution procedures is also simultaneously grown at this time. Chatterjee [23] in 2010 applied Volterra series
for the analysis of nonlinear response of a cantilever beam with a fatigue crack. In this work, nonlinear mechanism of fatigue crack
is modeled by considering the system as bilinear oscillator. Bilinear restoring force is expressed in the form of a polynomial series
for this system. The crack size is then measured quantitatively by comparing amplitudes of first and second harmonic responses. The
effect of crack location and depth on the fundamental frequency of a beam is investigated in the work of Rezaee and Hassannejad
[24] . Simplicity of linear equations for each region in bilinear oscillator is utilized by Yan et al. [25] to solve the breathing crack
induced bi-linear stiffness. Natural frequency for each stiffness region is separately estimated and compared. The change in natural
frequency in each region indicates the presence of breathing crack which is further employed for quantitative measurement of the
crack. Bifurcation diagram, distortion of phase space, and Poincaré map are other indicators of nonlinear systems. Hence, these 
indicators have also been exercised in various works to extract unique features of breathing cracks [ 26 , 27 ]. 

Modulation of a propagating waveform by the interference of a crack is also proved to be superior in the detection and charac-
terization of fatigue crack. In the early 1960, ultrasonic waves were majorly employed to detect material nonlinearity. The nonlinear
features of wave interaction with crack such as scattering or reflection of wave, generation of higher harmonics are evolved gradually
for the identification of micro crack in different structures such as plate, cylindrical shell etc. Richardson [28] analytically computed
efficiency of second harmonic generation in presence of nonlinear crack. It is described as a function of the ratio of ambient hydro-
static pressure to the maximum compressive stress amplitude of the incident wave. Later, in 1993 Shan and Dewhurst [29] applied
the modulation of ultrasonic wave to detect surface crack. Solodov et al. [30] discovered some “nonclassical ” effects generated by
the interaction between high-frequency nonlinear acoustic wave and asymmetrically varied stiffness characteristics of crack as a 
feature of contact acoustic nonlinearity (CAN). Interaction of fatigue crack adjacent to a fastener hole and Lamb wave propagated
through the wave guide is studied by Cho and Lissenden [31] . An effort is made to establish a relation between damage severity
and transmission coefficient ratio. Shen and Giurgiutiu [32] in 2014 formulated a predictive solution technique with two modeling 
approaches for crack-wave interaction. The generation of second harmonic as a signature of nonlinear wave interaction is also vali-
dated in this work with analytical solution. In 2018, to understand the nonlinear phenomenon developed by crack-wave interaction,
CAN is analytically scrutinized by Wang et al. [33] and a reference free nonlinear index is proposed to correlate crack parameters
with wave-embodied nonlinear characteristics. At the same time, by capturing scattered wave generated at the break-surface of a
two-dimensional waveguide, orientation and depth of crack are measured by Wang et al. [34] . Till date, most of the approaches
assumed to numerically simulate breathing behavior of crack are computationally challenging. One year later in 2019, Shen and
Cesnik [35] numerically simulates nonlinear pattern developed by the interaction of Lamb wave and breathing crack with a local
interaction simulation approach. A notable result is achieved in terms of computational efficiency with the adoption of this method.
With more improvement, three-dimensional (3D) fatigue crack modeling approach is proposed by Xu et al. [36] in 2021 for the study
of model driven growth prediction. An analytical solution to estimate second harmonic amplitude of lamb wave is also developed by
Xu et al. [37] . Afterward, in a recent study (2022), Xu et al. [38] investigated scattered Rayleigh wave for surface/sub surface crack
estimation. A closed-form expression for displacement magnitude of second harmonic in both surface or subsurface crack conditions 
is formulated by applying second equivalent stress component of decomposed Rayleigh wave at the crack surface. 

With the advancement of technology and signal processing tools, sensitivity of guided wave unfolded as one of the promising
technology to detect breathing crack or micro-crack. However, practical application and interpretation of ultrasonic wave based 
methods are still challenging. Requirement of trained and experienced operator, limited application area, need of coupling between 
two-surfaces in case of contact based technique are common constraints in the application of guided-wave based methods. Addition-
ally, a long inspection time also hampers operation of the system. Recent research on air-coupled or non-contact coupling methods,
development of fully automated system has relaxed the obscurity to some extent. Most of the ultrasonic based methods are efficient
in determining material degradation or micro-crack in a plate or thin-walled structures. On the contrary, vibration based methods 
are less sensitive to micro-crack and complicated in solving theoretical or numerical evaluation of nonlinear breathing crack. The
present study hence aimed at attracting researchers’ attention in the advancement of existing techniques to detect breathing crack or
micro-crack with improved sensitivity and versatility. 

Many reviews have been performed in the past on nonlinear system identification methods, analysis of vibration characteristics 
of different members [5] , application of nonlinear dynamics on SHM [39] , modeling of nonlinear crack-wave interaction [40] , etc.
3 
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Fig. 1. (a) Schematic representation of breathing crack with SDOF spring-mass system, and (b) force-displacement diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, to the best of author’s knowledge a complete review dedicated to the nonlinear breathing crack from modeling to different
damage detection techniques is not taken up before. 

The present review summarizes a number of techniques associated with the solution and identification of breathing crack to
expand their implementations. The study also upholds the potential and limitations of different methods to light up the required
areas of improvement in future. With this aim, the whole review is organized as follows. At first, the behavior of a breathing crack is
mathematically explained to give an insight into the embedded nonlinear characteristics. Some system identification techniques and 
methods of solution of nonlinear equations applied for breathing crack identification are then reviewed. Limitations and advantages of
different nonlinear methods are highlighted therein. Since, nonlinear dynamics is a vast topic of research, an exhaustive list of methods
could not be reviewed in a single article. A few state-of-the-art methodologies are selected in this work to reflect an overview about
the difficulties and prospect in identification of nonlinear behavior of cracks for the early prediction of damage. Next, an overview of
different modeling approaches; theoretical, numerical, and experimental modeling of breathing crack is discussed. Finally, the future 
scope of nonlinear analysis for the detection of very small damage in structure is presented in the conclusion section. 

Insight to breathing mechanism with equation of motion 

In Fig. 1 , the mechanism of breathing crack is shown with a single DoF system. The change in stiffness of this system depends on
the position of mass m which is again a function of time t . When stiffness of both spring k 1 and k 2 contributes to the total stiffness
k of the system, it restores the undamaged state. Otherwise, it represents a damaged state. Here, the excitation force P(t) is shown
to have applied along positive x direction. Under the action of force when position of mass is x ≤ x g , total stiffness of the system
becomes summation of k 1 , k 2 and for x ≥ x g only stiffness k 1 contributes to the total stiffness of the system. This variation of stiffness
is explained graphically through the force-displacement diagram in Fig. 1 (b). The equation of motion of the system is shown in
Eqs. (1) and (2) defines the stiffness variation as a function of displacement. It can be seen from this equation that depending on the
position of mass, the system will have two different stiffness 

𝑚 ̈𝑥 + 𝑐 ̇𝑥 + 𝑘 ( 𝑥 ) 𝑥 = 𝑃 ( 𝑡 ) ; (1) 

𝑘 ( 𝑥 ) = 

{ 

𝑘 1 + 𝑘 2 ; 𝑥 ≤ 𝑥 𝑔 
𝑘 1 ; 𝑥 > 𝑥 𝑔 

(2) 

values. It thus results in two natural frequencies ω 1 and ω 2 . It is reported by Yan et al. [32] that in the case of free-vibration of the
system, frequency of the whole system ω 0 is related to these two frequencies by Eq. (3) . 

ω 0 = 

2 ω 1 ω 2 
ω 1 + ω 2 

(3) 

If the period for ω 1 = 2 𝜋∕ 𝑇 1 and ω 2 = 2 𝜋∕ 𝑇 2 , then total period 𝑇 of the system will be ( 𝑇 1 ∕2 + 𝑇 2 ∕2) . From free-vibration responses,
it has been observed that for systems with bilinear stiffness total period does not vary which may not be the case for other nonlinear
systems. Different theory for stiffness variation in presence of breathing crack is proposed by various researchers in the past. It is
discussed in the subsection ‘Analytical modeling’ under the section ‘Modeling of breathing crack’. The nonlinear features though 
sensitive to damage may get suppressed by similar features developed by various sources of noise. These noises present similar
characteristics in the frequency spectrum as a nonlinear response. It is thus difficult to isolate the original behavior of the structure
from measured responses. The above two challenges; (a) solution of nonlinear equations and (b) identification of the presence of
nonlinearity and its source have been addressed in many recent studies [ 41–43 ]. However, a global method applicable to every type of
nonlinear problem is still unknown. Gudmundson [42] compared the effect of breathing crack on the natural frequency of the system.
The analysis is performed on a cantilever beam with a sine-sweep signal generator. Perturbation method is used to solve the finite
element equations. Different crack locations and crack lengths are chosen to observe the effect on the first few eigenfrequencies. For
small crack, frequencies of beam computed considering breathing crack almost matched with open crack model. With the increase in
crack length, residual stress is developed at the crack tip. This residual stress acts against the opening of the crack and during vibration
it results in partial closure of the crack. Hence, the natural frequency of the member with a breathing crack falls between frequency
4 
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of the member with a fully open crack and the state when crack is completely closed. Behavior and impact of breathing crack on
the dynamic response are further investigated by several researchers to develop new methods for the detection and localization of
early cracks in the member. Most studies have established a relationship between harmonics obtained from the frequency response 
with the existence of breathing cracks. The amplitude of these harmonics depends on many factors including modeling technique and
solution procedure. Among these, some of the promising methods are reviewed in the present article. 

Identification of breathing crack by vibration based methods 

Expansion series based methods and correlation with Volterra series 

The development of nonlinear dynamics in the last few years has decoded various unique features embedded in the response. The
time-variant stiffness characteristics of a system with breathing crack made it possible to apply the nonlinear system identification
technique for ensuring presence of the smallest crack in the structure. There are various expansion series available to model a
nonlinear system such as Volterra series, Wiener series, Taylor series, etc. However, all series are closely connected to Volterra
series as described by Cheng et al. [49] . Hence, this section first describes the development of the Volterra series as an efficient
solution method for nonlinear systems in the time domain. Then, different methods evolved for the simplified application of Volterra
functions are discussed concerning the identification of breathing cracks. The Volterra series has been established as the foundation of
several advanced methods developed for the identification of nonlinearity. Practically, the behavior of a structure may not completely 
follow linear assumptions made for the assessment of response. This is because of the formation of additional resonating frequency
components of the system. In presence of nonlinearity, a part of the energy transfers to the higher harmonic components. It results
in the generation of additional frequency components other than natural frequency and forcing frequency of the system. To define
this type of system, Volterra series is developed by extending convolution integral form of linear system to nonlinear one. If a linear
system is excited by a unit impulse Dirac function at 𝜏 secs earlier, the response of the signal 𝑥 ( 𝑡 ) at time 𝑡 is defined by Eq. (4) . 

𝑥 ( 𝑡 ) = 

∑
ℎ ( 𝜏) 𝛿( 𝑡 − 𝜏) Δ𝜏; (4) 

Here, ℎ ( 𝜏) is the response at unit impulse. If an impulse force of amplitude 𝑝 is applied for a short time duration, the response of the
linear system is expressed as Eq. (5) . 

𝑥 ( 𝑡 ) = 

∑
ℎ ( 𝜏) 𝑝𝛿( 𝑡 − 𝜏) Δ𝜏 (5) 

The input signal with amplitude 𝑝 applied for a short time duration can also be represented as ( Eq. (6) ), 

𝑝 ( 𝑡 − 𝜏) Δ𝜏 = 𝑝𝛿( 𝑡 − 𝜏) Δ𝜏, & 𝑃 ( 𝑡 ) = 

∑
𝑝𝛿( 𝑡 − 𝜏) Δ𝜏 (6) 

Replacing the Dirac function in Eq. (4) by the input forcing function, the total response 𝑥 ( 𝑡 ) for a series of impulse input signals
can be written as, 

𝑥 ( 𝑡 ) = 

∑
ℎ ( 𝜏) 𝑝 ( 𝑡 − 𝜏) Δ𝜏 (7) 

When 𝑑𝜏 → 0 , the approximated input signal in Eq. (7) transforms to a more accurate representation of the excitation signal. The
output response is then written as, 

𝑥 ( 𝑡 ) = ∫
∞

0 
ℎ ( 𝜏) 𝑝 ( 𝑡 − 𝜏) 𝑑𝜏 (8) 

The expression of output signal in Eq. (8) for any type of excitation is only possible where the principle of superposition is
applicable and the scaling of output remains same as the input signal. This is the main constraint for the application of the above
convolution integral technique in nonlinear systems. In Eq. (1) , the variation of stiffness can be represented in a polynomial form by
Eq. (9) . 

𝑚 ̈𝑥 + 𝑐 ̇𝑥 + 𝑘𝑥 ( 𝑡 ) + 

𝑛 ∑
𝑖 =2 

𝑘 𝑖 𝑥 
𝑖 ( 𝑡 ) = 𝑃 ( 𝑡 ) ; 𝑖 is an integer (9) 

𝑘 𝑖 is the nonlinear stiffness. The above nonlinear system can behave linearly when the value of 𝑥 𝑖 ( 𝑡 ) is so small that its multiplication
with nonlinear stiffness parameter 𝑘 𝑖 𝑥 

𝑖 ( 𝑡 ) →0 for 𝑖 ≥ 2 . The physical significance of this first condition is that a nonlinear system
behaves linearly when the external forcing amplitude is very small. Also, in case of nonlinear stiffness parameter 𝑘 𝑖 = 0 and the same
equation defines a linear system. Now, if the Eq. (9) is used for the evaluation of a nonlinear system response under Dirac forcing
function, an error ο( ε 1 ) will occur. The magnitude of o(ε 1 ) ( Eq. (10) ) depends on the system parameter and amplitude of the excitation
force. 

𝑥 ( 𝑡 ) = 

∑
ℎ 1 

(
𝜏1 
)
𝛿
(
𝑡 − 𝜏1 

)
Δ𝜏1 + 𝑜 

(
𝜀 1 
)

(10) 

Similarly for two impulses with time delay Δ𝜏1 and Δ𝜏2 

𝑥 ( 𝑡 ) = 

∑
ℎ 1 

(
𝜏1 
)
𝛿
(
𝑡 − 𝜏1 

)
Δ𝜏1 + 

∑
ℎ 1 

(
𝜏2 
)
𝛿
(
𝑡 − 𝜏2 

)
Δ𝜏2 + o 

(
ε 2 
)

(11) 

The error value ο( ε 2 ) in Eq. (11) is more than ο( ε 1 ) as the impulse force continues to be summed up to represent the original input
signal. The appearance of nonlinearity can be defined as the interaction between responses under each impulse. Hence, incorporating
5 
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an extra term as a function of product of two response amplitude, the value of ο( ε 2 ) can be minimized. The above response thus can
be modified more accurately as, 

𝑥 ( 𝑡 ) = 

∑
ℎ 1 

(
𝜏1 
)
𝛿
(
𝑡 − 𝜏1 

)
Δ𝜏1 + 

∑
ℎ 1 

(
𝜏2 
)
𝛿
(
𝑡 − 𝜏2 

)
Δ𝜏2 + 

∑∑
ℎ 2 

(
𝜏1 , 𝜏2 

)
𝛿
(
𝑡 − 𝜏1 

)
𝛿
(
𝑡 − 𝜏2 

)
Δ𝜏1 Δ𝜏2 + o 

(
ε 21 

)
(12) 

Here in Eq. (12) , 

o 
(
ε 2 
)
= 

∑
𝜏1 <𝑡 

∑
𝜏2 <𝑡 

ℎ 2 
(
𝜏1 , 𝜏2 

)
𝛿
(
𝑡 − 𝜏1 

)
𝛿
(
𝑡 − 𝜏2 

)
Δ𝜏1 Δ𝜏2 + o 

(
ε 21 

)
(13) 

The additional term in Eq. (13) . is called second-order impulse response function. For a continuous input signal, if 𝑛 number of
impulses are considered to approximate the excitation input and if 𝜏𝑖 = 𝑛 Δ𝜏𝑖 , the generalized response at any time instant 𝑡 can be
written as, 

𝑥 ( 𝑡 ) = 

𝑛 ∑
𝑖 =1 

ℎ 𝑖 
(
𝜏𝑖 

)
𝛿
(
𝑡 − 𝜏𝑖 

)
Δ𝜏𝑖 + 

𝑛 ∑
𝑖 1 =1 

𝑛 ∑
𝑖 2 =1 

ℎ 2 

(
𝜏𝑖 1 

, 𝜏𝑖 2 

)
𝛿

(
𝑡 − 𝜏𝑖 1 

)
𝛿

(
𝑡 − 𝜏𝑖 2 

)
Δ𝜏𝑖 1 

Δ𝜏𝑖 2 
+ …

+ 

𝑛 ∑
𝑖 1 =1 

……
𝑛 ∑

𝑖 𝑛 =1 
ℎ 𝑛 ( 𝜏𝑖 1 , 

𝜏𝑖 2 
, … ..𝜏𝑖 𝑛 

) 𝛿
(
𝑡 − 𝜏𝑖 1 

)
𝛿

(
𝑡 − 𝜏𝑖 1 

)
…… 𝛿

(
𝑡 − 𝜏𝑖 𝑛 

)
Δ𝜏𝑖 1 

Δ𝜏𝑖 2 
… . Δ𝜏𝑖 𝑛 

+ 𝑜 
(
𝜀 𝑛 
)

(14) 

The value of ο( ε 𝑛 ) in depends on the degree of higher-order response function. Response of a system subjected to idealized discrete
input is given by Eq. (14) . If the signal is continuous over time, i.e. if Δ𝜏𝑖 → 0 , 𝑛 → ∞ and arbitrary input 𝑃 ( 𝑡 ) = ∫∞

0 𝑝 ( 𝑡 − 𝜏) 𝑑𝜏, the
infinite series of output signals is represented as, 

𝑥 ( 𝑡 ) = ∫
∞

0 
ℎ 𝑖 
(
𝜏𝑖 

)
𝑝 
(
𝑡 − 𝜏𝑖 

)
𝑑𝜏 + ∫

∞

0 ∫
∞

0 
ℎ 2 

(
𝜏1 , 𝜏2 

)
𝑝 
(
𝑡 − 𝜏1 

)
𝑝 
(
𝑡 − 𝜏2 

)
𝑑𝜏1 𝑑𝜏2 + …

+ ∫
∞

0 
…… . ∫

∞

0 
ℎ 𝑛 

(
𝜏1 , 𝜏2 , … 𝜏𝑛 

)
𝑝 
(
𝑡 − 𝜏1 

)
𝑝 
(
𝑡 − 𝜏1 

)
… 𝑝 

(
𝑡 − 𝜏𝑛 

)
𝑑 𝜏1 𝑑 𝜏2 … 𝑑 𝜏𝑛 (15) 

For a casual system, the response of which does not depend on the input function of future, as assumed for a Volterra series, the
limit of Eq. (15) can be extended to −∞ 𝑡𝑜 + ∞ from 0 to +∞. The casualty of the series also stipulates that if any of the arguments
𝜏1 , 𝜏2 ,…, 𝜏𝑛 is negative, the Volterra kernel ℎ 𝑛 ( 𝜏1 , 𝜏2 , … 𝜏𝑛 ) will be zero. Hence, 

𝑥 ( 𝑡 ) = ∫
∞

−∞
ℎ 𝑖 
(
𝜏𝑖 

)
𝑝 
(
𝑡 − 𝜏𝑖 

)
𝑑𝜏 + ∫

∞

−∞ ∫
∞

−∞
ℎ 2 

(
𝜏1 , 𝜏2 

)
𝑝 
(
𝑡 − 𝜏1 

)
𝑝 
(
𝑡 − 𝜏2 

)
𝑑𝜏1 𝑑𝜏2 + …

+ ∫
∞

−∞
…… . ∫

∞

−∞
ℎ 𝑛 

(
𝜏1 , 𝜏2 , … 𝜏𝑛 

)
𝑝 
(
𝑡 − 𝜏1 

)
𝑝 
(
𝑡 − 𝜏1 

)
… 𝑝 

(
𝑡 − 𝜏𝑛 

)
𝑑 𝜏1 𝑑 𝜏2 … 𝑑 𝜏𝑛 

= 𝑥 1 ( 𝑡 ) + 𝑥 2 ( 𝑡 ) + …+ 𝑥 𝑛 ( 𝑡 ) = 

𝑁 ∑
𝑛 =1 

𝑥 𝑛 ( 𝑡 ) (16) 

𝑁 in Eq. (16) is the highest-order of nonlinearity considered for the close approximation of nonlinear output by Volterra series. The
total response is thus represented as the combination of responses from each individual component. The 𝑛 𝑡ℎ -order response component
is given in Eq. (17) . 

𝑥 𝑛 ( 𝑡 ) = ∫
∞

−∞
…… . ∫

∞

−∞
ℎ 𝑛 

(
𝜏1 , 𝜏2 , … 𝜏𝑛 

)
𝑝 
(
𝑡 − 𝜏1 

)
𝑝 
(
𝑡 − 𝜏1 

)
… 𝑝 

(
𝑡 − 𝜏𝑛 

)
𝑑 𝜏1 𝑑 𝜏2 … 𝑑 𝜏𝑛 (17) 

For a harmonic input force 𝑃 𝑒 𝑗𝜔𝑡 the higher order response becomes, 

𝑥 𝑛 ( 𝑡 ) = ( 𝑃 𝑒 𝑗𝜔𝑡 ) 𝑛 ∫
∞

−∞
…… . ∫

∞

−∞
ℎ 𝑛 

(
𝜏1 , 𝜏2 , … 𝜏𝑛 

) 𝑛 ∏
𝑖 =1 

𝑒 − 𝑗𝜔 𝑖 𝜏𝑖 𝑑𝜏𝑖 = ( 𝑃 𝑒 𝑗𝜔𝑡 ) 𝑛 𝐻 𝑛 

(
𝜔 1 , 𝜔 2 , … , 𝜔 𝑛 

)
(18) 

The Volterra series is defined by Eq. (18) and higher-order impulse response functions in this equation are called kernels of
this series. The kernel function characterizes the behavior of the system. Hence, identification of any system using Volterra series
requires the determination of kernels from the measured data. The form of the equation entails that it is applicable for those nonlinear
systems where system parameters remain constant over time. However, in many structural systems, system parameters are variable. 
It imposes a restriction on the successful application of Volterra series in the parametric characterization of all types of nonlinear
systems. Eq. (18) can also be written in the frequency domain using definition of higher-order FRF for single harmonic input with
frequency 𝜔 by Eq. (19) . 

𝑥 𝑛 ( 𝑡 ) = ( 𝑃 𝑒 𝑗𝜔𝑡 ) 𝑛 𝐻 𝑛 ( 𝜔, 𝜔, … , 𝜔 ) 
Ther efor e , 𝑥 ( 𝑡 ) = 𝐻 1 ( 𝜔 ) ( 𝑃 𝑒 𝑗𝜔𝑡 ) + 𝐻 2 ( 𝜔, 𝜔 ) ( 𝑃 𝑒 𝑗𝜔𝑡 ) 2 + …+ 𝐻 𝑛 ( 𝜔, 𝜔, … , 𝜔 ) ( 𝑃 𝑒 𝑗𝜔𝑡 ) 𝑛 

(19) 

If a sinusoidal wave is defined as 𝑃 𝑐𝑜𝑠 ( 𝜔𝑡 ) = 

𝑃 

2 𝑒 
𝑗𝜔𝑡 + 

𝑃 

2 𝑒 
− 𝑗𝜔𝑡 , output response can be defined in the form of Volterra series by

Eq. (20) . 

𝑥 ( 𝑡 ) = 𝐻 1 ( 𝜔 ) 
(

𝑃 

2 
𝑒 𝑗𝜔𝑡 

)
+ 𝐻 1 ( − 𝜔 ) 

(
𝑃 

2 
𝑒 − 𝑗𝜔𝑡 

)
+ 𝐻 2 ( 𝜔, 𝜔 ) 

(
𝑃 

2 
𝑒 𝑗𝜔𝑡 

)2 
+ 𝐻 2 ( − 𝜔, − 𝜔 ) 

(
𝑃 

2 
𝑒 − 𝑗𝜔𝑡 

)2 
+ 𝐻 2 ( − 𝜔, 𝜔 ) 

(
𝑃 

2 

)2 

+ 𝐻 2 ( 𝜔, − 𝜔 ) 
(

𝑃 
)2 

+ … . + 𝑛 𝑡ℎ 𝑡𝑒𝑟𝑚𝑠 (20) 

2 

6 
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Here the expression is terminated at 𝑛 𝑡ℎ -order FRF. Now, considering homogeneity of Volterra series, the above equation is
simplified as, 

𝑥 ( 𝑡 ) = 𝐻 1 ( 𝜔 ) 
(

𝑃 

2 
𝑒 𝑗𝜔𝑡 

)
+ 𝐻 1 ( − 𝜔 ) 

(
𝑃 

2 
𝑒 − 𝑗𝜔𝑡 

)
+ 𝐻 2 ( 𝜔, 𝜔 ) 

(
𝑃 

2 
𝑒 𝑗𝜔𝑡 

)2 
+ 𝐻 2 ( − 𝜔, − 𝜔 ) 

(
𝑃 

2 
𝑒 − 𝑗𝜔𝑡 

)2 

+ 2 𝐻 2 ( − 𝜔, 𝜔 ) 
(

𝑃 

2 

)2 
+ … . + 𝑛 𝑡ℎ 𝑡𝑒𝑟𝑚𝑠 

= 2 ||𝐻 1 ( 𝜔 ) ||(𝑃 

2 

)
cos 

{
𝜔𝑡 + ∠𝐻 1 ( 𝜔 ) 

}
+ 2 ||𝐻 2 ( 𝜔, 𝜔 ) ||(𝑃 

2 

)2 
cos 

{
2 𝜔𝑡 + ∠𝐻 2 ( 𝜔, 𝜔 ) 

}
+ 2 𝐻 2 ( − 𝜔, 𝜔 ) 

(
𝑃 

2 

)2 
+ … 𝑛 𝑡ℎ 𝑡𝑒𝑟𝑚𝑠 (21) 

It is evident from Eq. (21) , that for a nonlinear system subjected to single harmonic force as input, the output response will be
comprised of several harmonic signals of integer multiple of forcing frequencies along with a shift in phase. Hence, the presence of
harmonics in the frequency response spectrum is considered as one of the nonlinear system identification techniques. However, it is
difficult to extract frequency response function (FRF) of each frequency component from the total response data. The difficulties in
directly obtaining Volterra kernel functions have also been addressed in many researches for the identification of breathing cracks in
a structure. Fourier transformation, correlation measurement, polyspectral analysis, etc. are some of the methods developed based on 
Volterra series. Lin and Ng [44] proposed a new method using correlation techniques for the measurement of higher-order frequency
response function (HOFRF). The use of this correlation technique is easy to implement and eliminates some of the drawbacks of
Fourier transformation which occur due to leakage, aliasing effect, etc. In this process, the measured output signal is multiplied by
the 𝑒 𝑗𝑛𝜔𝑡 ; where 𝑛𝜔 is the intended higher-order frequency and integrated over a long period of time after the decay of transient
motion. The response corresponding to that harmonic frequency is then subtracted from the total response and again followed the
same step for another higher-order response function 𝐻 𝑛 ( 𝜔, 𝜔, … , 𝜔 ) , where 𝑛 is the order of FRF. However, this method is suitable
when the input signal is purely sinusoidal wave. In practical scenario, an input sinusoidal wave may get distorted due to various
sources of noise which may in turn affect the supremacy of the method. Peng et al. [22] demonstrated the application of new NOFRF
based concept developed from Volterra series as an indicator of breathing crack. Lang and Billings [45] extended the relationship of
input and output frequency spectrum of a linear system to nonlinear one by applying Volterra series. If input excitation in frequency
domain is 𝑃 ( 𝜔 ) and corresponding output frequency spectra is denoted as 𝑋( 𝜔 ), for a linear system the relationship is expressed as
Eq. (22) . In this equation, 𝐻( 𝜔 ) is FRF of the linear system. 

𝑋 ( 𝜔 ) = 𝐻 ( 𝜔 ) 𝑃 ( 𝜔 (22) 

Similarly, performing Fourier transform on Volterra series the relationship can be established as, 

𝑋 ( 𝑗𝜔 ) = 

𝑁 ∑
𝑛 =1 

𝑋 𝑛 ( 𝑗𝜔 ) ; (23) 

𝑋 𝑛 ( 𝑗𝜔 ) = 

1∕ 
√

𝑛 

( 2 𝜋) 𝑛 −1 ∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 
𝐻 𝑛 ( 𝑗 𝜔 1 , 𝑗 𝜔 2 , … , 𝑗𝜔 𝑛 ) 

𝑛 ∏
𝑖 =1 

𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 (24) 

The above Eqs. (23) and (24) can also be re-written as 

𝑋 𝑛 ( 𝑗𝜔 ) = 

∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 
𝐻 𝑛 ( 𝑗 𝜔 1 , 𝑗 𝜔 2 , … , 𝑗𝜔 𝑛 ) 

∏𝑛 

𝑖 =1 𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 

∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 
∏𝑛 

𝑖 =1 𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 

×
1∕ 

√
𝑛 

( 2 𝜋) 𝑛 −1 ∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 

𝑛 ∏
𝑖 =1 

𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 

This is valid when ∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 

𝑛 ∏
𝑖 =1 

𝑃 ( 𝑗𝜔 𝑖 ) 𝑑𝜗 𝑛𝜔 ≠ 0 ; 

= 𝐺 𝑛 ( 𝑗𝜔 ) 𝑃 𝑛 ( 𝑗𝜔 ) (25) 

Here, 

𝐺 𝑛 ( 𝑗𝜔 ) = 

∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 𝐻 𝑛 ( 𝑗 𝜔 1 , 𝑗 𝜔 2 , … , 𝑗𝜔 𝑛 ) 
∏𝑛 

𝑖 =1 𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 

∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 
∏𝑛 

𝑖 =1 𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 

𝑃 𝑛 ( 𝑗𝜔 ) = 

1∕ 
√

𝑛 

( 2 𝜋) 𝑛 −1 ∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 

𝑛 ∏
𝑖 =1 

𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 (26) 

Replacing the value of Eq. (25) in Eq. (23) we get, 

𝑋 ( 𝑗𝜔 ) = 

𝑁 ∑
𝑛 =1 

𝐺 𝑛 ( 𝑗𝜔 ) 𝑃 𝑛 ( 𝑗𝜔 ) (27) 

The expression is analogous to linear system. The term 𝐺 𝑛 ( 𝑗𝜔 ) in Eq. (26) allows the output frequency response function of a
nonlinear system to be expressed in the similar way as linear system. 𝐺 𝑛 ( 𝑗𝜔 ) is called NOFRF. From the expression of 𝐺 𝑛 ( 𝑗𝜔 ) it can
be proved that this NOFRF is insensitive to any linear gain in input spectrum. The peak in the spectrum of 𝐺 𝑛 ( 𝑗𝜔 ) indicates that the
contribution of input to 𝑛 𝑡ℎ order output is enhanced at this frequency. If the frequency peak 𝐺 𝑛 ( 𝑗𝜔 ) lies outside the input frequency
band, generation of outside band components is considered to be due to the effect of nonlinearity of the system. This characteristic is
7 
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applied by Peng. et al. [22] for the detection of breathing-crack nonlinearity. In case of 𝑃 ( 𝑡 ) = α𝑃 ( 𝑡 ) , where α is a constant and 𝑃 ( 𝑡 ) is
the input signal required to excite the structure for the evaluation of NOFRF, 

𝑃 𝑛 ( 𝑗𝜔 ) = α𝑛 
1∕ 

√
𝑛 

( 2 𝜋) 𝑛 −1 ∫( 𝜔 1 + 𝜔 2 +…+ 𝜔 𝑛 = 𝜔 ) 

𝑛 ∏
𝑖 =1 

𝑃 
(
𝑗𝜔 𝑖 

)
𝑑𝜗 𝑛𝜔 ; and 

𝑃 𝑛 ( 𝑗𝜔 ) = α𝑛 𝑃 𝑛 ( 𝑗𝜔 ) 

𝑋 ( 𝑗𝜔 ) = 

𝑁 ∑
𝑛 =1 

α𝑛 �̄� 𝑛 ( 𝑗𝜔 ) 𝑃 𝑛 ( 𝑗𝜔 ) (28) 

𝑑𝜗 𝑛𝜔 denotes a small element in the integral field or hyperplane which satisfies the constraint ( 𝜔 1 + 𝜔 2 + …+ 𝜔 𝑛 = 𝜔 ) . In matrix form,
Eq. (28) can be represented by Eq. (29) . 

[ 𝑋 ( 𝑗𝜔 ) ] = 

[
𝛼𝑃 1 ( 𝑗𝜔 ) , 𝛼2 𝑃 2 ( 𝑗𝜔 ) , … , 𝛼𝑛 𝑃 𝑛 ( 𝑗𝜔 ) 

][
�̄� 𝑛 ( 𝑗𝜔 ) 

]
(29) 

To solve the system of equations, the structure needs to be excited �̄� times with different input signals 𝑃 𝑖 ( 𝑡 ) = 𝛼𝑖 𝑃 𝑖 ( 𝑡 ); where
= 1 , 2 , … ., �̄� . The value of �̄� should be selected in such a way that it is greater than the highest-order of frequency response
function 𝑁 considered in Volterra series to define the output spectrum of the nonlinear system. The value of constant 𝛼 should be
incremental such as 𝛼𝑖 < 𝛼𝑖 +1 . The NOFRF spectrum in the form of [ ̄𝐺 𝑛 ( 𝑗𝜔 ) ] is then evaluated as given in Eq. (30) . 

[ 𝑋 ( 𝑗𝜔 ) ] = 𝐴 ̄𝑃 1 , 2 , …, ̄𝑁 

( 𝑗𝜔 ) 
[
�̄� 𝑛 ( 𝑗𝜔 ) 

]
Ther efor e , 

[
�̄� 𝑛 ( 𝑗𝜔 ) 

]
= 

[(
𝐴 ̄𝑃 1 , 2 , …, ̄𝑁 

( 𝑗𝜔 ) 
)𝑇 (

𝐴 ̄𝑃 1 , 2 , …, ̄𝑁 

( 𝑗𝜔 ) 
)]−1 (

𝐴 ̄𝑃 1 , 2 , …, ̄𝑁 

( 𝑗𝜔 ) 
)𝑇 [ 𝑋 ( 𝑗𝜔 ) ] 

(30) 

The NOFRF spectrum analysis under different excitations [22] has shown that the amplitude of harmonics depends on the exci-
tation amplitude as well as degree of nonlinearity or size of crack depth. For small crack size, the amplitude of harmonics is found
to be difficult to distinguish from the spectrum of undamaged state. A similar condition is observed for weak excitation. In case of
weak excitation, the crack may not be closed during vibration and thus appears with low amplitude harmonics difficult to isolate.
With the increase of excitation amplitude, the crack completely gets closed and enhances the frequency amplitude of harmonics other
than primary resonance frequency. A strong excitation may also result in the geometric nonlinearity effect along with the contact
nonlinearity of breathing crack. This may reduce the efficiency of the detection of breathing cracks. The advantage of NOFRF is that
it is a one-dimensional function in contrast to general frequency response function (GFRF) which is multi-dimensional in nature. It
eases the solution procedure of the determination of NOFRF and thus the behavior of structural system in presence of crack. Cheng
et al. [46] utilized the potential of NOFRF in locating damage by identifying local nonlinearity in a 2D-periodic member. It is evident
from the expression of GFRF and NOFRF expression that both of these forms of nonlinear system analysis can not be related directly
to the nonlinear characteristics parameters and output spectrum of the system. This problem is addressed in the work of Peng et al.
[22] . Output frequency response function (OFRF) is proposed by directly linking nonlinear parameters with the output spectrum in
frequency domain. The governing nonlinear differential equation is expressed in the polynomial form of system parameters. It thus 
facilitates in understanding the impact of system parameters on the output frequency response explicitly which is an advantage over
previously developed methods GFRF and NOFRF. Another frequency response function is developed by Feijoo et al. [47] to overcome
the problem of multi-dimensionality of GFRF method. The function is termed as Associated frequency response function (AFRF) which 
uses combination function of lower-order Volterra output as the input of an associated linear system ( Eq. (31) ). It is expressed as
Eq. (31) . 

𝐿𝑥 𝑛 = 𝑓 
(
𝑥 1 , 𝑥 2 , … . 𝑥 𝑛 −1 

)
(31) 

Where 𝐿 is a linear operator of nonlinear differential equation and 𝑥 𝑛 ( 𝑡 ) is defined as Eq. (32) . 

𝑥 𝑛 ( 𝑡 ) = ∫
∞

−∞
…∫

∞

−∞
ℎ 𝑛 ( 𝜏1 , 𝜏2 , … , 𝜏𝑛 ) 

𝑛 ∏
𝑖 =1 

[ 𝑥 
(
𝑡 − 𝜏𝑖 

)
𝑑𝜏𝑖 ] (32) 

The whole algorithm of AFRF analysis can be represented through a flowchart ( Fig. 2 ) which solves 𝑥 ( 𝑡 ) as a combination of 𝑛 𝑡ℎ 

order of associated linear equations (ALE). 
In the above discussion, various models are described which have been established in the past for the classical solution of nonlinear

systems. In such cases, it is required to know the mathematical description of the model a-priori in which nonlinear parameters are
expressed in a polynomial form. The analytical modeling of breathing crack proposed by different researchers is described in detail in
the ‘Theoretical modeling of breathing crack’ section. It shows that even the breathing crack phenomenon can be defined in the form
of polynomials where stiffness is considered as a time-variant function. Owing to this, the characteristics of breathing crack resemble
the behavior of a nonlinear system and validate the application of above models to serve different levels of SHM. As Volterra series
expansion contains infinite number of terms, it necessitates the series to be tested for convergency to get an appropriate solution
when higher harmonics with dominant effects are present. This drawback limits its use in strong-nonlinear systems. 

Coherence based methods for identification of breathing cracks 

The analysis of structural behavior from a polluted measured signal is always a difficult task. Among different other nonlinear
system identification techniques, coherence-based analysis is found to have significant attention in the development of damage 
8 
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Fig. 2. Flow-chart of AFRF analysis procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

indicators for breathing cracks. A brief review is furnished to elaborate the application of higher-order coherence analysis in the
identification of breathing crack. It showed promising results in the past over other higher order statistical methods. Higher order
coherence-based analysis shows promising results if a structure is vibrated within an intended frequency band. The higher-order 
moment of time-series signal which is also called higher-order coherence can be used for the detection and localization of breathing
cracks. Among various higher-order statistical-based analyses, bicoherence is the most common and simplest method employed by 
many researchers to check nonlinearity in the signal [ 48 , 49 ]. Choudhury et al. [50] proposed nonlinearity index to quantitatively
compute the degree of nonlinearity in the signal. The index is based on the bicoherence value of the signal. Bicoherence is a normalized
form of bi-spectrum. It is estimated in following steps: 

(a) At first, sampling frequency f s of the measured time series is checked against Nyquist frequency f Nq = 1/2 Δt. Δt is the time
interval. The sampling frequency should be much smaller than f N. 

(b) The number of dataset records is n . Total number of data points in each record is 2 N. Then record time T = 2N Δt. The measured
time series at any time t is then expressed as 𝑥 ( 𝑖 ) ( 𝑘 ) ; where i = 1,2…n and k = 1,….2 N. Here x(k) means value of x at time
t = k Δt . Find out the mean value of each of the n records. This mean value is subtracted from each of the corresponding time
series. 

(c) An appropriate window frame for each recorded data is choosen. 
(d) Time-series of each segment is transformed by DFT or FFT to frequency domain with frequency amplitude X(f k ) . 
(e) Bi-spectrum of the time signal is then computed with the following Eq. (33) [51] . 

𝑏𝑖𝑠 
(
𝑓 𝑙 , 𝑓 𝑚 

)
= 

∑𝑛 
𝑖 =1 𝑋 𝑖 ( 𝑓 𝑙 ) ∗ 𝑋 𝑖 ( 𝑓 𝑚 ) ∗ 𝑋 𝑖 ( 𝑓 𝑙 + 𝑓 𝑚 ) 

𝑛 

𝑋 𝑖 

(
𝑓 𝑙 + 𝑓 𝑚 

)
is complex conjugate . 

(33) 

(f) Bicoherence of the signal is then calculated by normalizing the value of bispectrum in the following way ( Eq. (34) ). 

𝑏𝑖𝑐 2 = 𝑏 2 ( 𝑙, 𝑚 ) = 

|||𝑏𝑖𝑠 
(
𝑓 𝑙 , 𝑓 𝑚 

)|||2 ( ∑𝑛 
𝑖 =1 |𝑋 𝑖 ( 𝑓 𝑙 ) ∗ 𝑋 𝑖 ( 𝑓 𝑚 ) |2 

𝑛 

) ( ∑𝑛 
𝑖 =1 |𝑋 𝑖 ( 𝑓 𝑙 , + 𝑓 𝑚 ) |2 

𝑛 

) 

(34) 

In order to avoid ill-conditioned singularities due to low value at the denominator, a factor 𝜖 is added. 

𝑏𝑖𝑐 2 = 𝑏 2 ( 𝑙, 𝑚 ) = 

|||𝑏𝑖𝑠 
(
𝑓 𝑙 , 𝑓 𝑚 

)|||2 ( ∑𝑛 
𝑖 =1 |𝑋 𝑖 ( 𝑓 𝑙 ) ∗ 𝑋 𝑖 ( 𝑓 𝑚 ) |2 

𝑛 

) ( ∑𝑛 
𝑖 =1 |𝑋 𝑖 ( 𝑓 𝑙 , + 𝑓 𝑚 ) |2 

𝑛 

) 

+ 𝜖

(35) 

(g) Nonlinear index ( NLI ) = 𝑏 2 ( 𝑙, 𝑚 ) 𝑚𝑎𝑥 − 

(
𝑏 2 ( 𝑙, 𝑚 ) 𝑚𝑒𝑎𝑛 + 2 𝜎∗ 

𝑏𝑖𝑐 2 
𝑏 2 ( 𝑙, 𝑚 ) 

)
(36) 

In Eq. (35) , 𝑏 2 ( 𝑙, 𝑚 ) is the bicoherence function that estimates the interaction between two frequencies 𝑓 𝑙 and 𝑓 𝑚 in generating
coupled frequency as the summation of 𝑓 𝑙 and 𝑓 𝑚 . The nonlinear index derived from the bicoherence equation is depicted in Eq. (36) .
𝜎∗ is the standard deviation of bicoherence. Zero bicoherence value indicates 𝑓 𝑙 + 𝑓 𝑚 is an independent frequency developed without
any interaction between two frequencies 𝑓 𝑙 and 𝑓 𝑚 . If the value is 1, it signifies the formation of 𝑓 𝑙 + 𝑓 𝑚 by the full interaction
between 𝑓 𝑙 , and 𝑓 𝑚 . In this way, the presence of nonlinearity in the signal is assured. Sometimes the denominator of the bicoherence
function may become too small and result in the generation of false peaks in the coherence spectra. To minimize this effect, an
additional factor 𝜖 is used in the denominator with a suitable value to suppress the spurious peaks in the frequency spectrum. The
harmonics are generated in the multiple of the primary resonance frequency. Hence bicoherence is measured between three harmonic
frequency components. For example, 𝑏 2 ( 1 , 2 ) measures bicoherence of 1x, 2x and (1 + 2) = 3x multiple of harmonics. Thus, if harmonics
9 
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are generated by the coupling of two frequencies it will have a closer value to 1 indicating a nonlinear response. This capacity of
bicoherence function in isolating system-generated nonlinearity from noise is applied to detect and localize the presence of crack. 
For the damage localization, the length of the member is divided by distributed nodes, and total nonlinearity index (TNLI) [49] value
is computed at each node. Nodes with the highest values of NLI are considered as the probable position of damage with breathing
behavior. 

Similarly, tri-coherence can also be computed as another higher-order coherence analysis as proposed by Sinha [52] . In this 
analysis, interaction of four frequencies is investigated. The tri-coherence function is represented as 𝑇 𝑟𝑖 lmq . Here, 𝑇 𝑟𝑖 denotes tri-
coherence function 𝑙, 𝑚, 𝑞 in the subscript are three independent frequencies to be analyzed to check possible interaction in the
occurrence of frequency 𝑙 + 𝑚 + 𝑞 by their coupling. Different types of vibration data from periodic to random have been investigated
for the analysis of bicoherence performance. In each case, it has shown great potential for practical application. The coherence analysis
is superior in terms of simplicity among other higher-order statistical tools. It can measure nonlinearity directly from the measured
data which is an advantage in the real field application. However, the averaging process requires a large number of long time data
records to reflect structural behavior with great accuracy. 

Numerical methods for breathing crack induced nonlinear system identification 

The formulation of classical models includes a large number of higher-order terms for the actual description of output response.
It incorporates a truncated error in the approximated value of output response determined by the above models. The magnitude of
truncated error grows with the degree of nonlinearity. For a strong nonlinear system, no methods are yet developed to characterize
the unpredictable behavior of the nonlinear system. Some numerical methods are developed in an attempt to explain the behavior of
such nonlinear systems which are discussed in the next section. Ruotolo et al. [19] analyzed a cantilever beam by harmonic balance
method (HBM). To apply this method the closing crack function is expressed in the form of Fourier series as given in Eq. (37) . In
HBM analysis, the solution of nonlinear equation is considered to be the summation of several harmonics with frequencies integer
multiple of forcing frequency. Thus, the solution of equation of motion in a truncated Fourier series form is assumed as ( Eq. (37) ), 

𝑥 ( 𝑡 ) = 𝑎 0 + 

�̄� ∑
𝑛 =1 

𝑎 𝑛 sin ( 𝑛𝜔𝑡 ) + 𝑏 𝑛 cos ( 𝑛𝜔𝑡 ) (37) 

Here �̄� is the number of harmonics to be considered for the evaluation of response. 𝑎 0 , 𝑎 𝑖 and 𝑏 𝑖 are Fourier coefficients of 𝑛 𝑡ℎ harmonic
( Eq. (38) ). 

𝑎 0 = 

1 
𝑇 ∫

𝑡 + 𝑇 

𝑡 

𝑥 ( 𝑡 ) 𝑑𝑡, 𝑎 𝑛 = 

2 
𝑇 ∫

𝑡 + 𝑇 

𝑡 

𝑥 ( 𝑡 ) cos ( 𝑖𝜔𝑡 ) 𝑑𝑡, and 𝑏 𝑛 = 

2 
𝑇 ∫

𝑡 + 𝑇 

𝑡 

𝑥 ( 𝑡 ) sin ( 𝑖𝜔𝑡 ) 𝑑𝑡 (38) 

The use of HBM method is the simplest and easier than other numerical methods. When nonlinearity of a system is weak in nature,
higher harmonics will have little impact on the system’s response. However, in case of strong nonlinearity higher harmonics become
dominant, and response under these harmonics needs to be determined in order to correctly represent the output response. In such
cases, truncated Fourier series expression fails to identify actual response of the system. Numerical analysis is also cumbersome to
perform as the expression under higher-order harmonics becomes complex. It is evident in the work of Peng et al. [53] where a
comparison is made between the efficiency of Volterra series expansion and harmonic balance method. The analysis performed on
a duffing oscillator reveals different features of these two methods. HBM method is advantageous in describing jump phenomenon
captured at a certain frequency range of vibration if the system is nonlinear. It takes a quite long time to solve the set of nonlinear
equations when higher-order harmonics are involved. The formation of super and subharmonic resonance in the spectra can’t be
theoretically explained by this analysis. On the other hand, Volterra series-based nonlinear frequency response function has a robust
classical background in describing the appearance of harmonics by the energy transfer mechanism under nonlinear vibration. The 
requirement of computational time is not a constraint for this method. However, the definition of NOFRF or underlying Volterra
series does not exist at any discontinuous point referring to the incapability in capturing jump phenomenon, unlike HBM. Another
numerical method, perturbation technique is developed [54] to solve weakly nonlinear systems. The study shows that approximate 
solution by Regular Perturbation (RP) method may include secular terms in the solution. The solution thus becomes divergent when it
is sought for a long time. To mitigate this problem, numerous improved methods have been developed such as homotopy-perturbation
method [55] , multiple-time scale method [56] , lindstedt-Poincaré (L-P) method [57] , etc. Dong et al. [58] numerically analyzed a
polynomial nonlinear system and found differences in the result obtained from the perturbation method and Volterra series expansion.
It reveals that for a damped dissipative system perturbation method and Volterra series-based steady-state response completely 
coincide with each other. Runge-Kutta-based method on the other hand produced almost identical results except a fourth harmonic
of small amplitude additionally appeared in the frequency spectra, unlike the other two methods. The truncation of the perturbation
method and Volterra series in third order is the reason behind not showing up the fourth-harmonic in the steady-state response
spectra. A response analysis is also performed on undamped conservative system. The Fourier transformation result of the response 
computed by Runge-Kutta method, Volterra series, and perturbation method is presented in Fig. 3 for both damped and undamped
systems. It clearly shows a visible difference in the frequency spectra. Runge-Kutta method and RP method-based frequency spectra 
produce a similar type of spectrum after Fourier transformation of steady-state response. On the contrary, the peak value of harmonics
estimated from Volterra series though close to the other two methods, frequency spectrum is not completely identical. 

Long et al. [59] applied multi-scale method for the vibration analysis of a cracked beam. Several super-harmonic and sub-harmonic
frequencies in the spectrum that indicates system nonlinearity, are successfully produced by Fourier transformation of the results 
10 
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Fig. 3. Fourier transformation of steady-state response estimated by RP method, Volterra series, and Runge-Kutta method for (a) damped dissipative 
system, and (b) undamped conservative system [58] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtained from multi-scale method analysis. Wang et al. [60] performed a comparative analysis on a nonlinear energy harvester 
between HBM and multi-scale method. The multi-scale method is applied with an excitation frequency close to natural frequency of the
system. The relation between two frequencies is defined in two ways; a) 𝜔 = 𝜔 0 + 𝜎�̄� , and b) 𝜔 

2 = 𝜔 

2 
0 ( 1 + 𝜎1 ̄𝜀 ) , where 𝜔 is the excitation

frequency, 𝜔 0 assumed resonance frequency, �̄� book keeping parameter, 𝜎 and 𝜎1 detuning parameters. The detuning parameter 
represent the nearness of excitation frequency to 𝜔 0 . Results obtained from the detailed analysis show significant accuracy of HBM
over multi-scale method. In case of multi-scale method, the second definition of frequency parameter in terms of eigenfrequency is
found to be more efficient than a direct relation of frequency with detuning parameter in predicting acceleration response [60] . The
accuracy of the solution by multi-scale method thus depends on the choice of frequency parameters. 

Phase-space based methods 

A linear system when excited with a harmonic signal the output also produces harmonics with different amplitude and phase
than the input signal. In the case of a nonlinear system, the output signal does not remain purely harmonic in shape, rather it gets
distorted. During vibration, additional waves are formed along with harmonic output signal. The combination of signals with different 
frequency components interact with each other and results in the distortion of output signal. For the small degree of nonlinearity,
the effect may not be notable in the response. However, the presence of extra frequency components or distortion of response from
pure harmonic signs can be visualized by observing phase-space plot of state variables. The degree of nonlinearity of breathing crack
depends on the crack parameters and especially on the severity of the crack. The relationship between crack parameters and phase-
space diagram is studied by Huang et al. [27] . In this work location of the crack, crack depth, etc. are varied along the length of
a cantilever beam subjected to harmonic excitation, and responses are analyzed by phase-space diagram. It is shown that with the
increase of crack depth or distance of crack location from free-end, phase space diagram gradually converts from a single loop to a
double loop. A quasi-standard deviation method is adopted to verify the effect of crack parameters and quantify the crack depth. After
a detailed numerical analysis, it is concluded that the proposed method based on the change in phase-space diagram area at cracked
and healthy state of the beam is reliable only for the detection of breathing cracks rather than localization and quantification. 

The identification of breathing crack is mostly carried out in the mechanical system as fatigue behavior is very common in
mechanical structures. Among various damage identification methods, most of the popular methods existing in the field are based
on nonlinear acoustic modulation in presence of a closing crack. The fundamental of crack-wave interaction in damage detection
theory is based on the mechanism that when an acoustic signal is transmitted through the medium to be analyzed some part of it
gets reflected when the crack is open and again transmitted at the time of closure of the crack. This interaction of reflected wave and
input signal results in the modulation of resonating frequency and is identified by the side-band frequency in the response spectrum.
This feature is utilized in the analysis of breathing crack behavior and impact of crack parameters on the response. At first, material
nonlinearities are inspected by this method. Existence of super and subharmonic frequencies in each case of nonlinear investigation
established this as a feature for identification of nonlinearity. Later, considering the nonlinear behavior of crack, the same features
are applied by various researchers for monitoring of a system. 

Spectral analysis based methods 

The localization of breathing cracks demands a dense network of sensors for accurate localization of damage. Prawin et al.
[61] proposed a novel method to detect cracks with single sensor measurement data considering the limitation of other methods.
In this method, singular spectrum analysis (SSA) is performed twice. At first, dominant linear components are isolated from the
spectrum and then FFT is applied on residual responses to obtain hidden harmonic components of the previous response suppressed
11 
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by comparatively higher magnitude of linear one. The nodes associated with zero-curvature or zero strain energy under swift-sine
excitation with varying frequency band or single-tone harmonic excitation with different frequency-step size is taken as the primary
step of breathing crack identification in this method. The zero-curvature is calculated from Eq. (39) . 

𝑑 2 𝑥 

𝑑 2 𝑠 
= 

𝑥 𝑖 +1 − 𝑥 𝑖 + 𝑥 𝑖 −1 

Δ𝑠 2 
(39) 

In Eq. (39) 𝑥 is the displacement, and Δ𝑠 is the spacing between two consecutive nodes along the length of the beam. The method
is found to be robust even under the presence of noise with limitations of applicability in only beam members. It is also required to
apply a parameter identification process to correctly identify the healthy state of the model. The selection of the frequency band is
the most critical step of this model. A general spectrum analysis also suffers from different noises . The sensitivity of conventional
spectrum analysis to measurement or other sources of noise is rectified by inducting a new method cyclic spectral analysis proposed
in the work of Prawin and Rao [62] . Unlike spectral analysis, the special correlation-based damage indicator can identify and localize
cracks without any specific cyclic excitation frequency [63] . Asymmetry in the two halves of the harmonic response in the presence
of breathing crack is utilized by Yan et al. [25] for the detection and qualitative comparison of breathing crack. In this method,
acceleration or displacement time-history responses are first separated into two regions; positive and negative cycles. The power 
spectral density (PSD) of the response for two sides of the zero axis is performed separately. The difference in natural frequency
values obtained from PSD of each region of response indicates the presence of breathing crack. In practical scenario, this difference
may be too small to differentiate from the effect of noise. If the analysis is performed with ambient excitation data having frequency
ranges far from the natural frequency of the system, harmonics will not be excited and breathing crack identification method may
fail. 

The system identification alone may not fulfill all four levels of SHM defined by Rytter [64] . Consequently, beside the application
of nonlinear system identification techniques, several other vibration based methods have also been developed to analyze the effect 
of breathing cracks on the dynamic behavior of the system. Nandi and Neogy [65] analyzed the frequency spectra of a cantilever
beam with an edge crack. It has been observed that the integer multiple of forcing frequency appears in the spectra when the system
is cracked and vibrated under harmonic excitation. This type of phenomenon occurs due to interaction of different frequency waves
generated at the time of vibration as a result of change in stiffness. It is also seen that when the structure is vibrated at 1 2 of the natural
frequency of the system, the amplitude of the second harmonic is notably high. Even harmonics are also found stronger in magnitude
than odd harmonics in case of beam with breathing crack. With the decrease of crack depth, odd harmonics become weaker. It is
because, at a mild crack state, only asymmetric behavior of breathing crack over a period of time becomes more pronounced than
other effects. This observation is considered as one of the identification features of nonlinear cracks. The beam is also analyzed with
imperfect support at fixed end to differentiate the effect of breathing crack and defective support in the output response. Both of
them display close behavior in terms of harmonics generated in the frequency spectrum. In many cases, it has been found that several
higher harmonics remain hidden or suppressed by the effect of external noises. To enhance those hidden higher harmonics, quadratic
Teager-Kaiser energy operator (Q-TKE) is used by Cao et al. [66] . The application of the Q-TKE operator reveals the energy modulation
effect of nonlinear crack. It further increases the efficiency of the detection of breathing cracks. Sinha et al. [67] incorporated local
flexibility around crack in the modeling. The flexibility term includes size of crack in the equation and thus could estimate severity
of damage in terms of crack depth. In another work, Karthikeyan et al. [16] used an iteration technique to converge the solution to
probable location and size of the crack. In this study, at first, natural frequency of the cracked member is measured. The frequency
vs discretized element number along the length of the beam is plotted using the estimated response of the finite element model and
assumed crack depth. The assumption about the initial location is then fixed by the interaction of frequency vs element plot and
natural frequency obtained from the experiment. The concept of fracture mechanics is then borrowed to calculate equivalent crack 
depth for selected locations. Newton-Raphson iterative method is further used to converge to the equivalent crack depth value by
minimizing the difference between theoretical and experimental flexibility coefficient values. With this equivalent crack depth, the 
crack location is again extracted from the plot of frequency vs beam element. Previous steps are repeated till the equivalent crack
depth does not match the assumed crack depth with sufficient tolerance. The accuracy of this method depends greatly on the finite
element modeling and associated measured responses. It is thus vulnerable to measurement noises which are inevitable in practical
problems and thus may pollute the result. 

Identification of breathing crack by acoustic and vibro-acoustic based methods 

Acoustic based methods are considered as one of the superior technology in the detection of micro cracks. High sensitivity to
micro-crack, ability to inspect a larger area within the shortest time-frame, requirement of less number of sensor arrays are some of
the advantages of acoustics based methods. However, for reliable implementation an accurate wave-propagation modeling, advanced 
signal processing, robust measurement of wave parameters etc. are required to be addressed. Detection of breathing crack depends 
on the modulation of incident signal by the presence of crack. The opening and closing mechanism of crack induce nonlinearity is
quantitatively measured by the index proposed in the work of Hong et al. [68] . The stress transferred mechanism at different states
of the crack is shown in Fig. 4 . This transfer of energy between two contact surfaces also explains the transfer of energy from the
primary resonant component to harmonic frequencies [69] . The nonlinear index is defined by equation of motion of nonlinear guided
wave which is given as Eq. (40) . 

𝜌
𝑑 2 𝑥 ( 𝑠, 𝑡 ) 

2 = 

𝑑 ̄𝜎

𝑑𝑠 
(40) 
𝑑𝑡 
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Fig. 4. (a) Ultrasonic wave approaching open crack, (b) stress transferred initiated at the partially closed cracked surface, (c) increase in stress 
transfer between two contact surfaces with the closure of crack, and (d) stress transfer discontinued at fully open state of crack [68] . 

Fig. 5. Linear and nonlinear parameter variation for (a) ABS polymer, and (b) polycarbonate [70] . 

 

 

 

 

𝑥 ( 𝑠, 𝑡 ) is the displacement of wave-particle at time-instant 𝑡 and space 𝑠 . 𝜌 is the material density and �̄� is stress-tensor. The solution
of wave-particle derived from Eq. (40) can be represented as, 

𝑥 = �̄� 1 𝑐𝑜𝑠 
(
�̄� 𝑠 − 𝜔𝑡 

)
+ �̄� 2 cos 

(
2 ̄𝑘 𝑠 − 𝜔𝑡 

)
(41) 

In Eq. (41) , ̄𝑘 is the wave number, 𝜔 is the excitation frequency, and �̄� 1 , �̄� 2 are magnitudes of fundamental mode at first harmonic
𝜔 and second harmonic 2 𝜔 , respectively. The index thus introduced to define the change of nonlinearity is expressed as Eq. (42) . 

𝛽 = 

�̄� 2 

�̄� 

2 
1 

(42) 

Nagy [70] experimentally investigated the sensitivity of microscopic degradation of material to the generation of nonlinearity. 
The experiment performed on a ABS polymer and polycarbonate with constant-strain dynamic excitation is shown in Fig. 5 (a) and
(b). The variation of linear and nonlinear parameters displays the significance and high sensitivity of nonlinear characteristics in
presence of fatigue damage. 
13 
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This further stimulates application of different nonlinear features in the identification of breathing crack. Hayes and Rivlin 
[71] studied propagation of Rayleigh surface wave in a semi-infinite plate with analytical equations. In different studies, decay- 
ing of Rayleigh wave is found to vary exponentially with the depth of medium. It thus limits the application of Rayleigh wave
primarily to surface or near surface fault investigation. Kawashima et al. [72] investigated the application of second harmonic of
Rayleigh wave in the detection of surface crack both numerically and experimentally. The result shows that amplitude ratio of second
and first harmonic increases with the increase in crack depth. The efficiency of second and third harmonic generation is explored by
Yuan et al. [73] through numerical simulation of Rayleigh wave interaction with surface crack. The result exhibited a linear increase
in second harmonic generation efficiency with crack depth upto 0.25 𝜆; where 𝜆 is the wavelength of incident Rayleigh wave. Crack
depth greater than 0.5 𝜆 limits the energy of Rayleigh wave to a narrower region near surface. Therefore, the crack depth shows little
influence to generation of higher harmonics beyond 0.5 𝜆. This observation indicates the limitation of Rayleigh wave based method
in determination of severe damage with greater crack depth. Xu et al. [38] considered both surface and subsurface cracks to develop
analytical solution of stress and displacement field induced by the propagation of Rayleigh wave. A pseudo force equivalent to the
difference of normal stress on the forward adjacent surface of crack at closed and open states is assumed to illustrate the mechanism
of second harmonic generation. This force is further decomposed into two equivalent force components of equal magnitudes that are
half of the magnitude of Rayleigh wave. One of the equivalent force components at frequency 2 𝜔 is considered as the source of second
harmonic generated by interaction of incident Rayleigh wave of frequency 𝜔 and existing breathing crack. Expressing this as stress
tensor in elastodynamic reciprocity theorem, an analytical expression to compute second harmonic magnitude of Rayleigh wave is 
formulated. For the evaluation of breathing crack initiated at an angle with surface of waveguide, coordinate of the proposed explicit
expression needs to be transformed accordingly to quantitatively evaluate inclined or parallel fatigue crack with similar analytical 
solution of vertical crack. 

On the contrary to Rayleigh wave, Lamb wave has long range propagation capability. Hence, it can be utilized to interrogate a
larger area than Rayleigh wave. However, till 20th century experimental realization of Lamb wave for damage evaluation was difficult
due to its multi-mode dispersion property. The propagation of Lamb wave is governed by the Naiver’s displacement equation with
traction free surface as boundary condition. It is described by dispersion curve which plots phase/group velocity against excitation
frequency. The equation of symmetric and anti-symmetric equations of Lamb wave are respectively expressed as [74] , 

tan 𝑞ℎ 

tan 𝑝ℎ 
= 

4 𝑝𝑞𝑘 2 (
𝑞 2 − 𝑘 2 

)2 (43a) 

tan 𝑞ℎ 

tan 𝑝ℎ 
= 

(
𝑞 2 − 𝑘 2 

)2 
4 𝑝𝑞𝑘 2 

(43b) 

where, h denotes half thickness of a thin plate and k is wave number. The term p and q in Eq. 43(a) and ( b ) are defined by the
longitudinal velocity 𝑣 𝑙 , velocity of shear wave 𝑣 𝑠 and angular frequency 𝜔 as shown in Eq. (44) . 

𝑝 2 = 

ω 2 

𝑣 2 
𝑙 

− 𝑘 2 ; 𝑞 2 = 

ω 2 

𝑣 2 
𝑠 

− 𝑘 2 (44) 

Due to multi-mode dispersion property evolved from the frequency equations ( Eqs. 43(a) and (b) ) which are combinations of real,
pure imaginary and complex roots, selection of ideal mode for Lamb wave based damage detection becomes an important objective
of research [74] . Deng [75] analyzed the generation of second-harmonic lamb wave by modal approach. Later, in 2005 Deng et al.
[76] conducted an experiment ( Fig. 6 (a)) on a thin (1.85 mm) aluminum sheet to correlate magnitude of generated second harmonic
with Lamb wave dispersion. It is observed that with the increase in propagation distance second-harmonic of Lamb wave mode grows
linearly. However, the cumulative growth of second harmonic is observed when fundamental mode of lamb wave is exactly equal to
double frequency lamb wave mode (DFLW). The result can be interpreted from dispersion curve of Fig. 6 (b). It can be seen, S2 and
A2 mode of lamb wave intersect with symmetric DFLW components at a frequency line denoted by L. The intersection point marked
by F0 defines the criteria for generation of second-harmonic. This observation leads to the selection of fundamental modes in many
of the further works. Zhao et al. [77] studied the effect of micro-crack on the nonlinear Lamb wave mode with S0 and A0 modes.
S0 mode of wave does not appear in the dispersion curve of an undamaged member. The condition for the generation of second
harmonic in S0 mode of lamb wave is demonstrated in this work. From Fig. 7 , one can observe that change of S0 mode in lower
frequency zone is minimum than other modes. The criteria of same phase velocity for DFLW and fundamental wave thus can be more
easily achieved with S0 mode than other modes of Lamb wave. Further, the location of micro-crack is determined by analyzing the
reflected wave. To measure the extent of fatigue crack, a framework is presented by Kundu et al. [78] with a second-order reflection
index. 

The additional stress developed by the interaction of probing wave and crack acts as the source of scattered wave in a damaged
structure. In this framework, modal decomposition method is exploited to scrutinize opening and closing states of crack. It is shown
that during the closed state of crack displacement field of adjacent surfaces of crack are similar, while it deviates when crack is
open. The transmission of wave through crack and scattering at the time of open state is the reason behind this. Further, variational
principle is applied to analyze the wave generated from the crack-wave interaction. A non-dimensional nonlinearity index which is
the ratio of displacement induced by crack-induced wave at second harmonic frequency and displacement induced by incident wave
is proposed to correlate with damage severity. Though, numerically performance of this method is validated with a great degree of
accuracy, the assumptions considered in this study may find difficulties in simulating actual fatigue crack behavior. The effect on
14 
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Fig. 6. (a) Experimental set up for the investigation of Lamb wave, and (b) Dispersion curve of fundamental mode of lamb wave and double 
frequency Lamb wave [76] . 

Fig. 7. Dispersion curve of different modes of Lamb wave [77] . 

Fig. 8. Scattering of wave after interaction with breathing crack [31] . 
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Fig. 9. Mechanism of vibro-acoustic method based damage detection [83] . 

Fig. 10. FFT of undamaged and damaged specimen subjected to high frequency excitation [81] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lamb wave propagation interfering with a breathing crack at the vicinity of bolt hole as shown in Fig. 8 is experimentally analysed
by Cho and Lissenden [31] . 

A closed-form solution based on elastodynamic reciprocity theorem is also derived by Xu et al. [37] to calculate the magnitude
of second-harmonic generated by Lamb wave propagation. Accounting this magnitude, a damage indicator linearly proportional to 
crack depth is established after numerical validation with analytical model of damage severity estimation. Nonlinear wave mixing 
technique using fundamental mode S0 is employed by Jingpin et al. [79] . The sideband frequency generated by nonlinear wave mixing
is correlated with the size of micro-crack by performing an experiment on a plate with different micro-crack length. Nonlinearity
index ( ̄𝛽𝑚 ) proposed in this study in terms of amplitude of sideband at sum frequency of excitation ( ̄𝐴 𝑓 1 + 𝑓 2 ) can be defined as, 

𝛽𝑚 = 

�̄� 𝑓 1 + 𝑓 2 

�̄� 1 �̄� 2 
(45) 

Acoustic nonlinearity parameter given in Eq. (45) considering side band frequency shows a monotonic relationship with the 
length of micro-crack. Thus, amount of damage can also be assessed by the measurement of nonlinear Lamb wave mixing. Along with
detection and estimation of damage severity, information about orientation of originated crack is important to predict the growth
as well as for the purpose of prognosis. Wang et al. [34] addressed this problem by finding out a unique scattering effect of contact
acoustic nonlinearity at the inclined surface of crack. 

Though sensitivity of crack-wave interaction has been proved to be superior through numerous simulations and experiments, effect 
of ambient disturbances or environmental factors are inevitable in its practical application. The scattered wave from the surface of
crack is evaluated further to detect the presence of crack. 

Vibro-acoustic methods have also been receiving much attention now-a-days to identify and measure the severity of fatigue 
damage. Principle of vibro-acoustic method is based on the analysis of modulated output response of two excited signal applied
on the damaged structure. It is graphically depicted in Fig. 9 . A strong effect of nonlinear motion on acoustic wave propagation is
observed with subharmonic generation by Solodov et al. [30] . Donskoy and Sutin [80] developed two vibro-acoustic methods- (a)
based on modulation of sinusoidal probe wave, and (b) modulation of impact vibration signal. Both of these methods established
notable correlation between side band frequency components and presence of contact type crack. At undamaged state, low frequency 
vibration and ultrasound wave appear separately in the frequency spectrum of response. 

In presence of damage, these two frequency components interact together and generates side band frequency as an indicator of
damage. The separation of nonlinear signal components from probe signal shows the advantage of its application in the evaluation
of breathing type of damages. The appearance of side band frequency is experimentally validated by Meo and Zumpano [81] . In
this study a clear distinction between an undamaged plate response and impact damage induced nonlinearity is explored [ Fig. 10 ].
Klepka et al. [82] implemented a vibro-acoustic method for the experimental investigation on fatigue crack detection. Modulation 
of wave at low and high frequency acoustic excitation by different crack modes are examined in this work. In each vibration mode,
interaction of wave and crack edge has shown significant effect on wave modulation. It is also observed that the modulation of wave
16 
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Fig. 11. Effect of temperature variation on A0 mode amplitude of Lamb wave (a) before applying correction factor, and (b) after applying correction 
factor [84] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in presence of fatigue crack can be engendered by weak-stain field of material even if crack is not open. Thus, even at closed state
of vibro-acoustic method successfully detects crack. Breathing mechanism facilitates in amplifying the intensity of modulation which 
is measured as the ratio of sum of spectral amplitude at pair of side band frequency and spectral amplitude at acoustic frequency.
This method is further extended to identify delamination of plate by He et al. [83] . The variation of second harmonic in presence of
breathing crack is studied by Lee and Lu [3] to isolate nonlinear crack from other sources of nonlinearity. The reduction of nonlinear
index during vibration relative to stationary condition is projected as a signature of crack. One of the most complicating factor in the
application of vibro-acoustic mechanism is dependence of wave modulation on the excitation frequency. 

Incorporation of nonlinear features of guided wave is also increasing at a faster rate towards its implementation in earlier prediction
of damage parameters. However, noises emerged from other sources than flaws in a material or system may also present similar
characteristics in the captured signal as fatigue crack. Hence, a series of researches are being conducted accounting the effect of
environmental or other sources of nonlinearity. 

Sikdar et al. [84] proposed a novel technique to compensate temperature effect on Lamb wave propagated through a debonded
composite structure. Efficiency of the method in eliminating the temperature effect is shown in Fig. 11 (b). More detailed review on
the effect of environmental factors and their mitigation techniques are described in a review by Gorgin et al. [85] . The summary of
the methods reviewed in this section is presented in Table 1 to categorically extract their salient features. 

Modeling of breathing crack 

Accurate modeling for the simulation of real crack behavior is the first step toward the exact solution of nonlinear vibration. Various
methods have been undertaken in the past to model the breathing behavior of cracks by analytical, numerical, or experimental models.
In this section, each of the modeling techniques is separately reviewed. The analytical model explains the behavior of breathing
cracks in a mathematical form. The numerical analysis summarizes the procedure of opening-closing modeling of a crack using some
established software packages. The experimental models on the other hand give insight about the practical procedures for simulating
closing crack behavior. The material, physical and geometrical properties are also provided along with the description of modeling
technique. It is to facilitate researchers in validating the results of the proposed method or to identify a more accurate procedure for
the simulation of the original behavior of the cracked member. 

Theoretical modeling of breathing crack 

Breathing crack is a phenomenon where a crack in a member opens and closes at a certain frequency under excitation force or
vibration. However, in practical situations, two surfaces of a crack may not completely close due to the presence of surface roughness.
Thus, actual area of contact is less than the area of cross-section at fully closed state. This type of contact is generally not considered
in the analytical model for simplicity. Some of the efforts are made in the past to successfully describe this mechanism with different
assumptions in modeling. Gasch [86] proposed ‘hinge model’ for the simulation of opening-closing mechanism of crack in a rotor
shaft. Stiffness of the member is expressed as a function of crack angle. In this model, the state of crack is defined as either open or
close. The transition between two states of crack is not considered in this model. This drawback is resolved in the work of Mayes and
Davies [90] where a relation is established between change in stiffness and crack depth or angle. The difference in the mathematical
approach can be explained by the following Fig. 12 . It can be seen in the figure that opening-closing function is having only two
values 0 and 1 as per the modeling of Gasch [86] corresponding to open and closed states respectively. Mayes and Davies modified
this model by considering a periodic variation of crack closure with functional values between 1 and 0 [87] . At the time of slow
rotation of shaft due to its own weight, the crack surface opens and closes. The angle of crack changes with the rotational angle. It
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Table 1 

Summary of nonlinear damage identification methods. 

Methods reviewed Fundamental 
theory 

Signal type Damage type Method Advantages Limitations 

GFRF Expansion series Vibration Breathing crack Theoretical Directly operates on 
time-domain response 

Multi-dimensional 
function 

HOFRF Effective in measuring 
higher frequencies of 
vibration response 

Applicable for purely 
harmonic excitation 

NOFRF One dimensional 
function, isolates 
frequencies originated 
from nonlinear response 

Less sensitive to small 
crack induced changes 

OFRF Explicit connection 
between nonlinear 
parameters and output 
frequency response 

Not applicable for 
nonlinear systems which 
generate subharmonics 
and chaos 

Coherence based method Higher-order 
statistics 

Numerical Noise resilient Requires long time data 
record 

Harmonic balance method Fourier series Numerical Easier to operate Suitable for weakly 
nonlinear system 

Runge-Kutta method Iteration method Numerical Better accuracy Time-consuming method 
Regular perturbation Perturbation 

method 
Theoretical Analytically express the 

influence of change in 
system parameters on 
the response 

Inclusion of secular term 

diverges the solution 

Phase space based method Graphical method Theoretical Minimum computation Noise sensitive 
Spectral analysis based 
method 

Fourier 
Transformation 

Theoretical Robust to noise Performs better within a 
selected frequency band 

Rayleigh wave based 
method 

Crack-wave 
interaction 

Acoustic and 
Vibro-acoustic 

Theoretical Advantageous for the 
detection of surface 
crack 

Primarily applied on 
structures with simple 
geometry 

Lamb wave based method Crack-wave 
interaction 

Theoretical Capability to investigate 
comparatively larger 
area 

Multi-mode behavior, 
applications limited to 
thin member 

Fig. 12. Opening-closing model of crack [86] . 

 

 

is reported in the study of Penny and Friswell [88] , that for small crack depth, the bi-linear mechanism of hinge model is a good
approximation. 

When the crack depth is deep, Mayes and Davies model well simulates the behavior. The stiffness value calculated from the hinge
model is calculated as Eq. (46) . 

𝐾 = 

[ 
𝑘 𝜉( Θ) 0 
0 𝑘 ( Θ) 

] 
(46) 
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Fig. 13. Geometrical coordinates and cross-section of a rotor shaft [89] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, 𝑘 𝜉(Θ) and 𝑘(Θ) are functions of angular rotation of shaft. 𝜉 and ɳ are rotation coordinates. The time-variant stiffness is defined
by Eq. (47) in the Gasch model [86] . 

𝑘 𝜉( Θ) = 

{ 

𝑘 𝑐 − 

𝜋

2 ≤ Θ < 

𝜋

2 
𝑘 𝜉0 

𝜋

2 ≤ Θ < 

3 𝜋
2 

𝑘 ( Θ) = 

{ 

𝑘 𝑐 − 

𝜋

2 ≤ Θ < 

𝜋

2 
𝑘 0 

𝜋

2 ≤ Θ < 

3 𝜋
2 

(47) 

In Eq. (47) , 𝑘 𝑐 is the stiffness of the member at fully closed crack state. 𝑘 𝜉0 and 𝑘 0 are stiffness along two directions of rotational
coordinates. In Mayes and Davies work [87] , instead of expressing the equation with two limiting conditions as a function of rotation
of the shaft, stiffness values are defined by the cosine function ( Eq. (48) ). 

𝑘 𝜉( Θ) = 

1 
2 
(
𝑘 𝑐 + 𝑘 𝜉0 

)
+ 

1 
2 
(
𝑘 𝑐 − 𝑘 𝜉0 

)
𝑐𝑜𝑠 Θ (48) 

This model has been employed in many studies [83] for the analysis of breathing crack behavior and its impact on the response.
Jun et al. [89] later utilized the concept of fracture mechanics to derive direct and cross-coupled stiffness of a vibrating member. The
behavior of a rotating shaft with breathing crack is complex in nature. It is due to the interaction between direct and cross-stiffness
in the presence of unbalanced mass and when self-weight of the shaft is comparatively dominant in the stress contribution to the
member. The stiffness matrix calculated as per this model is given in Eq. (49) . 

𝐾 = 

[ 
𝑘 𝜉( Θ) 𝑘 𝜉( Θ) 
𝑘 𝜉( Θ) 𝑘 ( Θ) 

] 
(49) 

The cross-coupling stiffness is only obtained at partially open and closed states of crack when stiffness along two directions of
rotation coordinates participate. In reality, this coupling effect occurs when a crack is deep in length. For vibration with any one state
of crack either open or closed, the cross-coupling stiffness turns zero and the matrix becomes similar to that of Gasch [86] model. In
Jun et al. model [89] , it is assumed 

𝐾 𝑄𝜉 = 𝜎𝜉( 𝑤 ) 
√

𝜋𝑎 𝑓 

(
𝑎 

𝑎 ′

)
𝐾 𝑄 

= 𝜎( 𝑤 ) 
√

𝜋𝑎 𝑓 ′
(

𝑎 

𝑎 ′

)
(50) 

that due to large length of shaft than a’ ( Fig. 13 ), the stress intensity factor 𝐾 𝑄𝜉 due to force 𝑄 𝜉 along 𝜉 direction is approximately
equal to the bending stiffness. Similarly, for force 𝑄 along transverse direction ɳ , stress intensity factor (SIF) 𝐾 𝑄 

is given in Eq. (50) .
𝜎(w), 𝑓 ( 𝑎 

𝑎 ′
) and 𝑓 ′( 𝑎 

𝑎 ′
) are obtained from the established empirical formula. The total stress-intensity factor of the member is the

summation of individual SIF given in Eq. (50) . The total deflection of the member is then calculated by combining the deflection of
non-cracked section and excessive deflection due to crack. The total deflection is expressed by the form given in Eq. (51) . 

Δ𝜉 = 𝑄 𝜉𝐶 1 + 𝑄𝐶 2 and Δ = 𝑄 𝜉𝐶 3 + 𝑄𝐶 4 (51) 

Where 𝐶 1 , 𝐶 2 , 𝐶 3 and 𝐶 4 are flexibility coefficients. The final values of direct stiffness and cross-coupling stiffness w.r.t rotational
coordinates 𝜉 and ɳ are computed as in Eq. (52) . 

𝑘 𝜉 = 

𝐶 4 

𝐶 1 𝐶 4 − 𝐶 

2 
2 

; 𝑘 𝜉 = 𝑘 𝜉 = 

− 𝐶 2 

𝐶 1 𝐶 4 − 𝐶 

2 
2 

; and 𝑘 = 

𝐶 1 

𝐶 1 𝐶 4 − 𝐶 

2 
2 

(52) 

In some research, influence of open crack on bending stiffness EI is analyzed and an equivalent value of EI in the presence of a
crack is proposed ( Eq. (53) ). 

𝐸 𝐼 = 𝐸 𝐼 𝑓 ( 𝑥 ) ; where 𝑓 ( 𝑥 ) = 1 − ∅ 𝑒 − 𝛼|𝑥 − 𝑥 𝑐 |∕ 𝑑 (53) 
0 1 1 1 
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Wei and Shang [90] combined the opening and closing state stiffness value with a new function to describe breathing crack with
a single Eq. (54) . 

𝐸 𝐼 = 𝐸 𝐼 𝑜 

(
1 − 

1 
2 

(
1 − 𝑓 1 ( 𝑥 ) 

(
1 − 𝑠𝑔𝑛 

(
𝑑Ψ
𝑑𝑥 

|𝑥 = 𝑥 𝑐 

))))
(54) 

Ψ is the angle of rotation of the cracked section. Joglekar and Mitra [91] used inverse of additional compliance ( 𝐶 𝑇 ) to represent
opening state of crack. The reduction of stiffness due to open crack state is represented by introducing a rotational spring of equivalent
stiffness. The value of additional compliance 𝐶 𝑇 is calculated as Eq. (55) . 

𝐶 𝑇 = 

72 𝜋
𝐸𝑏ℎ 2 

𝑓 

(
𝑎 

ℎ 

)
(55) 

Here, E = Young’s modulus, b = breadth of cross-section, h = thickness of member, and a = depth of breathing-edge crack.
Following the switching method of Gasch [86] on rotating shaft, Chatterjee [23] , Chu and Shen [17] analyzed a single DoF system
and cantilever beam respectively as bi-linear oscillators with a breathing crack. The equation of motion of the system is separately
defined for two regions; one for tension, and another for compression. Nguyen [92] expressed stiffness of breathing-crack members 
in terms of curvature ( Eq. (56) ). 

𝐾 = 𝑘 𝑐 + 

1 
2 
(
𝑘 𝑐 − 𝑘 𝑜 

)[ 
1 + 

∅′′
∅′′

𝑚𝑎𝑥 

] 
(56) 

∅′′ is curvature of the member. The normalized ratio of curvature may result in singularity if absolute value is not used. This method
of modeling breathing-crack scraps the requirement of open-close frequency which is generally assumed for analysis and difficult to
measure in other cases. Rezaee and Hassannejad [24] proposed an amplitude-dependent function for time-varying stiffness. The local 
stiffness value at open and closed states at a point and its corresponding amplitude are related by the following Eq. (57) . 

𝐾 = 𝑘 𝑐 + 

1 
2 
(
𝑘 𝑐 − 𝑘 𝑜 

)[ 

1 + 𝑐𝑜𝑠 

{ 

𝜋

2 

[ 

1 − 

𝐴 

2 
𝑜 
+ 𝐴 

2 
𝑜 

𝐴 𝑜 𝐴 𝑐 

(
𝐴 𝑜 − 𝐴 𝑐 

)𝐴 + 

𝐴 𝑜 + 𝐴 𝑜 

𝐴 𝑜 𝐴 𝑐 

(
𝐴 𝑜 − 𝐴 𝑐 

)𝐴 

2 

] } ] 

(57) 

𝐴 𝑜 and 𝐴 𝑐 are amplitude of a point at fully open and closed states of crack, whereas A is the amplitude of the same point on the
member. Most of the analytical models have used direct integration technique or 4th order Rungee-Kutta method for the solution of
nonlinear equations [25] . In another study, Ruotolo et al. [19] expressed the closing crack function in the form of Fourier series. The
equation of motion incorporating cracked function is given in Eq. (58) . 

𝑚 ̈𝑥 + 𝑐 ̇𝑥 + 

(
𝑘 − Δ𝑘 𝑓 ( 𝑡 ) 

)
𝑥 = 𝑃 ( 𝑡 ) (58) 

𝑓 ( 𝑡 ) is a closing crack function, and Δ𝑘 is reduction in stiffness of the cracked cross-section when crack is fully open. The cracking
function 𝑓 ( 𝑡 ) is defined in Eq. (59) . 

𝑓 ( 𝑡 ) = 

1 
2 
+ 

2 
𝜋
cos ( 𝜔𝑡 ) − 

2 
3 𝜋

cos ( 3 𝜔𝑡 ) + 

2 
5 𝜋

cos ( 5 𝜔𝑡 ) + … (59) 

Numerical modeling of breathing crack in beam 

The theoretical modeling approach is cumbersome to solve a complex problem. Also, for a nonlinear problem, a closed-form 

solution hardly exists. Numerical methods are applied to solve this problem with the theoretical background of breathing crack 
modeling. In most of the cases of SHM based diagnosis, a baseline or reference state is required. However, the practical measurements
of reference or healthy state response may not be available. A model-based approach is considered as one of the solutions in such
cases. Various software packages are available for advanced modeling and analysis techniques. Some of the packages which have been
widely used in the past for modeling of breathing crack mechanisms is discussed in this section. This is to facilitate future researchers
in developing more advanced methods with greater accuracy extending the knowledge of existing techniques. 

Cao et al. [93] proposed a concept of quadratic Teager-Kaiser energy (Q-TKE) to amplify the peaks of higher-order harmonic
frequencies generated by the breathing mechanism which may remain hidden in the frequency spectra. The effect of Q-TKE is verified
with a numerical model of steel cantilever beam with breathing crack. ‘Ansys’ software package is employed for the numerical
modeling and simulation. Simulation of opening-closing mechanism is the main difficulty, one may face during this modeling. Every 
software package has limited options to model a structure with specific material properties and physical features. Hence, attaining
significant accuracy with the finite element modeling within the limited software environment is a challenge. The review in the
present section opens up different methods to assist in developing new model for intended purpose. In the work of Cao et al. [93] ,
following physical parameters are considered as given in Table 2 . The graphical description of the model is shown in Fig. 14 . The crack
is modeled by inserting two extra surfaces with zero thickness at the selected crack locations. The nodes are distributed on the cracked
surface similar to the distribution of adjacent faces to form floating coincident nodes. Penalty algorithm used in this modeling ensures
no penetration interaction between two cracked surfaces. A similar approach is used in another study [50] to model delamination of
a cantilever composite plate of dimension 5 mm x 5 mm x 0.625 mm carbon-fiber-reinforced polymer (CFRP). 

Dotti et al. [94] analyzed a thin-walled cantilever C-section ( Fig. 15 ) with a breathing crack in ‘ABAQUS’. Two types of element
shell and beam are used for the finite element discretization of the beam, and results are compared. Both shell and beam models
are observed to display a fair level of accuracy. To model interaction between two cracked surfaces, two types of contact definitions
are used in normal and tangential directions. ‘Hard’ contact along normal direction allows the transfer of full pressure between two
20 
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Table 2 

Parameters for numerical analysis of a cantilever beam with breathing crack. 

Sl. No. Properties and parameters Description 

1. Member Cantilever beam 

2. Material Steel 
3. Section Rectangular 
4. Dimension (length × width × thickness) 400 mm × 10 mm × 20 mm 

5. Fixed end Fixed by spanning 20 mm from the fixed end 
6. Density 7800 kg/m 

3 

7. Elastic Modulus 200 GPa 
8. Poisson’s ratio 0.27 
9. Damping ratio ( 𝜁) 0.1 
10. Damping type Rayleigh Damping 
11. Finite element dimension (length x width x thickness) 10 mm x 2.5 mm x 2 mm 

12. Element type 8 node hexahedral 
13. Excited force Concentrated 
14. Location of exciting force 30 mm away from the fixed end 
15. Exciting Force 100 N 
16. Excited frequency Arbitrary 
17. Location of measurement 10 mm away from free end 
18. Sampling frequency for analysis 1000 
19. Response measured Stead-state velocity, sampled 40 points in one period 
20. Crack depth 6 mm 

21. Location of crack (distance/length) 0.2, 0.4, 0.6, 0.8 (Each case considered separately) 
22. Method used to model two-crack surface interaction Penalty algorithm 

Fig. 14. Finite element modeling of breathing-edge-crack in a cantilever beam [93] . 

Fig. 15. Cross-section and longitudinal section of a thin-walled beam with breathing crack. 

 

 

 

 

 

 

 

 

surfaces at the time of closed state of the crack. Thus, returns back to initial stiffness value. Contact stress is reduced to zero when two
surfaces are separated at open state of crack. Along the transverse direction, ‘rough’ surface is opted to restrict the sliding between the
surfaces at closed contact. However, defining actual roughness coefficient is practically difficult. It is also observed that modeling with
beam element presented superiority in computation time over the shell model. In many nonlinear analysis, a small error in modeling
may lead to a large error in time-history results by getting accumulated in a nonlinear manner at each time-steps of calculation.
Hence selection of element type is also crucial for any nonlinear analysis. 

The penalty algorithm in ‘Ansys’ has some flexibility in allowing small penetration when cracks get closed unlike ‘Abaquas’. It
is thus practically more realistic than ‘hard’ surface modeling which will produce an additional wave of impact force. Practically,
surfaces adjacent to a crack may never fully open and close during vibration. If the area of cross-section that will come in contact
during vibration can be defined prior to analysis, it will have more realistic approach toward the simulation of real problems. 
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Fig. 16. Physical description of GFRP plate with (a) single, (b) double, and (c) triple delamination [48] . 

Fig. 17. Model of GFRP plate in ABAQUS [48] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical modeling of plate delamination 

The delamination effect of multi-layer glass-fiber-reinforced-polymer (GFRP) plates has been studied by Roy et al. [48] through 
numerical analysis. ABAQUS 6.14 software package has been used for this purpose. The geometrical dimension of each layer of the
GFRP plate is taken as 0.18 m x 0.18 m x 0.002 m. The bond between each layer of GFRP plate is modeled by using surface-to-surface
tie contact. Sliding interaction is provided between the two layers of GFRP plates at the intended section to model delamination
between two layers of GFRP plate. It is shown in Fig. 16 . To transmit and receive signal, nodes far from the delamination zone are
selected. A MATLAB-generated chirp signal of 20 N amplitude is applied at the node created for transmitter signal. The frequency
range of chirp signal should fall between local defect resonance (LDR) frequency. 

A signal outside the band of LDR would not be able to excite nonlinear resonating frequencies of the member. Discretization
element chosen for meshing of the plate is a 10-noded quadratic tetrahedron element. The meshed model is shown in Fig. 17 . Output
signal at a node is measured which is further processed for the FFT analysis and determination of bicoherence value. The delamination
region is considered circular in shape with 0.012 m diameter and 2 × 10 − 6 m thickness. An explicit analysis is performed to determine
steady-state results with size of element and time-increment value calculated by Courant-Friedrichs-Lewy’s law [95] . The application 
of CFL law ensures stability of the solution with assumed time steps and size of mesh elements. 

Experimental modeling of breathing crack 

An experimental model to a greater extent represents a real scenario. The development of any formulation is hence better validated
with small-to-large-scale experimental modeling in the absence of real data. Many researchers look for the experimental dataset or
guidance to develop a new model in order to verify their proposed methods. A short description of some of the experimental models
in this review may address this problem. From the literature reviews, it has been observed that most of the studies on breathing crack
problems have been performed on either rotor shafts or plates and beams. Very few studies are there on large-scale models such as
shear buildings, frame structures, bridges, etc. Also, the design of an experimental set-up to initiate and propagate cracks with fatigue
behavior is a very complex process. 

Hence, in experimental modeling also some relaxations are made to achieve the desired behavior of the model with ease. Jiang
et al. [49] experimented with an aircraft blade-shaped member made of bamboo fiber to detect fatigue cracks. A narrow slot is made
on the blade and randomly vibrated with an exciter. The slot is made by cutting some portion of blade at the top with a utility knife.
The whole arrangement of the test set-up is shown in Fig. 18 . A forced vibration oscillator is installed with a frame to apply vertical
excitation at selected node of the member. One video camera is assembled with a telescopic lens of large zooming capabilities to
capture the motion of beam. The position of the camera is set in such a way that all characteristic points where the response is expected
22 
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Fig. 18. (a) Experimental arrangement of an aircraft-wing model with forced vibration exciter, and (b) location of crack and characteristic points 
of the model [49] . 

Fig. 19. Geometrical description of a vertical aluminum cantilever beam and experimental arrangements [96] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to be measured fall in the region of the telescopic lenses. The result of the proposed total nonlinearity index (TNLI) estimated from the
response exhibits the capability of identifying even small damage with a lower degree of nonlinearity. At the same time, it verifies the
presence of breathing crack with nonlinear features extracted from the system’s response. However, the flexible dimension of aircraft
wing model may incorporate geometric nonlinearity in the response if vibration amplitude is not controlled. It may mislead the result
about breathing crack identification. Xu et al. [96] used an electromechanical shaker to apply harmonic force on a vertically held
steel beam (400 mm x 10 mm x 20 mm) with a 1 mm notch near fixed end. The notch is triangular in shape. From the edge of the
notch tip, a 5 mm deep crack is produced by fatigue vibration of the beam. The test setup of the beam is shown in Fig. 19 . Doppler
laser vibrometer is installed to measure the velocity response at the selected measured points. 

The selection of the input voltage which controls displacement amplitude is an important task for the detection of nonlinearity. This
small-scale model of the beam may also exhibit geometric nonlinearity by the applied harmonic force. This is the reason experiment
with higher voltage is excluded from the analysis to restrict the generation of geometric nonlinearities by excessive deformations.
Frequency spectra of the velocity response is applied to detect the nonlinear response by the appearance of higher harmonics. The
amplitude of higher harmonics is noted to be more dominant in the acceleration spectrum than velocity. The acceleration time history
is obtained from the measured steady-state velocity response. Finite difference method is adopted for the numerical differentiation 
of velocity to calculate acceleration response. A similar type of test setup is used by Cui et al. [97] . In place of a vertically held beam,
a horizontal beam is used to record transverse vibration excited by the electromechanical shaker. Accelerometers are attached to
directly record the response of selected points near the crack. Two parts of the beams are glued with each other. In the bottom part
of beam a through-width crack is made. To avoid unbonding by shear between two glued beam surfaces, thickness of the top and
bottom beam is kept same to amount equal deflection at the same cross-section. The arrangement of beam and shaker is shown in
Fig. 20 . In this experiment, as the beam is fixed horizontally, self-weight of the beam will also contribute to the response. Weight of
the beam acts as a restoring force when the crack is on the upper side of the beam and in the closing state during motion. If this static
gravity force overpowers the excitation amplitude of vibration, breathing behavior would not develop. To minimize the interference 
of gravity load, a force exciter has been used in the middle to vibrate the beam with a minimum initial deflection at the non-excited
position of the beam. The stress concentration at the crack tip is ignored in this experimental model unlike the work of Xu et al.
[96] which would better represent actual behavior of the cracked beam. The natural frequency of the beam is found to be 21 Hz.
Hence, the excitation frequency is set close to the resonating frequency equal to 15 Hz throughout the experiment. In this method,
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Fig. 20. Horizontal arrangement of beam with shaker and position of accelerometer [96] . 

Fig. 21. (a) A cracked T-beam and path of crack-propagation, and (b) laboratory setup [3] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the breathing nonlinearity may get coupled with geometric nonlinearity of beam if excitation amplitude is not controlled. Lee and Lu
[3] investigated a T-shape steel plate model with crack at corner between the joint of the flange and web. Tensile cyclic loading is
subjected to the model with 150 MPa maximum stress and 15 MPa minimum stress. After the development of fatigue crack by 54 mm
in length, the specimen is subjected to nonlinear-ultrasonic testing. The flange of the specimen is kept fixed whereas no support is
provided to the web of the joist. Four sensing paths are marked on the body of the web to sense the propagation of breathing cracks.
Both vibration and ultrasonic signals are then generated to examine the effect of nonlinearity on the vibration response. As the crack
propagates along sensing path 4, response recorded in this path will not have any significant impact due to nonlinearity. The size of
the crack is shown in Fig. 21 . It can be observed that crack is wider near the crack tip and reduced gradually towards the flange edge.
Also, as propagation of crack occurs along sensor path #4, response collected at any point on this path does not show any impact of
fatigue crack. Response along the sensing paths #2 and #3, located away from the crack tip is analyzed here to evaluate the effect
of vibration. A composite plate is investigated by Rébillat et al. [98] to determine the presence of breathing crack using nonlinear
features of the system’s response. The composite plates used in this study are aircraft composite fuselage. Each plate consists 16-layers
of carbon-epoxy material. A network of PZT sensors is built on the plate as shown in Fig. 22 . Among two plates, one plate is damaged
at the center by projecting steel ball on the surface with controlled velocity. Impact of this 5 mm diameter steel ball creates local
deformation on the plate surface as a mark of damage. An exponential sine sweep signal is then generated to excite the plate with
frequencies f = 100 Hz and f = 30 Hz. The output results indicate the presence of nonlinearity even in the healthy state. Hence, with
1 2 
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Fig. 22. Arrangement of accelerometers and crack position on a composite plate [98] . 

Fig. 23. A 8-DoF spring-mass system with contact nonlinearity [100] . 

Table 3 

Parameters for experimental analysis of a plate with breathing crack. 

Sl. No. Properties and parameters Description 

1. Geometrical shape of plate Rectangular 
2. Dimension (Length × breadth × thickness) 400 mm × 300 mm × 2 mm 

3. Damage location Center of plate 
4. Number of PZT patches 9 
5. Dimension of patches (Length × breadth × thickness) 30 mm × 20 mm × 0.2 mm 

6. Orientation of composites (0°, 45°, − 45°, 90°, 90°, − 45°,45°,0°) 2 
7. Sampling frequency 100 kHz 
8. Forcing voltage amplitude 10 V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this experiment it is difficult to study only the effect of breathing crack as the response of damaged plate will include other inherent
sources of nonlinearity along with nonlinear behavior of the crack if present. The details of plate dimensions, placement of PZT
patches, damage location, etc. are provided in Table 3 . Fatigue crack in the welded joint of a girder is experimentally tested by Kong
and Li [99] . A compact C(T) specimen is tested under fatigue loading. The digital image processing method is employed here to detect
opening and closing of crack during fatigue cycles. All results obtained from the test collectively exhibit the breathing phenomena
after data processing. Hence, in future, it could also be employed with accelerometer or other sensors to perform a nonlinear damage
detection study with measured response time-history. Some experimental set up are also developed in the past to simulate a nonlinear
system which can be utilized for breathing crack modeling in future. In one such work, a #8-DoF spring-mass system is developed
with series of discs connected by a spring. The nonlinearity is developed in this model by placing a bumper ( Fig. 23 ) between two
masses to restrict movement of attached masses between damaged spring and enable collision. This experimental model is developed 
for validation of nonlinear system identification technique. 

The same arrangement can be used to represent fatigue cracks with variable stiffness. To achieve this the solid bumper can be
replaced with a spring. Stiffness of bumper spring should be selected in such a way that after collision the total stiffness (damaged
spring + bumper spring) will be equal to the stiffness of spring at undamaged position. However, in this way, the axially vibrated
system could not replicate gradual closure of the crack. Rather, the equation for this system will follow the theoretical model of Gasch
[86] . Similar arrangement is made in a #4-DoF frame model. An inverted suspended stringer is attached to the bottom of top floor
and an obstruction arrangement is created in the 2nd floor as shown in Fig. 24 . The bumper, if replaced with a spring, could replicate
breathing mechanism if the spring at damage location in combination with stiffness of bumper spring provides total stiffness value
equivalent to the stiffness of spring at undamaged position. 

Conclusion 

The review in this article is developed considering the nonlinear behavior of a crack. Small damage of negligible severity may
sometime impart nonlinearity in the system response under operating condition. Various nonlinear system identification techniques 
have already been developed in the past for different purposes. Those methods can be applied for structural damage detection when
25 



S. Ganguly MethodsX 11 (2023) 102420 

Fig. 24. (a) Three story frame building model attached with dynamic shaker, and (b) enlarged view of displacement restraining arrangement on 
the top floor [100] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the crack is too small to detect by existing methods and exhibits breathing mechanism during vibration. The study on the identification
of the opening and closing mechanism of cracks is extensively used in the field of mechanical and electrical engineering. Recognizing
the future prospect of nonlinear behavior of crack in the wide field of engineering, an extensive review on breathing crack is performed
in this work. For the first time, a review on each step related to the identification of breathing crack in a structure and its modeling
to simulate real behavior is summarized in a single article. It will facilitate researchers in building a complete comprehensive idea
about breathing crack related problems. The fundamentals of closing crack is first explained with detailed mathematical background 
visualizing the actual behavior of the crack during vibration. It is then extended to review different nonlinear system identification
techniques which are directly employed for the identification of breathing crack. Difficulties in the identification of nonlinearity lie
in the solution of nonlinear equations. The methods for identification of breathing crack in this review are classified into two groups;
vibration based methods and acoustic based methods. Volterra series is considered as the foundation of most expansion series based
techniques used to identify system behavior. It is first expressed in time domain by applying convolution integral technique of linear
system. Later, to easily identify kernel function of higher order Volterra series, FFT is applied to evaluate the function in the frequency
domain. A connection is also established mathematically between Volterra series and other expansion series employed for system 

identification in the frequency domain. Further, the performances are highlighted with the advantages and limitations of vibration 
and acoustic based methods. 

Modeling a cracked member is an integral part of the systematic application of structural health monitoring. The efficiency of any
formulation can be judged only if the numerical model is precisely developed to simulate a breathing crack. Software packages that
are popularly used in earlier studies are mentioned here with a detailed description of crack modeling in those environments. It helps
either to develop a new model with improved accuracy or to validate a proposed method. The application of any formulation on large-
scale structures first necessitates its verification on a simplified small-scale experimental model. Simulation of real practical scenarios 
in the controlled environment of the laboratory is a complicated task. It requires minute details about the real system parameters and
their behavior under dynamic motion. Keeping in view this aspect, some of the experimentations successfully performed in the past
are depicted here with detailed material properties and required parameters. It will minimize the efforts required to design a system
with the real behavior of crack. It is also reviewed that experimental models designed for nonlinear system identification with an
arrangement for impact nonlinearity can also be used for the simulation of breathing crack mechanism with necessary modifications.

Throughout the work, a wide range of techniques are incorporated to fulfill the aim of this article. Considering a vast range of
available techniques in nonlinear dynamics and acoustics, some of the methods in each category are excluded from this extensive
study for the brevity of article. A detailed discussion on Bayesian approach, wavelet transform method, etc. are kept out of scope in
the present study. The future scopes obtained from this review are enumerated below: 

(a) Nonlinear behavior of fatigue crack has been identified by different methods in the past. However, various other sources of
nonlinearity may exist to pollute the response of already distorted signals. Hence, a robust technique should be developed to
isolate different types of nonlinearity. 

(b) Most of the breathing crack detection techniques are validated with numerical techniques or small scale experimental model 
of plate, beam, and rotor etc. An extensive study with a more complicated structure or real data is required. 

(c) Application of most of the techniques for the determination of higher-order harmonics is either time-consuming or prone to
erroneous results. A simple and efficient solution for the detection of higher harmonics in the response of any nonlinear system
can be developed in the future. 

(d) The physical reason behind the formation of only integer multiple of harmonics in the presence of nonlinearity is not properly
explained yet. Extensive research needs to be performed to understand the physical behavior of nonlinear systems. 

(e) A very few indicators evolved in the past monotonically varied in presence of nonlinearity and are independent of excitation
parameters. It is a limitation for the quantification study of a nonlinear crack model. A bounded solution for the quantification
of breathing crack is to be focused in future. 
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(f) A highly nonlinear system often leads to chaotic motion. Robust solution procedure to forecast this dynamically chaotic system 

rarely exists. The development of a general solution to describe both weak and strong nonlinear systems is one of the scopes
of future research. 
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