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Abstract

An emerging goal in neuroscience is tracking what information is represented in brain

activity over time as a participant completes some task. While electroencephalogra-

phy (EEG) and magnetoencephalography (MEG) offer millisecond temporal resolution

of how activity patterns emerge and evolve, standard decoding methods present sig-

nificant barriers to interpretability as they obscure the underlying spatial and tempo-

ral activity patterns. We instead propose the use of a generative encoding model

framework that simultaneously infers the multivariate spatial patterns of activity and

the variable timing at which these patterns emerge on individual trials. An encoding

model inversion maps from these parameters to the equivalent decoding model, all-

owing predictions to be made about unseen test data in the same way as in standard

decoding methodology. These SpatioTemporally Resolved MVPA (STRM) models can

be flexibly applied to a wide variety of experimental paradigms, including classifica-

tion and regression tasks. We show that these models provide insightful maps of the

activity driving predictive accuracy metrics; demonstrate behaviourally meaningful

variation in the timing of pattern emergence on individual trials; and achieve predic-

tive accuracies that are either equivalent or surpass those achieved by more widely

used methods. This provides a new avenue for investigating the brain's representa-

tional dynamics and could ultimately support more flexible experimental designs in

the future.
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1 | INTRODUCTION

The use of decoding models for the analysis of magnetoencephalogra-

phy (MEG) and electroencephalography (EEG) data has substantially

grown in recent years (Grootswagers, Wardle, & Carlson, 2017).

Increasingly researchers are turning to these methods—collectively

referred to as Multivariate pattern analysis (MVPA)—for their

increased sensitivity to distributed patterns of variation that can be

attributed to a stimulus (Haynes & Rees, 2006). While projecting high

dimensional neural data down to a single metric of classification accu-

racy affords researchers greater statistical sensitivity, it generally

comes at a cost to interpretability: the precise nature of the link

between significant changes in decoding accuracy and the underlying

neuroscience driving those changes can often be indirect or opaque

(Haufe et al., 2014; Kriegeskorte & Douglas, 2019; Naselaris &

Kay, 2015; Valentin, Harkotte, & Popov, 2020). Furthermore, com-

monly used methods that align all trials in time and proceed in a

timepoint-by-timepoint fashion offer no sensitivity to patterns that

are not perfectly synchronised in time across different trials (Borst &

Anderson, 2015; Vidaurre, Myers, Stokes, Nobre, & Woolrich, 2019).

The main focus in the use of MVPA for M/EEG is to leverage

these modalities' high temporal resolution to investigate the brain's

representational dynamics over time (King & Dehaene, 2014). A con-

vention has emerged for analysing trial data whereby successive spa-

tial filters—each a vector with one linear coefficient applied to each

sensor—are trained on data at different timestamps from the

presentation of some stimulus (Carlson, Hogendoorn, Kanai, Mesik, &

Turret, 2011; Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pan-

tazis, & Oliva, 2014; Grootswagers et al., 2017; Haxby, Connolly, &

Guntupalli, 2014; van de Nieuwenhuijzen et al., 2013). While this con-

vention has certainly been useful, it is not without its flaws, as illus-

trated in Figure 1. Firstly, spatial filters are blind to any temporal

structure in the data. These filters cannot detect patterns of temporal

autocorrelation that are subtle but consistent over multiple

timepoints. Secondly, spatial filters cannot be interpreted as reflecting

the brain activity associated with stimuli; this has been widely

characterised in the neuroscience literature (Haufe et al., 2014;

Kriegeskorte & Douglas, 2019; Valentin et al., 2020), but is somewhat

counter intuitive. As shown in Figure 1, given an evoked response

from two different stimuli in the presence of correlated noise, the

coefficients of a linear spatial filter need not visually resemble or

reveal these underlying patterns. Post hoc methods have been pro-

posed to map backwards from a spatial filter to recover a forward

model of the data (Haufe et al., 2014), however these come with a

number of caveats and are not guaranteed to provide the most accu-

rate forward model parameter estimates. We instead propose to turn

this approach on its head, and ask: why not first learn a generative

model of the data, and then use that model to make predictions of

unseen stimuli?

In neuroscience terminology, this amounts to fitting an encoding

model, then inverting that encoding model to make predictions

through an equivalent decoding model (Friston et al., 2008; Haxby

F IGURE 1 Conventional approaches to decoding in M/EEG are mass univariate through time and difficult to interpret in space without

further post hoc analysis. In a typical M/EEG experiment decoding different types of stimuli—in this example, images of faces and houses adapted
from Negrini, Brkic, Pizzamiglio, Premoli, and Rivolta 2017; (the exemplary maps are based on real MEG data from the dataset presented below)—
the conventional approach extracts all data at one timestep from the stimulus onset time and trains a spatial filter on that data to distinguish the
conditions. This process is repeated independently at all timesteps. This approach ignores the time series nature of this data, and the spatial filters
are neither able to detect patterns that are consistent over multiple timesteps, nor patterns that are consistent over trials but not perfectly
aligned in time. Furthermore, the spatial filter coefficients are not directly interpretable (Haufe et al., 2014; Kriegeskorte & Douglas, 2019;
Valentin et al., 2020) without a further post hoc analysis step (inset) such as the seminal method proposed by Haufe et al. (2014)
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et al., 2014; Naselaris, Kay, Nishimoto, & Gallant, 2011). This

approach has been successful in fMRI (Casey, Thompson, Kang,

Raizada, & Wheatley, 2011; Friston et al., 2008; Kay, Naselaris, Pre-

nger, & Gallant, 2008; Mitchell et al., 2008; Naselaris, Olman,

Stansbury, Ugurbil, & Gallant, 2015; Naselaris, Prenger, Kay, Oliver, &

Gallant, 2009; Nishimoto et al., 2011; Schoenmakers, Barth, Heskes, &

van Gerven, 2013) but has only seen quite limited adoption for

M/EEG (di Liberto, O'Sullivan, & Lalor, 2015; Kupers, Benson, &

Winawer, 2020). In a similar vein, we therefore propose a linear gen-

erative model of stimulus evoked activity based upon the popular

General Linear Model (GLM) framework for M/EEG data (Trujillo-Bar-

reto, Aubert-Vázquez, & Penny, 2008). While the GLM in neuroimag-

ing is traditionally associated with mass univariate analysis, it can be

extended to be multivariate across space, allowing multivariate predic-

tions to be made on unseen test data through a simple application of

Bayes rule (Friston et al., 2008; Haxby et al., 2014). Notably, the inver-

sion of an encoding model in M/EEG can be framed as a solution to

the inverse problem, where it has been successfully applied to obtain

estimates of source-localised activity (Trujillo-Barreto et al., 2008)—

we apply the same general approach to instead make predictions

about unseen test-data in a decoding-style manner. The widespread

utility of the GLM approach in neuroimaging suggests it may have a

broad applicability across a range of different experimental paradigms;

in support of this claim, we demonstrate its use across two very dif-

ferent datasets.

Further, we show how this encoding framework can be extended

to take advantage of approaches that adapt to timing differences

across different trials (Anderson, Fincham, Schneider, & Yang, 2012;

Borst & Anderson, 2015; Obermaier, Guger, Neuper, &

Pfurtscheller, 2001; Vidaurre et al., 2019; Williams, Daly, &

Nasuto, 2018), thereby more fully utilising the high temporal resolu-

tion that is the main benefit of M/EEG as a recording paradigm. Such

temporal variability over trials can elucidate key aspects of cognitive

processing (Anderson et al., 2012; Anderson, Betts, Ferris, &

Fincham, 2010; Borst & Anderson, 2015; Borst, Ghuman, &

Anderson, 2016), however has generally only been investigated using

methods tailored to specific task paradigms (Anderson et al., 2012;

Anderson & Fincham, 2014a, 2014b). In contrast, we show that the

same hidden Markov modelling (HMM) approach can be formulated

using the popular GLM framework, potentially allowing such ques-

tions to be pursued across a broader range of neuroimaging experi-

ments (Vidaurre et al., 2019). With this approach, we are able to

characterise the emergence of distinct representational states on indi-

vidual trials and better model patterns that endure over multiple

timepoints but may not be perfectly aligned in time. Previous require-

ments for patterns to be perfectly aligned over multiple trials limited

experimental designs to paradigms that ensure maximal inter-trial

reproducibility (Light et al., 2010), or alternatively designed to eluci-

date large changes in activity that could be more easily identified

(Anderson & Fincham, 2014a; Borst & Anderson, 2015). Our more

flexible modelling approach overcomes this limitation, potentially all-

owing more ambitious experimental designs in which subtle patterns

of inter-trial variability are anticipated and can be quantified. We

believe this opens a new door to investigating representational

dynamics, by not only characterising when certain aspects of a stimu-

lus emerge in data, but also asking how these representational dynam-

ics are modulated across different trials.

2 | METHODS

Our approach extends the traditional general linear model (GLM)

framework by (a) incorporating a latent Markov variable to

explain time-varying dynamics within trials, and (b) modelling the

multivariate spatial distribution simultaneously over all recorded

channels. In so doing, we maintain the benefits of a generative

model from the GLM approach, namely interpretable maps of lin-

ear activation strengths over each channel; alongside the benefits

of multivariate methods, namely an increased sensitivity to dis-

tributed patterns of variation over multiple timesteps and amena-

bility to hierarchical modelling (i.e., latent variable modelling of

differences in dynamics over trials). These models are fit inde-

pendently to each subject, resulting in distinct model parameters

for each subject upon which standard group statistical tests can

be run.

2.1 | Standard general linear model setup

We begin with the standard formulation of a GLM for evoked

response analysis. For a specific subject, with a total of N samples of

M/EEG data recorded across P sensors in a paradigm with Q regres-

sors, we denote by Y the neural data of dimension N�P½ �, with an

associated design matrix of regressors X of dimension N�Q½ �. This
standard GLM setup is not explicit about how the N samples relate to

time or trials. The convention in M/EEG analysis is to fit independent

GLMs over successive timepoints within a trial in the same manner as

in Figure 1, such that N would equal the number of trials and the

effects of each stimulus are modelled independently at each timepoint

within the trial. Note that our use of “neural data” here is generic; in

this article we use raw sensor data, but this could equivalently be

commonly used features such as bandlimited power. The GLM is for-

mulated as follows:

P YjX,W,Σð Þ¼N XW,Σð Þ ð1Þ

The matrix W, of dimension Q�P½ �, is directly interpretable as each

row is an estimate of the corresponding stimulus' activation pattern

(i.e., its effects on each sensor's measured signal) while the confidence

in that estimate depends on the entries of the P�P½ � residual covari-
ance matrix Σ.

The common use of the GLM in mass univariate analysis may lead

some readers to mistakenly believe it is a univariate model. This is

because, putting aside spatial priors that could be used on W, this

model stores any multivariate information in the residual covariance

matrix Σ; and this matrix is simply not used in mass univariate
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hypothesis tests that, for example, do group level inference on W.

However as has been established (Friston et al., 2008), the residual

covariance matrix is essential when the model is inverted to make

multivariate predictions about unseen test data. Thus, our focus is on

the full, multivariate GLM where all terms of the covariance matrix are

inferred and used to generate predictions.

F IGURE 2 SpatioTemporally Resolved MVPA (STRM) for M/EEG. (a) The STRM Model receives as inputs the M/EEG data and corresponding
design matrix, and outputs a set of activation patterns and their corresponding timing on each trial. Our analysis pipeline fits this model to data at
the subject level, then extracts three different summary statistics (Panel b–d) to analyse at the group level. (b) The consistency of state activation
patterns can be summarised by taking the group mean activation patterns (as we do for the STRM-Regression model); or of a subject level
summary measure such as an ANOVA F-statistic (as we do for the STRM-Classification model). (c) Behaviourally meaningful variation in the
timing of the activation patterns can be identified by regressing behavioural readouts on individual trials against state timecourses, and fitting
group statistics to the regression parameters. (d) The STRM model can be inverted to make multivariate predictions on unseen test data; we can
then run standard group statistics on the decoding accuracies obtained
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2.2 | SpatioTemporally Resolved MVPA (STRM)

We propose to extend this model hierarchically using the HMM

framework. This assumes some level of correlation of activation pat-

terns over multiple timepoints that is modelled by a latent state vari-

able, at the same time as having the ability to capture differences in

dynamics over trials. Specifically, we model the data vector observed

at any point in time t on trial n as conditional upon a latent, discrete

and mutually exclusive state Zn,t � 1,2,…K½ �, as follows:

P Yn,tjZn,t ¼ k,Xn,t,W 1:Kf g,Σ 1:Kf g
� �¼N Xn,tWk ,Σkð Þ ð2Þ

where K is the number of states, and the kth state is associated with a

distinct set of residual covariance patterns Σk and stimulus activation

patterns Wk that linearly map between the trial stimulus X and the

data Y. The latent states Zn,t can then be inferred (with suitable con-

straints, as outlined below) to explain exactly when each distinct pat-

tern emerges on each different trial, allowing us to infer the

combination of activity patterns and corresponding latent state

timecourses (by which term we refer specifically to the posterior state

probabilities) that best explain the data at each time point (Figure 2).

2.3 | Bayesian model hierarchy

We wish to estimate the unknown model parameters

Z 1:N,1:Tf g,W 1:Kf g,Σ 1:Kf g
� �

, as well as the hidden transition probabilities

Φ and hierarchical prior parameters Λ 1:Kf g over the regression model

weights (defined fully below). We do this by inferring the full posterior

distribution as follows (see also Figure 3):

P Z 1:N1:Tf g ,W 1:Kf g,Σ 1:Kf g,Λ 1:Kf g ,ΦjX 1:N1:Tf g,Y 1:N1:Tf g
� �
¼P Y 1:N1:Tf gjX 1:N1:Tf g,Z 1:N1:Tf g,W 1:Kf g ,Σ 1:Kf g

� �
P Z 1:N1:Tf g ,W 1:Kf g,Σ 1:Kf g,Λ 1:Kf g,Φ
� �

P Y 1:N1:Tf gjX 1:N1:Tf g
� � ð3Þ

Note we have used the notation X 1:N,1:Tf g to denote the entire set of

design matrix entries over trials 1 to N and over all timepoints within

those trials 1 to T: While these design matrix entries could vary as a

function of time within each trial, they do not in either of the datasets

we analyse here (i.e., each trial has a single value for each column of

the matrix X that does not change until the next trial). In the below

analysis, we expand upon these terms, with modelling decisions

explained and justified in turn. We omit the model evidence term

(i.e., the denominator in the above equation) as it shall be methodo-

logically sufficient to compute this posterior up to proportion.

2.3.1 | Data likelihood

The likelihood of each observation is conditionally independent of

every other observation given the current value of the latent state

variable. Thus, we can write the full likelihood of all observations over

N trials each of T timepoints as a product over time and trials:

P Y 1:N,1:Tf g jX 1:N,1:Tf g,Z 1:N,1:Tf g,W 1:Kf g,Σ 1:Kf g
� �
¼
YN

n¼1

YT

t¼1
P Yn,tjXn,t,Zn,t,W 1:Kf g,Σ 1:Kf g
� � ð4Þ

F IGURE 3 Bayesian model outline and left-to-right sequential state dynamics. Left Panel: the full model outline in Bayesian plate notation.
For each of N trials of length T, we have data observations Yn,t conditioned upon the corresponding design matrix entries Xn,t. These data
observations Yn,t are also conditioned upon a latent Markov variable Zn,t which models the state sequence unique to each trial, and upon the
associated state parameters Wk and Σk , which are modelled separately for each of the K total states. The latent state variables are themselves
conditioned upon the transition matrix Φ, while the activation patterns in each state are conditioned upon an automatic relevance determination
prior parameter Λ. Right panel: We depart from conventional HMM modelling, which freely permits any state to transition to any other state as in
the diagram on the left, by instead imposing a left-to-right sequential HMM. As shown on the right, this restricts the permissible state transitions
to a consecutive sequence, such that state 1 can either persist or transition to state 2 at each timestep; similarly, if state 2 is active it can either
persist or transition to state 3 at each timestep. This structure imposes more aggressive regularisation to overcome the overfitting issues often

associated with supervised HMM models
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where each individual observation is modelled by a GLM, as in

Equation (2).

2.3.2 | Left-to-right latent state prior

We assume that P Z 1:N,1:Tf g,W 1:Kf g,Σ 1:Kf g,Λ 1:Kf g,Φ
� �

factorises over

parameters, that is:

P Z 1:N1:Tf g,W 1:Kf g,Σ 1:Kf g,Λ 1:Kf g,Φ
� �
¼P Z 1:N1:Tf gjΦ

� �
P Φð Þ

YK
k¼1

P WkjΛkð ÞP Λkð ÞP Σkð Þ ð5Þ

and model the latent state variable Zn,t using a Markovian prior:

P Z 1:N,1:Tf g jΦ
� �

P Φð Þ¼P Φð Þ
YN
n¼1

P Zn,1ð Þ
YT
t¼2

P Zn,tjZn,t�1,Φð Þ ð6Þ

However, we make one important departure from the far more ubiq-

uitous unsupervised HMM model. In the cases where HMMs are used

for unsupervised analyses of M/EEG data, for example, to find resting

state networks (Higgins et al., 2021; Vidaurre et al., 2018), they are typi-

cally allowed to transition freely between states. In supervised data analy-

sis, this can lead to severe overfitting (Ghahramani, 2001), so we instead

constrain the model to follow a common trajectory over each trial: we

assume that the state order is a fixed sequence, where only the timing of

state transitions is allowed to vary. Every trial begins in state 1 and subse-

quently progresses consecutively through the states, with state transition

times freely inferred a trial specific basis (see Figure 3). This has the

advantage of enforcing an interpretable sequence of activation over trials,

while reducing the number of free parameters governing state transitions.

Where unconstrained HMMs must consider a full K�K transition

matrix, this left-to-right HMM constraint means we need only model

a K�1 vector Φ, the kth entry of which (denoted by pk) captures the

probability of state k transitioning to state kþ1. This structure is

enforced by the following prior over the state transitions:

P Zn,1 ¼ kð Þ¼ 1 if k¼1

0 if k≠1

P Zn,tjZn,t�1 ¼ k,pkð Þ¼ kþ1with probpk
kwith prob1�pk

ð7Þ

We then set the following conjugate priors over the transition

matrix entries (a Dirichlet distribution—as the multivariate extension

of a Beta distribution—is the conjugate prior to HMM transition prob-

ability matrices in general, however as our left-to-right HMM con-

straint limits the dimensionality of each transition matrix row to 2, this

is reduced to a standard Beta distribution):

P Φð Þ¼
YK
k¼1

Beta pkjα,βð Þ ð8Þ

We set the hyperparameters α¼1 and β¼1 (corresponding to a

uniform distribution).

2.3.3 | Observation model parameter prior

For the observation model parameters W 1:Kf g and Σ 1:Kf g, we apply

conjugate priors; this is an inverse Wishart distribution for the covari-

ance matrix and an automatic relevance determination (ARD) prior as

specified below for the stimulus activation patterns. The use of an

ARD prior prunes away inferred stimulus activation patterns on sen-

sors that are less consistent over trials, in a manner that performs

favourably in neuroimaging (Woolrich et al., 2009; Yamashita, Sato,

Yoshioka, Tong, & Kamitani, 2008). Denoting by wk,i,j the i, jth entry of

the matrix Wk , and similarly by λk,i,j the i, jth entry of the matrix Λk , this

is implemented as follows:

P W 1:Kf g,Σ 1:Kf g,Λ 1:Kf g
� �¼YK

k¼1

P Σkð Þ
YP

i¼1

YQ

j¼1
P wk,i,jjλk,i,j
� �

P λk,i,j
� � ð9Þ

P Σkð Þ¼W�1 A,υð Þ

P wk,i,jjλk,i,j
� �¼N 0,λ�1

k,i,j

� �

P λk,i,j
� �¼G a,bð Þ

We then set the values of the hyperparameters to A¼ 1
P IP and υ¼P,

where IP denotes the identity matrix of dimension P. A result of this is

that the expected value of the covariance matrix inverse Σ�1
k under

this prior is the identity matrix IP, corresponding to a prior specifying

normalised and uncorrelated data (which itself is a justified assump-

tion given the model is fit to the principal component space as out-

lined below). We furthermore set hyperparameter values a¼1 and

b¼1. This completes the Bayesian hierarchy.

By inferring a full covariance matrix and matrix of regression

weights for each state, we have a potentially quite large parameter

space that grows as a function of the number of states K. While the

above priors ensure that the model parameters are always well-

defined, their accuracy may nonetheless suffer when the number of

states is large. Our weakly informative priors can be interpreted as

adding a small number of virtual data points to the analysis that

encode weakly held assumptions about the data—while this reg-

ularises the problem and ensures parameters are well-defined, if there

are very few data points assigned to a state then these assumptions

may still become overly dominant in the parameter estimation. This is

one of the reasons we use cross validation to optimise the hyper-

parameter K. In other datasets where the number of datapoints is

much more limited than those characterised here, our toolbox also

supports further limiting the parameter space by restricting the form

of Σk to be diagonal and/or to be uniform over different states.
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2.3.4 | Variational Bayesian inference

As a hierarchical extension of a linear model with conjugate priors, this

model is amenable to classic variational Bayesian inference methods.

These methods are efficient and scale well to large datasets

(Beal, 2003); in the context of the specified model, they are an exten-

sion of the popular expectation maximisation algorithm to full poste-

rior inference (i.e., rather than point estimates) for each of the

specified model parameters, which are generally more robust than

point estimate methods (Johnson, 2007).

Variational Bayesian methods apply the mean-field approxima-

tion, whereby they assume the full posterior specified in Equation (3)

can be approximated by the following factorised form:

P Z 1:N1:Tf g,W 1:Kf g,Σ 1:Kf g,Λ 1:Kf g,ΦjX 1:N1:Tf g,Y 1:N1:Tf g
� �
≈Q Φð Þ

YK
k¼1

Q Wkð ÞQ Σkð ÞQ Λkð Þ
YN
n¼1

YT
t¼1

Q Zn,tð Þ ð10Þ

This factorisation assumption approximates the full posterior as a

product of independent univariate distributions. The advantage of such

an approach is that it allows the inference of the approximate

posterior—which is otherwise analytically intractable—to be framed as

an optimisation problem, where minimisation of the free energy equa-

tes to minimising the Kullback–Leibler divergence between the true

posterior and the approximate factorised posterior. Crucially, this opti-

misation problem naturally breaks down to series of analytically tracta-

ble sub-routines by virtue of the factorisation applied (Beal, 2003). In

the context of HMMs, these are referred to as the VB-M step, which

optimises the approximate factorised posterior distribution over obser-

vation model parameters Q Wkð Þ, Q Σkð Þ, and Q Λkð Þ and hidden state

transition probabilities Q Φð Þ; and the VB-E step, which optimises the

approximate factorised posterior distribution over hidden state

variables
QN

n¼1

QT
t¼1Q Zn,tð Þ. These two steps are iterated until

convergence.

This procedure requires an initialisation step; we initialise the

model using uniform (over trials), state timecourse parameters where

each state is visited for an interval T=K seconds long (T being the

length of the trial and K being the number of states). This corresponds

to an initialisation assumption of no variation in the state timecourses

or state duration over trials. We then proceed with the variational

inference procedure as outlined above. For further technical details

including variational update equations (see Higgins, 2019); for evi-

dence of variational inference converging to known ground truth in

simulations see Figure S1.

2.4 | Inverting the encoding model

What we have outlined above is a generative encoding model, map-

ping the spatiotemporal activity patterns associated with each stimu-

lus. Such a model can be inverted to obtain an equivalent decoding

model by Bayes rule (Friston et al., 2008; Haxby et al., 2014; Naselaris

et al., 2011). Specifically, if we define the generative encoding model

parameters learned on some training set as θ¼ W 1:Kf g,Σ 1:Kf g
� 	

, for a

held-out test set of data Ytest we can make predictions about the

associated stimulus Xtest as follows:

P XtestjYtest,eZtest,eθ� �
¼
P YtestjXtest,eZtest,eθ� �

P Xtestð Þ
P YtestjeZtest,eθ� � ð11Þ

where eZtest and eθ are parameter estimates defined fully below. Bayes

rule used in this manner allows us to conveniently map between an

encoding model and its equivalent decoding model, allowing us to

make predictions of the associated stimuli for any unseen test data.

Note that P YtestjXtest,eθ,eZ� �
refers to the GLM observation model

introduced above (Equation (2). When fitting this model to unseen

test data, we substitute point estimates eθ¼ eW 1:Kf g,eΣ 1:Kf g
n o

using the

expected values from the posterior distributions inferred on the train-

ing dataset (Equation (10)).

Wesimilarlyneedtoestimatetheexpectedvaluesof the latentstatevari-

ableseZtest for each timepoint and trial in the test data. However, as we

are using a supervised HMM, these variables cannot be computed by

the same inferential step used in training, as this would require previ-

ous knowledge of the held-out labels we are trying to predict

(Vidaurre et al., 2019). Furthermore, existing Bayesian approaches

that compute a joint posterior over both design matrix entries and

latent state timecourses and then marginalise out over the latent state

variables (Beal, 2003) are not tractable without imposing additional

assumptions that seemed unsuitable to us here (see section 2 of

Supporting Information). Emphasising that this problem arises only in

the computation of held-out accuracy metrics and not the model-

fitting pipeline (for which state timecourses are estimated using the

variational Bayesian methods outlined in Section 2.3.4), we instead

estimate the cross-validated state timecourse variables using a con-

servative post hoc procedure that is entirely independent of the true

label values (shown schematically in Figure S3). To simplify notation

let us define Γt as the 1�K½ � vector of posterior state probabilities at

time t, where the kth entry γt,k ¼P Zt ¼ kjYtest,eθ� �
, such that we wish

to obtain an estimate of eΓt for the held-out trials. Taking the training

data Ytrain and the inferred posterior state timecourse probability Γt,

we train a linear regression model at each timestep within a trial to

estimate the inferred state timecourses from the training data itself:

Γt ¼Yt,trainBtþϵt. We then use these linear weights to estimate the

test set timecourses for all states from the data itself at each time-

point within a trial:

eΓt ¼ σ Yt,testBtð Þ

where σ denotes the softmax function that ensures these are proba-

bility estimates that sum to one. We discuss the implications of this

step later in the article and expand upon alternative choices in

section 2 of Supporting Information (see also Figure S4). We also

emphasise that this step is only used when computing cross-validated

accuracy metrics, and as such it does not feature in the initial model
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fit (Figure 2a), the encoding model analysis (Figure 2b), or the analysis

of pattern timing variation (Figure 2c).

The other relevant term for our model inversion is the prior over

the structure of the design matrix, P Xð Þ. We consider two cases, the

first for where the design matrix consists of mutually exclusive classes

(i.e., a classification paradigm); and a second where the design matrix

may contain continuous valued regressors (i.e., a regression paradigm).

We refer to these as SpatioTemporally Resolved MVPA (STRM)-

Classification and STRM-Regression, respectively.

2.4.1 | STRM-classification

When the design matrix consists of a total of Q mutually exclusive

classes, the form of P Xð Þ is categorical. Assuming the vectors Xt follow

a one-hot vector encoding scheme, and writing the prior probability

of each class as a Q�1½ � vector C, we have the following:

P Xtð Þ¼XtC ð12Þ

Assuming all classes are equally probable we have all entries of

Ci ¼ 1
Q. This leads us to an analytical solution to Equation (11) (see

Appendix A for details):

P XtjYtð Þ¼Xtσ Lð Þ ð13Þ

where L is a Q�1½ � vector of unnormalized class likelihoods with

each entry Li ¼
PK

k¼1
�eγt,k
2 Yt� Ii eWk

� �eΣ�1
k Yt� Ii eWk

� �T
; where Ii

denotes the [1�Q] vector obtained by taking the ith row of the iden-

tity matrix of dimension Q, and σ Lð Þ is the softmax function, which

outputs a Q�1½ � vector with each entry σi Lð Þ¼ eLiPQ

j¼1
eLj
. Note that eγt,k

is the estimate for the probability of each state being activated at time

t (i.e., the terms discussed above that are estimated by a regression

model).

This solution is equivalent to classification by Linear Discriminant

Analysis (LDA); so, with the inferred latent state dynamics eγt,k we now

have a dynamic form of LDA. Note that in different applications, users

may also choose to model the covariance matrix Σ as strictly diagonal;

in which case this model is equivalent to a dynamic form of Gaussian

Naive Bayes classification.

2.4.2 | STRM-Regression

Similarly, given a model that relates a set of continuous valued

regressors Xt to observed data Yt, we can make new

predictions given some assumption of the overall distribution of the

regressors; we will assume they are standardised and uncorrelated,

such that:

P Xtð Þ¼N 0, IQð Þ ð14Þ

where IQ is the identity matrix of dimension Q. As a conjugate prior,

this ensures for any new observation Ytest that the posterior of

Equation (11) has a Gaussian distribution (see Appendix B):

P XtjYtð Þ¼N μxjy ,Σxjy
� �

Σxjy ¼ IQþ
XK
k¼1

eγt,k eWk
eΣ�1
k

eWT

k

" #�1

μxjy ¼Σxjy
XK
k¼1

eγt,k eWkeΣ�1
k YT

test

" #
ð15Þ

In the absence of the latent state variable eγt,k , this is a case of lin-

ear Gaussian systems (LGS) model (Murphy, 2012; Roweis &

Ghahramani, 1999); thus, with the inclusion of the latent state vari-

able, we have a dynamic LGS model.

2.5 | MEG visual data analysis

We test the model on two datasets (for additional verification on syn-

thetic data simulated from the generative model see Supporting Infor-

mation). The first dataset we analyse comprises a visual stimulus

decoding task previously published as part of a larger study (Liu,

Dolan, Kurth-Nelson, & Behrens, 2019).

2.5.1 | Task outline

All participants signed written consent in advance; ethical approval for

the experiment was obtained from the Research Ethics Committee at

University College London under ethics number 9929/002. A total of

22 participants fixated on a cross onscreen and were presented with

visual stimuli in a randomised order. There was a total of eight distinct

visual stimuli (for details see Liu et al., 2019). To ensure continuous

engagement with the task, on 20% of trials the stimuli were inverted;

the participant was required to push a button to indicate if the stimuli

was inverted. The below analysis uses only the data on the non-

inverted trials.

2.5.2 | Data preprocessing

MEG data was acquired at a rate of 600 samples per second on a

275 channel CTF scanner. Data was filtered within a passband of 0.1–

49 Hz, downsampled to 100 samples per second using a polyphase

low-pass filter with cutoff 25 Hz (Higgins, van Es, Quinn, Vidaurre, &
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Woolrich, 2022), then epoched to extract periods in time from the

moment of stimulus presentation to 500 ms later. To ensure training

data was balanced across classes, for each subject we determined the

number of trials in each class and, if n is the number of trials of the

least sampled class, only kept the first n trials of all other classes. This

resulted in balanced class sets for each subject, with different subjects

having between 26 and 33 total samples of each class. At this point

the data was separated into two streams. First, the sensor space data

to be used for learning the decoding models underwent dimensional-

ity reduction using PCA, which was applied to each subject's epoched

data (i.e., the matrix of all trials for a subject concatenated together)

keeping the top 50 components (which accounted for 98.2% of the

total variance) (Grootswagers et al., 2017). We then normalised each

principal component by the variance over all that subject's

concatenated data, such that each component had unit variance. Sec-

ond, and separately, the same data was projected into source space

using a LCMV beamformer (van Veen, van Drongelen, & Suzuki, 1997;

Woolrich, Hunt, Groves, & Barnes, 2011) projecting onto an 8mm

MNI grid. Beamformer weights were computed using the data covari-

ance computed over each subjects' epoched data, concatenated over

all trials—notably our models have the potential to infer latent-state

specific data covariances, which may in future work further enhance

the accuracy of beamformer projections but which was not pursued in

the present study. Source data was then parcellated into 38 anatomi-

cally defined regions of interest (ROIs) derived from an independent

component analysis of fMRI resting state data from the Human

Connectome Project (Colclough et al., 2016). This parcellation has

been proven to be effective in a number of applications to MEG data

(Colclough et al., 2017; Higgins et al., 2021; Vidaurre et al., 2018).

Source leakage was then corrected for by orthogonalization as out-

lined in (Colclough, Brookes, Smith, & Woolrich, 2015). Ultimately the

reconstructed source data only accounted for 46% of the total vari-

ance in the original sensor data—thus, this data must be interpreted

with caution as it only reflects a partial view of the total information

available to the classifiers, but can nonetheless be informative as to

the neural origins of this activity.

2.5.3 | STRM-Classification model

As the stimulus set was categorical, we established a designmatrix with nine

regressors; these corresponded to one regressor for each distinct visual stim-

ulus, along with an intercept term. Thus, the inferred model coefficients for

each latent state corresponded to a generic activation pattern over all stimuli

for that state (i.e., the intercept term), and an effect specific to each visual

stimulus for that state. We initially fixed the parameter for the number of

states to K¼8 and sought to explore the activation parameters and

state timecourses for this fixed number of states. Only later in the

pipeline, when determining classification accuracy, do we seek to opti-

mise this parameter. Where the parameter optimisation procedure

could not be used, we can demonstrate that our results and conclu-

sions are not sensitive to the specific choice of hyperparameter (see

section 3 in Supporting Information and Figure S5).

We fit our STRM-Classification model to the principal component

space derived from the sensor level data as in Grootswagers

et al. (2017). Models were fit independently to the data from each

subject. When evaluating spatial activity maps and correlates of pos-

terior state probabilities, we fit a single model to all data for each sub-

ject; when evaluating classification accuracy we trained and tested an

ensemble of models for each subject in a cross-validation procedure

outlined below.

2.5.4 | Characterising spatial activity maps

Having determined the state timecourses from fitting our STRM

model, we projected these state timecourses back onto the original

sensor data to obtain sensor activity maps per stimulus per state, and

then for additional interpretability onto the equivalent source

localised data to obtain source space activity maps per stimulus, per

state and per subject (Figure 2b). Importantly, the interpretation of

this source space projection is subject to the usual caveats of the

inverse problem, which is ill-posed and does not have a unique solu-

tion without imposing additional modelling assumptions. Our use of

LCMV beamformers finds the lowest power solution to the inverse

problem subject to a unit gain constraint (van Veen et al., 1997;

Woolrich et al., 2011). Further caution is warranted given the source

data represent only a partial view of the information content available

to the sensor space model. The resulting activity maps can nonethe-

less be informative as to the neural origins of the signal, despite these

caveats. As we are interested in the regions that differentiate the dif-

ferent stimuli, we computed the f statistic for a within subject ANOVA

at each ROI, effectively asking how different the representations of

the eight stimuli were at that particular ROI, for that subject. Maps in

Figure 5 plot the average F-statistic over subjects per voxel,

thresholded at the top 75th percentile for visualisation.

2.5.5 | Characterising state timecourse variability

The state timecourses inferred from fitting our STRM model charac-

terise the timing at which specific activity patterns emerge on individ-

ual trials. We wished to explore what variables might influence these

timings, and so we fit a post hoc multiple regression model asking

whether specific behavioural and physiological variables allowed us to

predict the timing of specific states on individual trials (as illustrated

schematically in Figure 2c).

For each subject, given a STRM fit with K states, we fit K�1ð Þ
multiple regression models, with the kth model predicting the timing

of the transition from the kth to the kþ1ð Þth state (i.e., using the state

transition time as the dependent variable). In each model we used the

same four independent variables; the first two regressors were the

inter-stimulus interval (ISI) and participant reaction time (see Figure 6),

capturing variation in the overall timed structure of the trial. Note that

the inter stimulus interval was randomly generated for each trial from

a uniform distribution between 0.5 and 2 s, whereas the reaction time
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was determined by the participant and thus reflects a behavioural

readout.

The remaining two independent regressors were designed to

determine whether spontaneous changes in baseline electrophysio-

logical patterns immediately prior to image presentation influenced

the speed at which different patterns emerged. For this, we computed

the power spectral density (PSD) in each ROI of the source space data

over the 200 ms preceding stimulus presentation. This data was con-

siderably high dimensional, so we applied a non-negative matrix

factorisation across the data from all subjects to extract two primary

modes of spatio-spectral variation. Specifically, we arranged the base-

line PSD estimates for each subject across N ROIs in F frequency

bands and M trials into a single matrix of dimension M�NF½ �. We then

applied a non-negative matrix factorisation (NNMF) decomposition to

the row-wise concatenation of all subjects' PSD matrices as in

Vidaurre et al. (2018), obtaining two main modes of spatio-spectral

variation that corresponded to a broadband mode and a visual alpha

mode (see Figure 6). We used the expression strengths of each of

these two modes on each trial as the two independent variables in the

multiple regression model, thus asking the degree to which baseline

broadband power and baseline visual alpha power influenced the

timing of subsequent visual processing states.

Finally, to eliminate collinearity we decorrelated all four regres-

sors using symmetric orthogonalization. These multiple regression

models were fit at the subject level and comprised a total of 4 K�1ð Þ
multiple comparisons. We evaluated significance of effects at the

group level through two tailed t-tests on the distribution of model

coefficients over subjects, using Bonferroni correction of p values.

2.5.6 | STRM-Classification predictive accuracy

To assess the performance of STRM-Classification model, we used

10-fold cross-validation. This entailed a 10-fold partitioning of each

subject's data, followed by an iterative procedure of holding out one

fold for testing while training the model on the remaining data for that

subject, then testing the classification performance using the proce-

dure outlined in Equation (11) on the held-out partition. This was

repeated iteratively until all trials had been classified; we defined clas-

sification accuracy as the proportion of trials upon which the correct

label was predicted by the classifier.

Whereas we previously held the parameter K for the number of

states fixed to a single value, the classification accuracy provides a

clear metric by which this parameter could be optimised. Thus, the

above cross-validation procedure was run using a total of 10 different

values of K ranging from 4 to 22 in steps of 2. These can either be

evaluated separately or optimised by nested cross-validation, with the

data of the different subjects forming the outer cross-validation loop.

This latter procedure entails holding out one subject, determining the

value of the parameter K that maximises the classification accuracy

for the remaining subjects, and selecting that value when determining

the accuracy for the held-out subject.

To assess statistical significance, we used two tests. To test

whether the STRM-Classifier accuracy was significantly greater than

the equivalent timepoint-by-timepoint classifier accuracy, we used

non-parametric cluster permutation tests with a t threshold of

1 (Nichols & Holmes, 2003). To test whether the overall accuracy

(averaged over all timepoints) exceeded other classifiers, we first

applied a group level ANOVA followed by pairwise t-tests.

2.6 | EEG data analysis

To demonstrate the general applicability of this method, we also

applied it to a set of EEG data collected during a decision making and

reward learning task. This dataset was selected as it used stimuli

(i.e., reward outcomes) that varied continuously rather than categori-

cally, corresponding to the STRM-Regression model. Furthermore, the

more complex task design involved additional variables that we

believed may modulate neural processes and thus state timecourse

patterns.

2.6.1 | Task outline

A total of 30 participants completed the task while undergoing EEG

scanning. Twenty-three were of sufficient data quality to be included

in the analysis (the other participants were excluded either because of

not understanding the task or excessive noise). The task consisted of

navigating between different foraging patches in an effort to maxi-

mise the total reward accumulated over the course of the recording

session. Specifically, there were two types of decisions participants

had to make. First, for the “site selection” phase, they chose between

one of two patches; they then entered their chosen patch (after a var-

iable waiting period), and accrued reward (the “Reward accrual”
phase). During the reward accrual phase, participants were shown

their current reward level which changed every second (i.e., decaying

from different starting points and different decay rates). Participants

were continually prompted: they could either do nothing or continue

to accrue reward at a depleting rate, or press the space bar to collect

their accumulated reward during this patch visit. They would then

again be asked to choose between the two patches. Decay rates and

starting points of both patches were learnable but changed periodi-

cally throughout the experiment.

For the purposes of our analysis, the only task event analysed is

the period where participants receive the overall reward (the

“Reward receipt” phase). At that moment, participants had to esti-

mate the average reward rate they had achieved in the current trial

in order to decide to leave earlier or later in the next trial or indeed

pick the other patch next time. The average reward rate is computed

by combining the accumulated reward at a patch and the time

invested to receive it.

All participants signed written consent in advance; ethical

approval for the experiment was obtained from the Medical Sciences
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Inter-Divisional Research Ethics Committee at the University of

Oxford under project number R28535/RE001.

2.6.2 | Data preprocessing

EEG signals were recorded with active electrodes from 59 scalp elec-

trodes mounted equidistantly on the standard 10–20 system elastic

map (EasyCap). All electrodes were referenced to the right mastoid

electrode and re-referenced offline to the average. Continuous EEG

was recorded using a SynAmps RT 64-channel Amplifier (1,000 Hz

sampling rate). The data were epoched from �1 to 2 s around the

reward events. The data were then band-pass-filtered at [1–35]

Hz. We denoised our EEG data in a multiple step procedure. First, we

removed trials containing large artefacts semi-manually using “ft
rejectvisual” function in FieldTrip. This function visualises trial vari-

ances and allows the user to remove trials and electrodes directly

from the GUI. We did this so that the following ICA would not be

dominated by very few excessive noise trials. We then ran an ICA and

correlated the component timecourses with the computed vertical

and horizontal EOG's. If an ICA component showed high correlations

(defined as >0.3) with either EOG and had a characteristic topography

for eye movements or blinks, we regressed out that component. In

the next step we removed trials with excessive muscle artefacts by

taking eight electrodes (“PO7,” “PO8,” “POZ,” “PO4,” “PO3,” “O1,”
“OZ,” “O2”) near the neck which were most affected by muscle

movements, z-scoring them and removing trials with a conservative z-

score cutoff at 20. After muscle filtering a second visual inspection

was applied to the data in case some very noisy trials remained. We

downsampled the data to 100 samples per second using a polyphase

filter with 25 Hz cutoff. Additionally, to further remove ocular arte-

facts, we regressed the EOG channel signals from each EEG electrode

signal. We applied dimensionality reduction as previously described

for the MEG data, using PCA with eigenvalue normalisation and keep-

ing the top 20 components (out of 59 channels), which explained a

total of 93.6% of the variance.

2.6.3 | STRM-Regression model

Each trial consisted of a presentation on screen of the reward value

that had just been accumulated. For our STRM-Regression model, we

used a design matrix, X, with two continuous regressors: the first

being a mean activation value to model the mean change in activity

for a state over all trials, and the second being the value of reward

presented on screen in that trial. This second regressor was

normalised over trials.

We fit the STRM-Regression model to the principal component

space derived from the sensor level data as in (Grootswagers

et al., 2017). This is done independently to the data from each session

for each subject (note that for any group statistics we first averaged

model parameters for a given subject over both of their recording ses-

sions, then ran group statistics on these subject average values). As

outlined in Section 2.5.3 we use a total of K¼8 states (as previously,

we initially hold this parameter fixed while characterising the model

output, and later show how it can be optimised for decode accuracy).

Where the parameter optimisation procedure could not be used, we

can demonstrate that our results and conclusions are not sensitive to

the specific choice of hyperparameter (see section 3 of Supporting

Information and Figure S6).

2.6.4 | Characterising spatial activity maps

Having determined the state timecourses from initially fitting

STRM to the principal component space derived from the sensor

level data, we then projected the state timecourse information

back onto the original sensor data to obtain sensor activity maps

per regressor per state. Maps in Figure 8 plot the group average

value of model coefficients for each state; that is, the mean activ-

ity pattern associated with each state and the value evoked effect

within each state.

2.6.5 | Characterising state timecourse variability

In exactly the same way as conducted for the MEG data, having deter-

mined the state timecourses from fitting our STRM-Regression model,

we then asked whether the timings of these stimulus processing

states were significantly modulated by other variables within the task

- specifically, variables that the participant is required to track in order

to optimally complete the task.

For each subject, we fit K�1ð Þ multiple regression models, with

the kth model predicting the timing of the transition from the kth to

the kþ1ð Þth state (i.e., using the state transition time as the depen-

dent variable). In each model we used three independent variables.

These consisted of the value of the stimulus itself; the total time

invested at the site (i.e., how long the participant had spent in order

to accumulate the value shown in the stimulus); and the recent reward

history (i.e., what the participant might expect to gain from leaving

the site in search of another). To eliminate collinearity these

variables were decorrelated by symmetric orthogonalization and

normalised (Colclough et al., 2015). After fitting these models to

the data for each subject, we conducted a group analysis

testing whether any of the regressor coefficients were

significantly different from zero. This involved 3 K�1ð Þ multiple

comparisons; p values were evaluated for significance after

Bonferroni correction.

2.6.6 | STRM-Regression predictive accuracy

In the same manner as outlined for the MEG data, we then assessed

the performance of the STRM-Regression model to predict continu-

ous stimuli using 10-fold cross-validation and showed how the param-

eter K controlling the number of states could be optimised by cross-
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validation over subjects. We used as accuracy metric the Pearson cor-

relation between predictions and the true values. To assess statistical

significance, when comparing accuracy versus time of two classifiers

we applied a cluster permutation test with t-statistic threshold of

1 (Nichols & Holmes, 2003); when comparing the overall accuracy

(averaged over all timepoints) of a group of models we applied a group

ANOVA.

3 | RESULTS

We present here the results obtained from fitting the same model to

two separate datasets. The first is a set of MEG recordings of categor-

ical visual stimulus presentations, the second a set of EEG recordings

of participants completing a cognitive task.

3.1 | Decoding visual stream representations
using MEG

Visual stimuli evoke a cascade of feedforward and feedback activity

through the dorsal and ventral visual streams (Goodale &

Milner, 1992; Hochstein & Ahissar, 2002). Existing methods to iden-

tify the spatiotemporal evolution of these representational dynamics

have relied upon methods that fuse MEG and fMRI recordings (Cichy

et al., 2014) or require invasive recording types (Goodale, 1993). We

asked whether these results could be corroborated using MEG as the

sole recording modality, by utilising our STRM-Classification model.

We fit our STRM-Classification model to a previously published

dataset comprising MEG recordings of 22 participants viewing ran-

domly presented visual images from a set of eight stimuli (Liu

et al., 2019).

3.1.1 | Classification accuracy

An advantage of MVPA is that model fit can be straightfor-

wardly assessed using the metric of classification accuracy. We

therefore asked how STRM-Classification compared with con-

ventional analyses. Figure 4 plots the classification accuracy

obtained by STRM-Classification versus that of the equivalent

conventional approach, namely timepoint-by-timepoint LDA

classification. This model does lead to enhanced classification

accuracy during later timepoints (where activity patterns might

be expected to be less well aligned); however, this gain is rela-

tively modest. It appears that although our model learns state

timecourse information that we will show correlates with mean-

ingful behaviour and physiological patterns, these do not result

in dramatic gains to classifier performance. Performance is rea-

sonably robust to the STRM model order; as shown in the sec-

ond plot of Figure 4, performance is equivalent for K¼10 or

higher. This plot furthermore identifies a performance tuning curve,

making this amenable to parameter optimisation and motivating the

cross-validation approach we use to generate the upper and lower

panels of Figure 4 (see Section 2).

There are two innovations that the difference in classification

accuracy shown in Figure 4 (top panel) could be ascribed to; it could

be due to the forward modelling procedure and the assumptions it

imposes (which in this case are equivalent to the assumptions of

LDA); and/or it could be due to the time-varying dynamics that our

model permits. To test the effect of the forward modelling procedure,

we compared the accuracies achieved by a range of different classifi-

cation methods. First, we compared the classification accuracy

obtained using generative classifiers (LDA and Naive Bayes) with

those achieved by a range of discriminative machine learning classi-

fiers (Support Vector Machines—linear and with radial basis function

kernels; logistic regression in binomial and multinomial configurations;

and K-nearest neighbour classifiers). All classifiers were implemented

on a timepoint-by-timepoint basis. As shown in Figure 4, generative

model-based classifiers offer significant improvements in classification

accuracy over these methods. Thus, we conclude that—at least for this

dataset—the assumptions imposed by our generative model accurately

represent the data and afford greater classification accuracy as a

result.

3.1.2 | STRM visual stream activation patterns

Given STRM-Classification models fit independently to each sub-

ject's data, we asked how consistent the inferred spatial patterns of

activity were over subjects. Specifically, we asked whether ROIs

emerged that were particularly informative of class differences, and

whether these were the same across subjects. The interpretation of

these source-reconstructed maps is subject to the usual caveats of

the inverse problem, which is ill-posed without additional modelling

assumptions (see Section 2.5.2)—these can nonetheless be informa-

tive if these modelling assumptions turn out to be a good fit for the

data. Nothing in the model expressly enforces common patterns of

activation for a given state across subjects, these are only unified

by their common position in the temporal sequence of states (see

Figure 3). Figure 5 plots the mean state sequence timings across all

subjects for a STRM-Classification model fit with K = 8 states. As

demonstrated in the central panel of the figure, which shows the

inferred state timecourses on individual trials for an example sub-

ject, all trials follow the enforced left-to-right HMM state sequence

while allowing for variability in precise activation pattern timing on

individual trials.

The STRM-Classification model was fit to the principal compo-

nent space computed from the sensor data (see Section 2.5.2); to

assess which ROIs were most informative as to the different class, we

projected the state timecourses onto the source space data and con-

ducted subject-level ANOVAs to determine which ROIs displayed the

greatest variation over conditions. Plotting the group-mean f statistic

for each ROI identifies a clear progression through the visual hierar-

chy. Applying a percentage threshold across all states (see

Section 2.5.4), state 1 identifies no significant sources of information,
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consistent with its interpretation as preceding the arrival of visual

information to cortex. State 2, which accounts for periods around

100 ms after stimulus onset that show elevated decoding accuracy,

similarly shows no single ROI above thresholding, suggesting that

these early visual representations may have limited spatial consistency

over subjects. States 3 and 4 show the propagation of this information

from occipital visual cortex to outer visual areas; these states encom-

pass periods in time 120–250 ms after stimulus onset. Throughout all

subsequent states, the visual cortex remains the dominant source of

information relevant to the decoding, however from states 5–8 signif-

icant information additionally emerges in inferior temporal and then

lateral temporal areas. Thus, information first appears in temporal

areas in state 5 which corresponds to roughly 250 ms after stimulus

presentation, then endures to the end of the recording 500 ms after

stimulus presentation (Figure 5).

3.1.3 | Activation pattern timings are modulated by
behaviour and physiology

Our STRM model resolves the specific timings on each individual trial

when patterns of stimulus-associated activity emerge. We then asked

whether these timings were meaningful—specifically, how they

related to other measures that varied over individual trials. We inves-

tigated this by fitting a multiple regression model to predict the tim-

ings of the transitions between different states using the state

timecourses inferred by STRM. This multiple regression (fit indepen-

dently for the transition times between each pair of states) had two

regressors indicating event timing on each trial (reaction times and

ISIs), and two regressors indicating spontaneous variations in broad-

band power and visual alpha power during a baseline period 200 ms

prior to stimulus presentation (Sederberg, Pala, Zheng, He, &

Stanley, 2019). This tested whether behaviour and/or changes in the

baseline distribution of power affected the timing of visual informa-

tion processing (Figure 6).

F IGURE 4 Classification accuracy achieved by different MVPA
methods. Top panel: Plotting the accuracy (mean over subjects ± SE)
versus time for STRM-Classifier (with K optimised through cross-
validation—see Section 2) versus timepoint-by-timepoint spatially
resolved decoding identify marginal improvements in classification
accuracy over later timepoints when temporal patterns are identified.
Middle panel: Plots of mean accuracy over all timepoints between
0 and 0.5 s as a function of the number of states K; plot shows mean

over subjects ± SE. This shows this relationship is robust for values of
the parameter K above a sufficient level; equivalent decoding
accuracy is achieved when using K = 10 states or higher. Lower panel:
the STRM-Classifier performs favourably when compared with
discriminative classification methods. We here compare the STRM
classifier with eight other classification methods—three other spatially
resolved classifiers (LDA with optimised sliding window length—see
Section 2; LDA using the conventional timepoint-by-timepoint
decoding approach, and Naive Bayes using the conventional
timepoint-by-timepoint decoding approach); and additionally five
different discriminative classifiers fit using timepoint-by-timepoint
methods (Linear SVMs, non-linear SVMs using a radial basis function
(RBF) kernel; binomial and multinomial logistic regression (LR), and K-
nearest neighbour (KNN) classifiers with K optimised through cross-
validation). We find in general that generative encoding model based
classifiers (STRM, LDA and Naive Bayes) outperform discriminative
classifiers (SVM, LR and KNN), and furthermore that STRM decoding
outperforms equivalent methods when used with the conventional
timepoint-by-timepoint decoding approach; however, we similarly
find that these gains are slightly surpassed by optimised sliding
window methods. Asterisks denote significantly different from STRM-
Classifier accuracy at Bonferroni corrected levels; green asterisks
show significantly higher accuracy (Sliding Window LDA); blue
significantly lower (all other classifiers)
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We found a strong relationship between response times and state

transition times. This is significant for all states from 3 onwards, with

an increasing effect size toward later states. ISIs, on the other hand,

did not exhibit a significant relationship; there is an apparent trend

whereby longer ISIs were associated with faster state sequences, but

this was not significant after multiple comparison correction.

Spontaneous changes in the baseline power similarly modulate

the subsequent propagation of visual processing states in a manner

that appears selective to specific stages in the visual hierarchy. High

levels of broadband power are associated with earlier transitions out

of state 1 into state 2, whereas high levels of visual alpha band power

are associated selectively with later transitions out of state 4 into

state 5—the state we associate with emergence of information out-

side visual cortex. This is broadly consistent with proposed roles for

alpha governing top-down control of attention and gating of informa-

tion as it moves downstream (Jensen & Mazaheri, 2010); the relation-

ship between broadband activity and earlier visual states is perhaps

more surprising, however such patterns have been shown to be strong

F IGURE 5 Resolving the successive stages of visual stimulus processing in space and time. Fitting the STRM-Classification model
independently to each subject's MEG data recorded during visual stimulus presentation, using K = 8 states allows us to investigate the stages of
visual stimulus processing and the times on individual trials at which they emerge, subject to the usual interpretational caveats associated with
the inverse problem and loss of information content in our source reconstruction methods. Top panel: Average timing of each state over a trial
(mean ± SE over subjects), demonstrating the mean time after stimulus presentation that each state emerges. Lower central panel: a raster plot of
state timecourses inferred for a sample subject over 248 trials, demonstrating the variability in timings over successive trials within the common
left-to-right HMM pattern progressing from state 1 to 8. Lower outer panels: the thresholded, group-mean f statistics, per ROI, as a result of

multiple subject-level ANOVAs; this displays the amount of information contributed by that ROI to discriminate the different visual stimuli (see
Section 2). Statistics are thresholded at the 75th percentile of all test statistics obtained
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modulators of neural activity in a wide variety of ways (Miller

et al., 2014; Podvalny, Flounders, King, Holroyd, & He, 2019).

These examples serve primarily as a model validation, demon-

strating that the observed variation in activity pattern timings does

not arise randomly but rather is reflective of underlying neural pro-

cesses that are behaviourally and physiologically relevant. They fur-

thermore suggest that activation timings in different stages of the

visual cortex are not modulated uniformly, but rather that different

variables may selectively affect propagation timings in different parts

of the visual hierarchy.

3.2 | Decoding stages of cognitive processing
in EEG

The ability to discern and analyse the timing of activity patterns

emerging across different trials is potentially more salient in the case

of non-sensory representations. Recently, decoding has emerged as a

popular paradigm for analysing higher cognitive functions in complex

tasks at high temporal resolution (Holdgraf et al., 2017; Kriegeskorte &

Kievit, 2013), however these methods still mostly assume these higher

cognitive functions are perfectly aligned across trials. We thus asked

F IGURE 6 The timing of visual processing is modulated by behaviour and physiology. Panel a: inter-stimulus intervals do not significantly
modulate state transition times. Panel b: Longer participant reaction times are predictive of delayed transitions into states 3–8, with increasing
effect size toward later states. Panel c: increases in baseline broadband power are associated with more rapid transitions into state 2, an early
visual processing state. Panel d: increases in baseline alpha power over visual areas is associated with delayed transitions from state 4 into state

5. In all bar plots, asterisks denote significance at Bonferroni corrected levels (p = 2.1e � 3)
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whether the model we had proposed generalised to a very different

EEG dataset, that involved prediction of a continuous variable (value)

over multiple trials in a complex foraging task, where contextual vari-

ables differed substantially across trials and could potentially deter-

mine activity pattern timings.

3.2.1 | Accuracy of dynamic LGS decoding

We first asked whether STRM-Regression resulted in benefits to

decoding accuracy. We measured accuracy by the cross-validated

Pearson correlation between test set model predictions and their true

values. We found no significant differences in performance between

STRM-Regression and other metrics. We also asked how sensitive this

behaviour was to the parameter controlling the number of states; as

shown in Figure 7 (middle panel) it is very consistent across all values

of this parameter tested (no significant differences were observed;

one way ANOVA p = .98).

We then investigated what drove this performance and how it

compared with similar methods. An equivalent encoding model

trained using optimised sliding window techniques (i.e., sliding win-

dow LGS; see Section 2.6.6) achieved equivalent performance. There

remained a small trend, where the sliding window method performed

marginally better than STRM-Regression, mirroring the relationship

obtained for STRM-Classification, but these differences were not sig-

nificant. Overall, they suggest that the model's sensitivity to trial spe-

cific differences in pattern onset timing—which we can show below

have strong correlations with behavioural variables—is nonetheless

not a major determinant of predictive accuracy. Finally, the question

remains whether the overall forward model-based approach itself per-

forms favourably compared with other discriminative methods. To

assess this, we compared model performance against that obtained by

three decoding methods: linear regression and SVM regression using

either linear or radial basis function kernels. Comparing all models on

the basis of their correlation coefficient identified no significant group

variation (one way ANOVA: p = .19), despite an apparent trend for

the decoding models to achieve lower correlations. Overall, these

results suggest that the generative forward model approach to

decoding performs no worse than more commonly used regression

techniques; and that their use alongside more targeted time series

methods (i.e., the STRM and sliding window models) may offer very

slight performance improvements.

F IGURE 7 Predictive accuracy of STRM-Regression decoding
Top panel: plotting the Pearson correlation between model
predictions and true regressor values over time, we see equivalent
performance by both metrics. The STRM-Regression output shown
here was obtained by optimising the value of K (the number of states)
by subject-level cross-validation (see Section 2). Middle panel: this
performance is robust over a range of values for the parameter
K controlling the number of states, with STRM-Regression displaying
no significant difference from synchronous models for all values of
K tested (ANOVA, p = .98); this plot does further identify a
performance tuning curve that justifies the use of optimisation
through cross-validation. Lower panel: Performance of STRM-
Regression against a range of different decoding models, both
generative (LGS—in both synchronous and optimised sliding window
modes) and discriminative (linear regression and Support vector
machine regression, using linear and radial basis function kernels). The
Pearson correlation shows no significant difference between groups
(ANOVA; p = .19). While not significant, the trend is the same as

obtained for STRM-classification: STRM-Regression is broadly
consistent in performance with its timepoint-by-timepoint LGS
equivalent, however optimised sliding window methods are trending
toward superior performance than STRM-Regression. There is no
evidence that discriminative models (Linear Regression and SVM
regression) in general outperform generative models (LGS and STRM),
with the results here trending in the other direction
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3.2.2 | Spatially resolved stimulus activation maps

Each trial within the foraging task consisted of participants being pres-

ented with an amount of reward they had just accumulated (see

Section 2.6.1 and Figure 9 for full task outline). We first set out to

decode the amount of reward presented on each trial and determine

the origins of the activation patterns that predict it.

We fit STRM-Regression models, independently for each subject

and session, to one-second epochs of EEG data following presenta-

tion of the amount of reward the participant had received. This

allowed us to identify clear sensor space spatial topographies associ-

ated with each regressor in the STRM-Regression design matrix, with

the first regressor representing a common mean pattern for each state

over all trials and a second representing the value of the reward

received. As shown in Figure 8, these maps identify patterns emerging

initially over medial parietal regions in sensor space and propagating

forward over successive states. The spatial location of the value signal

is consistent with the literature on value encoding, which is associated

with encoding initially in the superior parietal cortex and later in the

medial prefrontal cortex (Hunt et al., 2012; Kolling, Behrens, Mars, &

Rushworth, 2012). While the sensor space maps in Figure 8 do not

afford the same precision in terms of anatomical interpretation as

achieved in the visual MEG source space maps of Figure 5 (note that

we did not perform source reconstruction on the EEG data due to the

F IGURE 8 The stages of EEG Value Processing. Fitting the STRM-Regression model independently to each subject's EEG data with K = 8

states identified a consistent pattern of sequential activity on each trial, but with significant variation in the timing of events on individual trials.
Top panel: mean state timecourse ± SE over subjects. Lower centre panel: example state timecourses for one subject exhibiting significant
variation over trials. Lower outer panels: Mean (over subjects) activation patterns for each state and each regressor. Each trial is associated with
consistent patterns of activity, comprising a mean pattern of activation common to that stage of cognitive processing on all trials and a separate
value-specific component. Both components are characterised by medial parietal activation; in the case of the value signal this appears to emerge
initially in parietal areas (e.g., state 2) and later move to more frontal regions (state 6). In response to concerns about eye movement artefacts
accounting for significant decode-ability, none of these topographies appears eye movement related
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moderate variability in cap and electrode positioning across subjects),

they nonetheless suggest an anatomically derived interpretation: we

can loosely interpret states 1–4 as representing the stages of value

processing concentrated on parietal areas, whereas states 5–8 repre-

sent the emergence of a value processing state more concentrated on

medial frontal regions.

One common concern using decoding in EEG is whether the

prominent artefacts associated with eye movements may confound

the decoding accuracy. To make neuroscientific statements, experi-

mentalists must be assured that the underlying source of their

decoders' performance is neural and not some muscle or ocular con-

found. Common decoding techniques are unable to indicate the role

that such artefacts may have played in the predictions made by the

decoder; while it is common to provide a post hoc analysis of ERPs to

refute such claims, this evidence can only ever be indirect as it does

not explain how the classifiers made the predictions. In contrast, the

predictions made by this method are a measure of how closely the

spatial patterns match the parameters shown in Figure 8; the clear

midline activity patterns that these maps show are therefore direct

evidence to refute claims of muscle confounds and eye motion arte-

facts driving the decoding result.

3.2.3 | Timing of value processing is modulated by
cognitive variables

Effective completion of the foraging task requires participants to

reconcile the amount of reward they receive on each trial with

(a) the “accrual time,” that is, the amount of time they had invested

at the site in order to accrue that much reward, and (b) what they

would currently expect to receive if they moved to a different

patch. For example, a given stimulus has a different intrinsic value if

the participant had spent a particularly long time to receive it; or if

the participant expected to accrue reward more quickly elsewhere.

These two variables we will refer to as cognitive variables, as they

are not explicitly presented to the participant on screen as a stimu-

lus but must be estimated and tracked alongside the completion of

the task.

F IGURE 9 The timing of value processing is modulated by cognitive variables. We investigated whether latent cognitive variables within the
overall task structure significantly affected the timing at which different stages of value processing emerged on different trials. Specifically, we
asked whether three regressors—the overall reward accumulated, the accrual time, and the recent reward rate—could predict the transition times
between states on individual trials. We found no significant effect of reward accumulated, the variable being decoded, however we found
significant effects of accrual times (reflecting how much time the participant invested to obtain the reward) and recent reward history (reflecting
the expected value of alternative sites). Longer accrual times were associated with more rapid transitions through early stimulus processing
states, whereas high rewards in recent history were associated with delayed transitions into intermediate stimulus processing states
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We asked whether these cognitive variables influence the timing

at which value is processed on individual trials. We investigated this

by fitting a multiple regression model to predict the timings of the

transitions between different states using the state timecourses

inferred by STRM. This multiple regression had three regressors: accu-

mulated reward, accrual time and recent reward rate, as shown in

Figure 9. We found no significant relationship between value (the

regressor being decoded) and state transition times at Bonferroni

corrected levels. We did find a strong relationship between accrual

time and state progression, with longer times invested at the site

associated with more rapid transitions into states 2 and 3, the very

earliest stages of stimulus processing in parietal cortical areas. We

similarly found a relationship with the recent reward history: on trials

where much more reward had been received recently, the onset of

intermediate stages of stimulus processing (states 5 and 6 specifically)

were delayed. Successful completion of this task requires participants

to discount the value of a stimulus against how much time they

invested to receive it and how it compares to recent trials; these

results suggest these two comparisons are undertaken at different

times and specifically modulate the timing of distinct stimulus

processing states.

Once again, these results serve fundamentally as model valida-

tion; they demonstrate that the inferred timing of value processing on

individual trials varies systematically with cognitive variables that

reflect key parameters within the task. Notably, again this timing is

modulated differentially by the different regressors—that is, early

stages of stimulus processing are influenced by accrual times whereas

intermediate stages of stimulus processing are modulated by the

recent reward rate. Viewed alongside the anatomical maps of each

state, these differential effects could suggest distinct variables modu-

lating the parietal and prefrontal components of value processing.

4 | DISCUSSION

We have introduced a method for multivariate analysis of task evoked

responses that identifies spatially and temporally resolved patterns

associated with trial stimuli. We claim that such an approach supports

a more direct interpretation of decoding accuracy metrics by linking

the classifier predictions to an interpretable linear model of the under-

lying activity patterns. By resolving these in time, we are able to utilise

the high temporal resolution of M/EEG to investigate how the precise

timing of activity patterns is modulated over different trials.

Conventional methods that assume the same process occurs at

the same millisecond on every trial are not just limiting data analysis,

but also constraining experimental design. Researchers are currently

limited to repetitive paradigms designed to have maximally reproduc-

ible timing over trials. We have shown that relaxing this assumption

with STRM models reveals meaningful patterns of temporal variation

over trials. Ultimately, this new modelling approach could open the

door to more flexible experimental designs, allowing tasks more

dependent on higher order cognitive functions that have greater vari-

ability in their onset timing.

In a closely related line of work, Anderson & Fincham (2014a)

have shown that such timing variability can be highly informative

about how participants actually complete a task (Anderson

et al., 2010, 2012; Anderson & Fincham, 2014b; Borst et al., 2016;

Borst & Anderson, 2015). Their methods overlap with our own, with

the key difference that they use an HMM with an unsupervised obser-

vation model. This means a model where the likelihood of the data is

independent of any stimulus information (i.e., the design matrix Xt). A

range of similar methods exist outside the HMM framework which

have all demonstrated that—in certain tasks—unsupervised patterns

can be informative of the task structure itself (Sako�glu et al., 2010;

Sporns, Faskowitz, Teixeira, Cutts, & Betzel, 2021; Wu, Caprihan, &

Calhoun, 2021). In contrast, our supervised model applies the GLM

framework such that the likelihood of the data is conditioned upon

this stimulus information (as specified in Equation (2)). This is a very

significant difference in practice; unsupervised models may detect

large-scale fluctuations in distributed activity—such as that between

active perception and motor response phases of a task (Borst &

Anderson, 2015)—but will have limited sensitivity to more subtle dif-

ferences, such as those that are evoked by different visual images.

Thus, we argue that our methods build upon these by generalising the

study of inter-trial timing differences to a much broader range of

experimental paradigms.

The approach of fitting an interpretable encoding model to train-

ing data and then performing a model inversion to make predictions

about unseen data is well established in the fMRI literature (Casey

et al., 2011; Friston et al., 2008; Kay et al., 2008; Mitchell et al., 2008;

Naselaris et al., 2009, 2015; Nishimoto et al., 2011; Schoenmakers

et al., 2013), but has only seen limited adoption so far in M/EEG

(di Liberto et al., 2015; Kupers et al., 2020). Our focus in this article

has been to emphasise the interpretability benefits of this approach—

which are often overlooked—and demonstrate how it can be readily

extended to time series analysis for data at high temporal resolution

in ways that we believe offer significant benefits to conventional

timepoint-by-timepoint decoding.

Trujillo-Barreto et al. (2008) used a very similar GLM model inver-

sion to source localise M/EEG activity. Their model applies two hierar-

chical GLMs, with the first modelling the source-level data as an

explicit function of an experimentally defined design matrix, and the

second modelling the propagation of activity from source to sensor

space. Broadly speaking, we anticipate the main benefit of their

approach to be greater spatial resolution of source related activity,

whereas ours by comparison offers enhanced temporal resolution

through the explicit modelling of HMM states. This highlights a poten-

tial avenue for future research whereby these models could be com-

bined to take advantage of both these benefits, with the HMM-state

specific covariance modelling contributing to greater accuracy of

source-localised activity estimates (Woolrich et al., 2013).

Furthermore, we demonstrate that this generative model

approach to decoding—with or without the HMM component—

achieves equivalent or better accuracies than discriminative classifiers

on two different datasets. This corroborates limited evidence from

similar surveys of classifiers in M/EEG data (Grootswagers
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et al., 2017; Guggenmos, Sterzer, & Cichy, 2018), suggesting this may

be a common feature of this data and the model we propose may

generalise well.

Nonetheless, there are a few trade-offs to consider when using

the model we have presented. While the observed predictive accuracy

was fairly robust across a range of different parameter values, in both

datasets any performance gains could be recovered or surpassed by

using optimised sliding window techniques, for example, sliding win-

dow LGS in Figure 7 (see section 2 in Supporting Information). There

are several possible reasons for this. On the one hand, when comput-

ing cross-validated accuracy our methods do not allow a direct way to

obtain corresponding state timecourses for the held-out test set,

instead relying on an estimation procedure that may introduce addi-

tional error (see Section 2.4). Nonetheless, we did attempt a number

of different approaches to estimating state timecourses for held-out

data, none of which consistently outperformed the optimised sliding

window techniques (see section 2 in Supporting Information),

suggesting that the subtle changes in activity pattern timing are not a

major determinant of accuracy. Another potential issue with our

model is the assumption of mutual exclusivity between states, which

produces sharp jumps in time between inferred activity patterns. If

the underlying activity patterns are in fact smooth, then their arbitrary

discretization introduces larger errors for timepoints adjacent to state

boundaries. On the one hand, this approach is highly interpretable

and supports relatively straightforward analyses of the impacts of dif-

ferent behavioural variables on state transition times; on the other

hand, this may come at a cost to predictive accuracy around state

boundaries. We furthermore expect, given the challenge of overfitting

with these datasets that motivated our left–right state constraint, that

any comparable dynamic models with a continuous state space

(e.g., Penny & Roberts, 1999) would be very difficult to suitably

regularise.

The STRM model requires a hyperparameter specifying the num-

ber of states. As we have shown, this hyperparameter can be

optimised through cross-validation, finding values that maximise pre-

dictive accuracy. Nonetheless, the different parameter values for each

subject make group comparison difficult, such that in some cases this

parameter must be assigned arbitrarily. Researchers concerned about

such an arbitrary selection could perhaps base their decision upon the

temporal generalisation profile of their data (King & Dehaene, 2014)—

as a rule of thumb we might suggest matching the expected state

duration (i.e., T
K) to the minimum width of the diagonal pattern

observed in such temporal generalisation matrices.

Our work is very closely related to a number of others; notably a

seminal work which showed how any decoding model could be

inverted to recover an interpretable forward model of the original

data (Haufe et al., 2014). We instead propose the opposite approach;

to fit an encoding model of the data and the invert that to make pre-

dictions. How are these two approaches different in practice? The

first point we would make pertains to the classification accuracies we

have reported; when using generative classifiers these are generally

either better or at least not significantly different than a range of dis-

criminative models tested, a finding that appears consistent with other

examples in the literature (Grootswagers et al., 2017; Guggenmos

et al., 2018). Note that all of these discriminative classifiers should,

given enough datapoints, converge to the same boundary; generative

classifiers however can learn faster if their modelling assumptions are

accurate (Ng & Jordan, 2002). This ultimately equates to greater esti-

mation error in the inverted model parameters; that is, the error in for-

ward model parameters obtained via a model inversion is likely to be

greater than the error in a directly fitted forward model. We can dem-

onstrate this using simulations (see section 4 in Supporting Informa-

tion). While the improvement obtained is modest when using a

directly fitted forward model compared with model inversions, we can

also demonstrate this improvement is not exclusively limited to sce-

narios where generative classifiers achieve greater classification accu-

racy than discriminative classifiers (see section 4 in Supporting

Information). Furthermore, the interpretation of an inverted decoding

model can be problematic wherever regularisation is used (Haufe

et al., 2014). Given the ubiquity of regularisation in decoding applica-

tions this is not a niche problem. Thus, where interpretation of for-

ward model parameters is the goal, we would argue that one should

just fit a forward model directly.

Finally, our work was originally motivated by that of (Vidaurre

et al., 2019), which introduced the HMM architecture in the context

of decoding models. This demonstrated the potential of time series

models for multivariate analysis, but left open the question of model

interpretability. Similar to the question we posed in Figure 1, if each

state is a different spatial filter, then how should one interpret

observed differences in timing on individual trials? Given the lack of

direct interpretability of spatial filters themselves, this question does

not present an obvious answer. In contrast, by setting up our work

around a forward encoding model based on the widely used GLM

framework, each state has a clear correspondence to a set of stimulus

activation patterns. This affords a straightforward interpretation of

each state as a successive stage of stimulus processing, allowing us to

then explore its spatial and temporal properties and provide a richer

picture of the overall patterns of activation.

5 | CONCLUSION

Neuroscientists want to understand what information is represented

in brain activity, as well as how and when it is expressed. Conven-

tional methods limit what researchers can investigate in several

ways. By obscuring the spatial patterns from which decoding accu-

racy metrics are derived, researchers are often left to interpret a

result without clear knowledge of its spatial origins. By assuming

the same process occurs at the same millisecond on every trial,

researchers are unable to investigate meaningful patterns of tempo-

ral variation over trials and are limited in the experimental designs

they can pursue.

The STRM model addresses these points with two main innova-

tions; firstly, through the use of an interpretable encoding model to

reveal how activity patterns are spatially distributed, and secondly

through the use of an HMM to reveal how activity patterns are
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temporally distributed. M/EEG recordings offer the potential to reveal

how the brain represents information at millisecond resolution; the

methods we have developed seek to leverage this resolution to simul-

taneously answer the question of when and where these patterns

emerge. By characterising both the spatial and temporal characteris-

tics of neural representations, we may obtain a more holistic under-

standing of brain function, offer a new perspective on the role of

timing in cognitive processes, and support more flexible experimental

designs in the future.
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APPENDIX A

A.1 | STRM-Classification Bayesian model inversion

We wish to infer the posterior distribution given by:

P XtjYt,eθ,eZ� �
¼
P Yt,eθ,eZjXt

� �
P Xtð Þ

P Yt,eθ,eZ� �

where eθ¼ eW1:Q,1:K ,eΣ1:K

n o
are the maximum a posteriori point esti-

mates learned during training, and eZ are the state timecourse probabil-

ity estimates as outlined in the text. We now introduce the lower case

notation xt ¼ i to denote class i being active, such that the 1�Q½ � vec-
tor Xt ¼ I xt ¼1ð Þ, I xt ¼2ð Þ,…I xt ¼Kð Þ½ � where I is the Iverson bracket

returning 1 if the statement is true and 0 if false. We then have:

logP xt ¼ ijYt,eθ,eZ� �
¼
XK
k¼1

�eγt,k
2

log 2π eΣk



 

� �
þ
XK
k¼1

�eγt,k
2

Yt� Ii eWk

� �eΣ�1
k Yt� Ii eWk

� �T
� logQ

� logP Yt,eθ,eZ� �

¼
XK
k¼1

�eγt,k
2

Yt� Ii eWk

� �eΣ�1
k Yt� Ii eWk

� �T
þC

where the term C is constant with respect to the class i, and Ii denotes

the 1�Q½ � vector obtained by taking the ith row of the identity matrix

of dimension Q. As the classes are mutually exclusive and exhaustive,

we have

XQ
i¼1

P xt ¼ ijYt,eθ,eZ� �
¼1¼ eC

XQ
i¼1

eLi

eC ¼ 1PQ
i¼1

eLi

where L is a Q�1½ � vector of unnormalized class log-likelihoods with

each entry Li ¼
PK

k¼1
�eγt,k
2 Yt� Ii eWk

� �eΣ�1
k Yt� Ii eWk

� �T
. It, therefore,

follows that

P xt ¼ ijYt,eθ,eZ� �
¼ σi Lð Þ:

Or in vector notation:

P XtjYt,eθ,eZ� �
¼Xtσ Lð Þ

where σ Lð Þ is the softmax function which outputs a Q�1½ � vector
with each entry σi Lð Þ¼ eLiPQ

j¼1
eLj
.

APPENDIX B

B.1 | STRM-Regression Bayesian model inversion

We wish to infer the posterior distribution given by:

P XtjYt,eθ,eZ� �
¼
P Y,eθ,eZjXt

� �
P Xtð Þ

P Y,eθ,eZ� �

where P Xtð Þ¼N 0, IQð Þ and eθ¼ eW1:Q,1:K ,eΣ1:K

n o
are the maximum a

posteriori point estimates learned during training, and eZt ¼ezt,1,ezt,2,…,ezt,K½ � are the state probabilities estimated as outlined in the

text. We then have:

logP XtjYt,eθ,eZ� �
¼
XK
k¼1

�eγt,k
2

log 2π eΣk



 

� �
þ
XK
k¼1

�eγt,k
2

Yt�Xt
eWk

� �eΣ�1
k Yt�Xt

eWk

� �T
�Q
2
log2π

�1
2
XtX

T
t � logP Yt,eθ,eZ� �

If we make the below substitution:

Σxjy ¼ IQþ
XK
k¼1

eγt,k eWk
eΣ�1
k

eWT

k

" #�1

μxjy ¼Σxjy
XK
k¼1

ezt,k eWk
eΣ�1
k YT

t

" #

Then the posterior can equivalently be written:

logP XtjYt,eθ,eZ� �
¼�1

2
Xt�μxjy

� �
Σ�1
xjy Xt�μxjy
� �T

þC

where the term C is constant with respect to Xt. This form can be

recognised as a normal distribution, equivalently written:

P XtjYt,eθ, eZt

� �
¼N μxjy ,Σxjy

� �
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