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Despite pronounced genomic and transcriptomic heterogeneity in
non–small-cell lung cancer (NSCLC) not only between tumors, but
also within a tumor, validation of clinically relevant gene signa-
tures for prognostication has relied upon single-tissue samples,
including 2 commercially available multigene tests (MGTs). Here
we report an unanticipated impact of intratumor heterogeneity
(ITH) on risk prediction of recurrence in NSCLC, underscoring the
need for a better genomic strategy to refine prognostication. By
leveraging label-free, inertial-focusing microfluidic approaches in
retrieving circulating tumor cells (CTCs) at single-cell resolution,
we further identified specific gene signatures with distinct expres-
sion profiles in CTCs from patients with differing metastatic po-
tential. Notably, a refined prognostic risk model that reconciles the
level of ITH and CTC-derived gene expression data outperformed
the initial classifier in predicting recurrence-free survival (RFS). We
propose tailored approaches to providing reliable risk estimates
while accounting for ITH-driven variance in NSCLC.
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Emerging multiregion sequencing data provide clear evidence
of genomic intratumor heterogeneity (ITH) in largely smoking-

dominated Caucasian lung cancers (1–3). Recently, we observed a
complex genomic landscape with variegated copy number land-
scape and early diversification in never-smoker Asian non–small-
cell lung cancer (NSCLC), despite low mutation burden (4). The
clinical consequences of such ITH at multiple molecular levels
are also becoming apparent in other cancer types, suggesting that
ITH-driven variance may result in patient misclassification (5–8).
Nevertheless, no current multigene test (MGT) had factored in
ITH for feature selection (7), including 2 gene expression-based
MGTs for lung cancer patients (9, 10).
By applying a prognostic multigene classifier to multiregion

profiling data, we first delineated transcriptomic ITH and exam-
ined the extent to which NSCLC patient stratification was con-
founded by ITH. The classifier, termed tumor matrisome index
(TMi), has been validated for its predictive value in prognosis and
adjuvant chemotherapy response in more than 2,000 patients with
early-stage NSCLC (11). In essence, TMi is computed based on
the expression level of 29 matrisome genes, primarily encoding
noncore matrisome proteins including extracellular matrix (ECM)
regulators (MMP12, MMP1, ADAMTS5), ECM-affiliated pro-
teins (GREM1, SFTPC, SFTPA2, SFTPD, FCN3), secreted fac-
tors (S100A2, CXCL13, WIF1, CHRDL1, CXCL2, IL6, HHIP,
S100A12), and other ECM-related components (LPL, CPB2,
MAMDC2, CD36), as well as core matrisome molecules including
collagens (COL11A1, COL10A1, COL6A6) and ECM glycopro-
teins (SPP1, CTHRC1, TNNC1, ABI3BP, PCOLCE2), all of
which were found to be more differentially expressed in NSCLC
compared with matched tumor-free tissues (11).

Here, we found that, even though TMi remained a valid
prognostic predictor, a significant number of TMi genes dis-
played substantial ITH and contributed to discordant classifica-
tions within the same tumor (having both TMilow and TMihigh
sectors), suggesting the need to reconstruct gene signature based
on the level of ITH and interpatient heterogeneity (IPH) of
actual genes themselves, as recently proposed for breast cancer
MGTs (7). We hypothesized that the observed aberrant matrisomal
expression pattern accompanying tumor progression in the course
of primary tumor invasion might also prove useful and thus be
reflected at later steps of metastasis (12), as during circulation.
Accordingly, we assessed circulating tumor cells (CTCs), in addi-
tion to multiregion primary tumor tissues, to address intratumoral
phenotypic variation of prognostic TMi signatures in this work.
This approach was further motivated by recent single-cell se-

quencing studies suggesting that spatiotemporally heterogeneous
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CTCs could provide a comprehensive window into metastatic
disease at the genomic (13–15) and transcriptomic level (16–18)
across various malignancies. Although a single tumor biopsy may
not always be representative of the entire tumor harboring spatially
segregated clones (19), the spatial and temporal variation of CTCs
may recapitulate gene expression and pathways found in primary
and metastatic cancer. We further employed single-cell, and not
bulk-cell, analysis to rule out possible leukocyte contamination (20–
22), which is particularly pronounced in transcriptomic studies when
activated leukocytes concurrently overexpress cancer-associated
genes, as well as epithelial–mesenchymal transition (EMT) and
stem cell markers, given their mesenchymal and hematopoietic
nature, complicating expression analysis of CTC-specific transcripts
(20, 21). Single-cell analysis further allows evaluation whether cell-
to-cell variation in expression of prognostic matrisome signatures
would differ in patients based on clinical features and disease status.
Despite the apparent limitation of bulk CTC analysis, how-

ever, a generalized workflow for isolation and molecular char-
acterization of single CTCs is lacking as a result of the extreme
rarity of detectable and intact CTCs and the associated technical
challenges (23). Our group recently developed an integrated
ClearCell FX and microfluidic platform workflow to 1) measure
full-length mRNA transcriptome from single patient-derived
CTCs (24) and 2) detect dominant mutations found in matched
primary tumors (25). Uncompromised genetic integrity of Clear-
Cell FX enriched CTCs were evidenced by high-quality sequencing
performance metrics in both studies, demonstrating the feasibility
of incorporating label-free, marker-independent microfluidic
technology for downstream molecular analyses and functional
studies. Recent single-cell sequencing studies conducted at different
external laboratories further confirmed that the DNA extracted
from ClearCell FX-enriched CTCs isolated by DEPArray technol-
ogy or micromanipulator subjected to whole-genome amplification
(WGA) was of high quality and suitable for sequencing, showing the
robustness of the ClearCell FX system (26, 27).
Here we employed the same microfluidic approaches to de-

velop an integrative workflow for single-cell gene expression
analysis of patient-derived CTCs (SI Appendix, Fig. S1). Single-
cell transcriptomic analysis of 61 circulating tumor cells (CTCs)
identified specific gene signatures that distinguished metastatic
from nonmetastatic NSCLC, providing metastasis-associated
biomarkers that could potentially serve as predictors of cancer
recurrence (28). Through systematic in silico validation in a total
of 2,748 patient-derived samples, we further show that a newly

developed risk model comprising exclusively single-CTC-derived
signatures, specifically tailored to the level of ITH, has robust
prognostic ability in predicting tissue-based recurrence-free
survival (RFS), and argue that such approaches may supersede
previous attempts in identifying patients with early-stage disease
at high risk of NSCLC recurrence.

Results
ITH-Driven Patient Misclassification. To examine the impact of ITH
on risk predictions, we analyzed multiregion gene expression
profiles derived from surgical specimens (3 or 4 regions per tu-
mor) from 2 recently published studies (Methods), denoted as
study 1 and 2 in this work, using prognostic TMi gene panel (SI
Appendix, Fig. S2). As samples were annotated with disease
status (tumor or normal) and recurrence-free survival in study 1
(SI Appendix, Table S1) and study 2 (SI Appendix, Table S2),
respectively, we first examined diagnostic and prognostic accu-
racy of TMi. TMi achieved an excellent diagnostic accuracy in
differentiating normal from tumor samples in study 1, consisting
of 80 regions from 20 early-stage NSCLC tumors and 20 matched
normal lung tissues (Fig. 1A), in which sensitivity, specificity, and
the area under the receiver operating characteristic (ROC) curve
(AUC) were all 100% (Fig. 1B). To test the prognostic perfor-
mance of TMi, we next stratified all 35 sectors from 10 NSCLC
patients from study 2 into TMilow and TMihigh groups based on the
optimal cutoff index (Fig. 1C) for recurrence-free survival (RFS)
analyses, as previously described (11). In this small patient cohort,
tumors predicted as being recurrent by the model had significantly
worse survival outcomes, demonstrating a robust predictive value
of the TMi for RFS predictions (Fig. 1D). Despite the small
sample size, we further assessed the TMi at the patient level by
utilizing the highest index for each patient, and observed that 1 of
6 (16.7%) TMilow patients and 2 of 4 (50%) TMihigh patients had
recurrence, suggesting that the worse scored sector is sufficient to
impact on an adverse outcome (SI Appendix, Fig. S3).
Having validated the clinical utility of TMi at the tumor sector

level, we next computed the level of ITH of each matrisome gene
by fitting a linear mixed-effects model (29). A marked ITH in
matrisome expression was found in both studies; among the 29
TMi genes analyzed, 7 genes (ADAMTS8, CD36, COL6A6, FCN3,
IL6, SFTPD, andWIF1) and 8 genes (ABI3BP,ADAMTS8,COL6A6,
CPB2, FCN3, HHIP, LPL, and OGN) displayed greater ITH
than IPH in study 1 and study 2, respectively (SI Appendix, Fig.
S4). By grouping genes based on the level of ITH as previously
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Fig. 1. ITH-driven patient misclassification in lung
cancers. (A) Density distribution of TMi in NSCLC (n =
80) and matched normal lung (n = 20) from study 1.
(B) ROC curves using the best TMi cutoff value. (C)
Gaussian kernel density distribution of TMi in tumor
sectors (n = 35) from study 2. (D) Kaplan–Meier sur-
vival curves using the optimal cutoff value (95% CI =
1.4 to 22.7; log-rank P = 0.00628). (E) TMi distribution
and the variance of TMi (σ2). The universal cutoff
value and the optimal cutoff value were used for
patient stratification in study 1 (Top) and study 2
(Bottom), respectively. Dotted red boxes represent
discordant tumor samples with TMilow and TMihigh
sectors. Patients are ordered by increasing mean TMi.
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described (7), we found that a high proportion of genes (34.5%
and 41.4%) exhibited moderate (0.4 to 0.6) to high (0.6 to 1.0)
ITH (SI Appendix, Table S3).
Indeed, when we scored each tumor sector according to TMi

and applied a universal cutoff index (11) for risk stratification in
Affymetrix GPL 570-profiled study 1, 35% of patients (7 of 20)
showed discordant tumor samples, having TMilow and TMihigh
sectors (Fig. 1 E, Top, dotted red boxes). Similarly, a number of
patients in study 2 exhibited significantly high variance of TMi
(σ2), with 20% of patients (2 of 10) who could be misclassified if
the earlier prognostic cutoff value of 22.56 had been applied
(Fig. 1 E, Bottom, dotted red boxes). Of note, the optimal, not
universal, cutoff was used in study 2, as samples were assayed
with a non-GPL570 platform (11). Although the expression
values of these matrisome genes were generally correlated be-
tween different sectors within the same tumors, the correlations
were weak in a number of patients, including patient 3 from
study 2 (SI Appendix, Fig. S5), indicating a substantial level of
ITH in tumor microenvironment. Adding to the earlier obser-
vations in breast cancer (5, 7, 30), these data highlight the need
to consider ITH as a determinant for construction of prognostic
gene signatures for lung cancer.

Microfluidic Enrichment of Patient-Derived CTCs at the Single-Cell
Level. We next examined if cancer cells in primary tumor se-
lected for distant metastasis would further require distinct pat-
terns of matrisome gene expression during circulation and thus
could serve as predictors for metastasis or recurrence. Using a
cell mechanics-based microfluidic device, we previously demon-
strated a size-based separation of single lung CTCs, representa-
tive of T790M/L858R mutations found in matched bulk NSCLC
tumors, to 100% purity with CD45+ depletion method (25). After
having validated the device performance (Fig. 2) and the integrity
of mRNA transcripts upon 1% paraformaldehyde (PFA) fixation
(31–34) with A549 lung cancer cells (SI Appendix, Fig. S6), we
isolated and assessed a total of 61 CTCs from 20 Asian patients
with NSCLC, in which the number of analyzed CTCs was less than
5 per 7.5 mL peripheral blood (SI Appendix, Table S4). Such low
CTC yield is attributed to high-purity isolation required for single-
cell genomic analyses and is comparable to previous studies re-
garding the number of QC-passed lung CTCs (15, 25, 35).
Initial screening of 3 candidate housekeeping genes in 14

patient-derived CTCs revealed heterogeneous expression of ACTB
(SI Appendix, Fig. S7), which was thus excluded from subsequent
normalization. Among the 29 TMi genes that were analyzed, 15
(51.7%) had detectable expression, from which a final multigene
panel was established (SI Appendix, Fig. S8 and Table S5). Highly
sensitive PCR-based multiplex preamplification protocol was de-
veloped and validated through melting curve analysis (SI Appendix,
Fig. S9). To probe heterogeneity within the CTC population, we
further isolated and analyzed 24 single cells of 7 different lung
cancer cell lines. Expression levels of 3 matrisome genes that were
up-regulated in primary NSCLC tumors relative to normal lung
tissues (11) varied the most, whereas that of down-regulated genes
in tumors had the least variability in CTCs compared with cancer
cell lines (SI Appendix, Fig. S10).

Distinct Matrisome Profiles in Patients with and without Distant
Metastasis. As a result of sample collection and processing
from 2 different laboratories, batch effects were observed (SI
Appendix, Fig. S11) and removed by using informatics ap-
proaches (SI Appendix, SI Materials and Methods) (36). Batch
effects should not be exclusive to high-throughput omics data
and are also critical to address for low-dimensional qPCR
measurements (37). Having processed the expression data of
CTCs, we next computed Pearson correlation coefficients (r)
between TMi gene-expression levels for each patient to assess
the degree of cell-to-cell heterogeneity (Fig. 3A). Interestingly,

we found a significantly higher variance (σr2) in TMi expression
in CTCs from nonmetastatic disease compared with metastatic
(M) disease (Fig. 3B). This is consistent with our earlier obser-
vation in NSCLC tumor specimens (study 1), in which high-risk
patients (highest quartile) displayed a considerably lower degree
of within-patient variance of TMi than the rest of patients (Fig.
3C). A recent study has in fact observed a substantial level of
ITH in EMT scores in patients with NSCLC harboring low
EMT-scored sectors (38). Altogether these data indicate that
there may be an environmental trigger that stabilizes EMT-
related processes in advanced cancers. We postulate that quanti-
fication of matrisomal ITH may predict early metastasis following
surgical resection.
Transcriptomic characterization of single CTCs identified

distinct matrisome profiles in NSCLC with differing metastatic
potential (Fig. 3D and SI Appendix, Fig. S12), suggesting po-
tential contribution of CTC-autonomous ECM gene expression
to cancer dissemination, as recently proposed (39). Most CTCs
expressed high levels of alveolar type II epithelial cell marker
(SFTPC), reflecting the common tissue-specific origin for
NSCLC. Of 9 genes previously up-regulated in primary tumors
compared with tumor-free tissues (11), 4 genes (MMP1,MMP12,
GREM1, CXCL13) were highly expressed in CTCs of metastatic
NSCLC (SI Appendix, Fig. S13), exhibiting a conserved expression
pattern between tumor specimens and liquid biopsies. Accordingly,
we hypothesized that these genes implicated in multiple steps of
the metastatic spectrum might serve as clinically applicable bio-
markers for refining tissue-based prognostication. Taking multi-
region profiling data and single-CTC-derived gene expression data
into consideration (SI Appendix, Fig. S14), we suggest a prognostic
index tailored to the level of ITH, termed as the MMP index
(MMPi), consisting of 2-gene MMP signature (Methods).

Identification of Patients at High Risk of Recurrence. By using the
earlier multiregion profiling data (study 1 and study 2), we first
computed the coefficient of variation (CV) of the index for pa-
tient samples previously identified to have discordant tumor
sectors by TMi to assess if the refined metrics would address the
issue of ITH-driven discordance in tumor classification. The
mean CV of the initial (TMi) and refined (MMPi) model were
0.115 and 0.081, respectively, implying a 30% reduction in the
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Fig. 2. Microfluidic enrichment for single-cell analysis. Inertial focusing,
label-free capture of single cancer cells using a microfluidic device (25). (Top)
Hydrodynamic focusing of cell flow (A549 lung adenocarcinoma) by sheath
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variability of the index in these samples (Fig. 4A). Although 6 of
30 (20%) remained discordant, it accounted for a smaller pro-
portion of patients than TMi when predefined cutoff values were
applied to both studies as previously described (SI Appendix, Fig. S15).
Importantly, compared with TMi (Fig. 2D), MMPi demonstrated
superior performance in classifying tumors with markedly dif-
ferent RFS outcomes at tumor sector and patient levels with
optimal cutoffs in our discovery cohort (Fig. 4 B and C and SI
Appendix, Fig. S16), highlighting the improved accuracy of the
refined index in predicting NSCLC recurrence.
A robust prognostic performance of MMPi was confirmed in

multiple independent validation cohorts comprising a total of
2,748 patients with NSCLC (SI Appendix, Fig. S17). The HR
varies from 1.71 to 3.78 in 9 (of 12) datasets for overall survival
(OS) analyses (SI Appendix, Table S6) and from 1.7 to 4.08 in 5
(of 6) datasets for RFS analyses (SI Appendix, Table S7). Having
comprehensive clinical features, TCGA lung adenocarcinomas
(LUADs) were used to perform multivariate Cox regression
analysis and revealed MMPi as a biomarker independently as-
sociated with mortality (SI Appendix, Table S8). Given that the
patient classification was done using different cutoffs, which
might make clinical translation of our findings rather difficult, we
next tested the potential of a common, or universal, cutoff index
for all patients.

The Universal MMPi Cutoff for Patient Stratification. To avoid the
effect of profiling platform on scoring, we examined 3 datasets
(GSE50081, GSE30219, GSE31210) that were annotated with
RFS outcomes and probed with the same profiling platform
(Affymetrix GPL570). Two studies (GSE50081, GSE31210) com-
prised exclusively early-stage (stage I/II) carcinomas, whereas the
remaining set (GSE30219) included all 4 stages of cancer. The
universal cutoff value was determined as the optimal cutoff value
in the discovery set (MMPi = 1.441), and was tested on the other 2
independent test sets (Fig. 4D). Patients stratified according to this
fixed, universal cutoff index exhibited significantly different RFS

outcomes in both analyzed datasets (Fig. 4 E–G), demonstrating
clinical applicability of MMPi in identifying recurrence-prone lung
cancers in patients with early-stage NSCLC.
Although the universal cutoff was identified with Affymetrix

GPL570, we finally applied it to the earlier study 2 cohort, which
probed genes with Affymetrix GeneChip Human Gene 1.0 ST
arrays, to assess its clinical applicability in a different profiling
platform. Kaplan–Meier survival analyses revealed that 2 of 21
(9.5%) MMPilow sectors and 7 of 14 (50%) MMPihigh sectors had
recurrence, and no MMPilow and 3 of 6 (50%) MMPihigh patients
had recurrence at the patient level with the universal cutoff value
of 1.441 (SI Appendix, Fig. S18). Altogether, these data reinforce
and highlight the wide clinical applicability of the present scoring
metrics and the predefined cutoff value for better prognostica-
tion of recurrence risk in NSCLC.

Discussion
Single-cell analyses of CTCs have revealed clinically useful copy
number variations (15, 35) and point mutations (40) while re-
solving the degree of heterogeneity in lung cancer. However, these
findings are pertinent only to epithelial marker-expressing CTCs,
missing out on dedifferentiated EpCAM− or mesenchymal/EMT-
like CTCs, all of which have been inextricably linked to disease
progression and treatment response (41–43). By relying upon a
label-free approach, we found that metastatic potential of an
NSCLC tumor lies in the profile of its heterogeneity in matrisome
expression, which is in turn reflected in the populations of CTCs.
In line with the findings supporting a nonexclusive hypothesis of
EMT’s contribution to CTC phenotype (44), TMihigh cells in primary
tumor may be functionally equipped with key properties required for
their survival in bloodstream and metastatic niche formation, par-
ticularly given the close association between matrisome and EMT
(11, 45). Repetitive observation of CTCs expressing mesenchymal
attributes correlated with appearance of metastases in recent clinical
studies (44), and the role of their heterogeneity in organ-specific
metastases (42, 46, 47) further points toward these aggressive cells
as major constituents of putative metastatic founders.
However, it is now apparent that the organs of future metas-

tasis, called premetastatic niches (PMNs), are not just passive re-
ceivers of CTCs, but are actively modulated by the tumor-secreted
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factors or tumor-shed extracellular vesicles (e.g., exosomes) prior to
the occurrence of metastasis (48). The well-established regulators of
this stepwise progression of PMN are MMPs released by cells in the
primary tumor and nonresident cells (e.g., bone marrow-derived
cells [BMDCs], stromal fibroblasts, and endothelial cells) recruited
at the local PMN site (49–51). The enzymatic activity of MMPs
indeed have direct functional impact on vasculature integrity, in
which biologically active ECM fragments (e.g., chemoattractant
collagen IV peptides) released during ECM degradation pro-
mote the recruitment of BMDCs and CTCs to the PMN
site (52). Here, we observed the cell-autonomous expression of
ECM-modulating genes, specifically MMP1 and MMP12, in
metastatic CTCs, providing a potentially new cellular player in
remodeling of the ECM at the PMN site. Collectively, our ex-
perimental data suggest that MMPihigh CTCs may be an active
source of the PMN formation carrying their own “soil” (53),
highlighting the significance of tumor stromal signaling during
the PMN evolution (54).
Matrisomal abnormalities represent a promising biomarker

for prognostication and prediction of immunotherapy response
(45). TMi profiles further reflected sex, but not racial, differ-
ences (SI Appendix, Fig. S19) previously associated with the
prevalence and prognosis of NSCLC (SI Appendix, Fig. S20).
Given the presence of such confounding factors, multivariate
regression models were fitted and revealed TMi (11) and MMPi
(SI Appendix, Table S8) as independent predictors of recurrence
and mortality. We further posit that other bodily fluids such as
epithelial-lining fluid (ELF) could serve as an alternative pre-
operative source to tissue biopsy, providing a noninvasive micro-
sampling probe to examine prognostic TMi signature. Our
preliminary data confirm the high classification accuracy achieved
by TMi in differentiating benign nodules from malignant cancers
using ELF samples (SI Appendix, Fig. S21), supporting the in-
creasingly recognized clinical value of biochemical substances in
ELF, including tumor markers and tumor-derived nucleic acids, as
diagnostic biomarkers of primary lung adenocarcinoma (55). Be-
nign nodules further remained as a nonconfounding variable even
in the classification of other lung diseases, such as chronic ob-
structive pulmonary disease (COPD) and interstitial lung diseases
(ILD), validating the robustness of TMi performance (SI Appen-
dix, Fig. S22).
Nevertheless, unlike TMi metrics, for which the clinical utility

remains robust for samples with missing expression data in a few
genes, MMPi would require the entire gene set given the small
number of genes used to construct the assay. Future assessments
of whether the proposed metrics could be directly applied to
FFPE specimens following surgical resection and quantified with
conventional RT-qPCR are warranted to facilitate its incorpo-
ration into routine clinical practice.

Methods
Expression Datasets. Raw data of multisector gene expression profiles from
study 1 (GSE33532) were acquired from the National Center for Bio-
technology Information (NCBI) Gene Expression Omnibus (GEO) repository
through the GEOquery package (56) in R. Preprocessing of data, such as
background correction and adjustment, was performed with Robust Multiarray
Average (RMA) through the affy package (57). Probes having higher mean
expression across the samples were collapsed to the genes. Detailed description,
including data preprocessing techniques and clinical information, of study 2
profiling data can be found in the original work (38). For TCGA data processing,
the TCGA-Assembler package (58) in R was used to extract normalized RPKM
count values. Genes with RPKM counts in at least 20% of the total number of
samples were included for subsequent processing using the edgeR package
(59), and were normalized with the TrimmedMean of M-values (TMM)method.
GEO datasets were acquired for raw expression profiles as described earlier or
processed (normalized) data directly from the NCBI GEO.

Computation of ITH and Prognostic Indices. The lme4 package (29) in R was
used to compute the level of ITH of each matrisome gene through linear

mixed-effects analyses as previously described (7). TMi of each patient was
computed by using 29 matrisome genes as previously described (11). MMPi
was computed by using the same Cox regression coefficient as follows:
MMPi = (0.1102 * MMP12 expression) + (0.07096 * MMP1 expression). The
optimal cutoff index for survival analyses was defined as the most significant
split using the log-rank test, and determined by using a web-based Cutoff Finder
algorithm (http://molpath.charite.de/cutoff) as previously described (11).

CTC Enrichment and Single-Cell Isolation. Informed consent for use of blood
samples for CTC analysis in this paper was obtained through protocols ap-
proved by the SingHealth Centralized Institutional Review Board. Whole
blood samples (7.5 mL) collected from recruited patients with NSCLC were
enriched by using the ClearCell FX System according to the manufacturer’s
manual (Biolidics). Enriched samples were fixed with 1% PFA before staining
with anti-human CD45-PE (eBioscience) and Hoechst 33342, trihydrochloride,
and trihydrate (Life Technologies). Preparation of the sample involves add-
ing the enriched, stained cells to a 1-mL syringe and coupling it to the
microfluidic device (25). The device was mounted on a microscope (Olympus
BX61), and CTCs were selected based on the detection of immunofluores-
cence (CD45−) by the user. The same principle was used to negatively de-
plete WBCs (CD45+) in the capture chambers. The cell flow to sheath flow
rates were set at constant conditions of 10 μL/min and 30 μL/min, re-
spectively, and achieved with 2 syringe pumps (Chemyx Fusion 200 Classic).
The same parameters were used for lung cancer cell lines. The microfluidic
device was calibrated by using a high-speed camera (Photron Fastcam
1024PCI), ensuring the cell flow width reached a maximum of 25 μm in the
main channel to facilitate cell propulsion in a single file using hydrodynamic
focusing. Glycerol 65% (Thermo Fisher Scientific) was used for the sheath
buffer. The basic design of the microchannel device consists of 10 chambers
that block additional cells from entering once occupied, allowing the cap-
ture and isolation of 10 individual cells in the channel.

Single-Cell Lysis and Reverse Transcription. Recovered single CTCs or cancer
cell lines were transferred to 0.2-mL PCR tubes and subjected to RNA ex-
traction using Ambion Single Cell Lysis Kit according to the manufacturer’s
specifications (Life Technologies). In each lysed sample, 2.5 μM oligo (dT)
primers and 0.5 mM dNTP Mix (Life Technologies) were added, incubated at
65 °C for 5 min, and subsequently cooled on ice for at least 1 min. First-
strand buffer (1×), 5 mM DTT, 10 U RNaseOUT Recombinant RNase Inhibitor,
and 50 U SuperScript III RT (Life Technologies) were added to a final volume
of 20 μL. The following thermal setting was applied to the final RT product
on a Veriti 96-well thermal cycler (Applied Biosystems): 25 °C for 5 min, 55 °C
for 60 min, and 85 °C for 5 min. cDNA was stored at −20 °C.

Target-Specific Preamplification. Multigene primer mix (1 μM) was prepared
by adding the following components to a nuclease-free (NF) 0.2-mL centri-
fuge tube: 1 μL of 100 μM forward gene primer, 1 μL of 100 μM reverse gene
primer, and NF water up to 100 μL. cDNA template (10 μL) generated from
single cells was preamplified in a total volume of 20 μL containing 1× PCRBIO
Ultra Mix (PCR Biosystems), 100 nM of each primer, and NF water. The fol-
lowing thermal setting was applied on the PCR cycler: 95 °C for 10 min
followed by 25 cycles of amplification (95 °C for 20 s, 60 °C for 1 min, and
72 °C for 20 s) and a final additional incubation at 72 °C for 7 min. Amplified
target amplicons were purified before being subjected to purification using
Agencourt AMpure XP beads at a 1:1.5 ratio following the manufacturer’s
manual (Beckman Coulter), with the final elution in 60 μL of NF water before
quantification.

Real-Time Quantitative PCR. SYBR Green I detection chemistry on a Bio-Rad
CFX96 Real-Time PCR Detection System (BioRad Laboratories) was used to
carry out qPCR in real time. Diluted RT product (1 μL) was added to a final
volume of 10 μL containing 300 nM of each primer (Integrated DNA Tech-
nologies), 1× FastStart SYBR Green Master mix (Roche), and NF water.
Melting curve analyses were performed to confirm a single peak for primer
specificities. The following thermal setting was applied on the RT-qPCR cy-
cler: 95 °C for 10 min followed by 40 cycles of amplification (95 °C for 20 s,
55 °C or 60 °C for 30 s, and 72 °C for 20 s) and a final additional incubation at
72 °C for 7 min. Expression data were normalized to 2 housekeeping genes
(GADPH and UBB) with the following equation: relative expression =
2−(Cq[gene of interest] − mean Cq[housekeeping genes]). Each experiment was performed
in duplicate.

Data and Code Availability. Validation datasets used in this study are available
at NCBI GEO under the accession codes GSE31210, GSE42127, GSE30219,
GSE11969, GSE50081, GSE3141, GSE37745, GSE41271, GSE68465, GSE26939,
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and GSE19188. Our single cell expression data and an R script for performing
PCA can be found in Figshare (https://doi.org/10.6084/m9.figshare.9202241.v1).

Details on cell culture, primer design,multiplex gene panel, andbioinformatics
are described in SI Appendix, SI Materials and Methods.
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