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Abstract

Background: Although microarray technology has become the most common method for studying global gene expression,
a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using
peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to
meet clinical requirements for biomarker study.

Methods and Findings: We applied peripheral whole blood samples with globin reduction and performed genome-wide
transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data
and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when
applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant
increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction
samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene
separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests
that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin
derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal.

Conclusion: We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood
samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study.
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Introduction

Peripheral blood has recently become an attractive prime tissue

for biomarker detection because of its critical role in immune

response, metabolism, and communication with cells, and

extracellular matrices in almost all tissues and organs in the

human body, as well as its being less invasive and the simplicity of

sample collection[1,2,3].

Many different techniques are used to handle peripheral blood

samples prior to RNA isolation based on the experimental

design: PAXgene (whole blood), QIAamp (Platelets and White

Blood Cells), and Ficoll and BD-CPT (Mononuclear cells).

Several studies have been conducted to make a comparison

between methods by examining their reproducibility, variance,

and signal-to-noise ratios[4]. Each method has its unique

advantages and disadvantages. The PAXgene Blood RNA

system provides a way to stabilize RNA immediately after

sample collection and makes it possible to store the samples for a

relatively long time without compromising the RNA’s integrity

[4,5,6,7]. This is very important for multiple-center clinical

practice. However, a high degree of variability and low present

call rates have been observed in data obtained from Affymetrix

microarrays when the samples are prepared using this whole-

blood RNA system. These poor results are thought to be the

effects of an overabundance of hemoglobin, and, consequently,

several globin reduction methods have been developed to solve

this problem[8,9,10,11]. Although globin reduction significantly

improved whole genome gene expression profiles in Affymetrix

arrays, and post-globin reduction samples could be successfully

applied to Illumina bead arrays[9], less is known about the
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impact of globin on Illumina bead array, since no comparison

has been made between pre-globin reduction and post-globin

reduction gene expression profiles in this array.

The Illumina Sentrix human-6 v2 array uses gene-specific 50-

mer probes attached to 3 mm beads with an average of 30

redundant features for each transcript, allowing six samples to be

profiled per BeadChip simultaneously[12]. This multi-sample

approach provides the possibility of higher throughput for large-

scale clinical research. In order to realize the potential impact of

over-abundant globin on Illumina high-throughput expression

array in medical practice, a practical framework for clinical

microarray-based studies must be established. To this end, we

compared the data obtained by microbead array profiling of pre-

globin reduction and post-globin reduction peripheral whole blood

samples. Our data demonstrated the combination of performing

globin reduction in peripheral whole-blood samples and hybrid-

izing on Illumina BeadChips to be the practical approach for

large-scale multi-center biomarker research.

Results

Globin mRNA reduction improves cRNA signal
No difference was seen between pre- and post-globin reduction

samples when comparing RNA quality using a bioanalyzer. Pre-

globin reduction samples looked to be of similar quality to post-

globin reduction samples, with two sharp peaks of 18 s and 28 s

RNA around 2000 bp and 4000 bp. However, the cRNA from

pre-globin reduction samples showed different signals from

standard cRNA. Hemoglobin showed an additional sharp peak

on the top of cRNA Fluorescence absorbance curve in pre-globin

reduction samples and the sharp peak disappeared in post-globin

reduction samples. In addition, most of the pre-globin reduction

samples only showed a band at 800 bp in cRNA electrophoresis

figure and post-globin reduction samples exhibited smeared bands

(200 bp–6000 bp) as normal standard cRNA (Data not shown).

Globin reduction improves microarray probe detection
and decreases variance

A great deal of evidence shows that, when compared to other

techniques, whole blood samples prepared by the PAXgene

method typically result in Affymetrix microarray data with a low

rate of genes detected as ‘‘present’’ with respect to the background

noise on the chip, as well as large intra-group variance. The great

abundance of hemoglobin mRNA is thought to account for this

poor performance[13]. In order to quantify these observations, we

analyzed the performance of the Illumina Sentrix human-6

BeadChip microarray platform on pre- and post-globin reduction

peripheral whole-blood samples of 11 adults, 8 females and 3

males.

The BeadStudio software used to process Illumina’s BeadChip

data provides a ‘‘detection p-value’’ that can be used to determine

whether a particular probe was detected against background noise.

After correcting for multiple rounds of hypothesis testing, we

considered adjusted p-values below 0.05 to be ‘‘detected’’ or

‘‘present.’’

Given the above definition, the average number of present calls

per array in the post-globin reduction group was

11921.736296.38, whereas the average number of present calls

per array in the pre-globin reduction group was significantly lower

and more variable, at 8987.7561264.94. Hence, samples in the

post-globin reduction group showed improved probe detection

and reduced intra-group detection call variance with respect to

those in the pre-globin reduction group (Figure 1A). In addition,

intra-sample intensity variance was reduced in the post-globin

reduction group (Figure 1B).

In order to determine whether the improvement in detection

was a consistent phenomenon (i.e., possibly probe- or target-

dependent), we sought to identify probes that were consistently

detected in the post-globin reduction group, and consistently not

called in the pre-globin reduction group. Such probes might

represent nucleotide sequence-specific susceptibility to globin-

induced noise, or some other systemic effect.

1876 probes showed a consistent pattern of improved detection,

where at least 75% of the adjusted detection p-values were ,0.05

for the post-globin reduction group and at least 75% were .0.05

in the pre-globin reduction group with a statistically significant

difference between the distributions of pre- and post-globin

reduction adjusted p-values (Table S1). Here, statistical signifi-

cance of the separation of sampling distributions was determined

by computing the p-value of a Wilcoxon Mann-Whitney test

between the pre- and post-globin reduction distributions, and

thresholding at 0.05.

In addition, no genes were found to pass the detection criteria

described above (75%,0.05 adjusted p-value) in the pre-globin

reduction group, but failed to pass the criteria in the post-globin

reduction group.

In order to show that the 1876 probes with consistently

improved p-values are not an artifact of random fluctuation of the

p-values reported by the BeadStudio software, a randomized

simulation was run to estimate the number of probes that would

pass our selection criteria under random re-association of

improved detection calls to probe identifiers. After 100 random

trials, none of the simulations produced more than one probe that

passed our criteria for being significantly improved by globin

reduction. These results indicate that the 1876 probes identified

here were not an artifact of the stochastic nature of microarray

hybridization and instead represent a set of probes whose

improved detection was strongly dependent on the removal of

globin RNA from the whole blood samples.

Globin reduction improves the sensitivity of microarray
experiments

The sensitivity threshold of microarray measurements defines

the concentration range in which accurate measurements can be

achieved. One of the advantages of the BeadArray platform is that

it requires less mRNA for hybridization. This makes BeadArray

more sensitive than any other platforms.

All of the 1876 genes with consistently improved detection p-

values exhibited higher expression intensity in the post-globin

reduction group than in the pre-globin reduction group (Figure 2).

The BeadStudio software computes signal intensity by subtracting

away background; this may be an indication that the improvement

in detection is mainly due to reduced background noise caused by

the over-abundance of globin mRNA. Moreover, in all of the 11

post-globin reduction samples, at least 90% of the probes with

consistently improved detection values had expression intensities

that were among the lowest 1/3 of all detected probes, i.e. low

abundance genes (Figure 3). Thus, globin reduction improved

detection sensitivity most dramatically for low abundance genes.

This again supports the hypothesis that the improvement in

detection is predominantly due to lower background noise induced

by the overabundance of globin.

Globin reduction improves useful biological signals
In order to show that the post-globin reduction improves the

practical usability of whole blood mRNA samples, the pre- and

post-globin reduction samples were used to select gender marker

Gene Expression Profiling
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genes. A similar approach was used by Debey et al[9]. After

performing the normalization and gene selection process described

in the Materials and Methods section, we found that a significant

fraction of the marker genes were in fact genes that are located on

either the X or Y chromosome.

The result of the selection process shows a clear performance

improvement when finding gender marker genes using post-globin

reduction samples instead of pre-globin reduction samples. For

example, when the top ten probes are selected in each of the ten

iterations using the pre-globin reduction data, only one was

selected in at least half of the iterations. In contrast, when using the

post-globin reduction experiments four probes, representing three

distinct genes on the Y chromosome, were selected. Figure 4 shows

heatmaps of the intensity values of these four selected probes in the

pre- and post-globin reduction groups. The separation between

the male and female samples was much more clearly defined in the

post-globin reduction samples. Similarly, when selecting the top 40

probes from the untreated experiments only nine were found. Of

those, only five were on the X or Y chromosome. When using the

post-globin data, however, 12 probes were found, 10 of which

were on either the X or Y chromosome. With only one exception,

the p-values from a Mann-Whitney U test for the male-to-female

Figure 1. Globin reduction Increased present calls and decreased variance. Box plots showing the distribution of number of present calls
per array in both the pre- and post-globin reduction data. Whiskers on the plots extend from the minimum and maximum values to the lower and
upper quartiles, respectively. The box extends from the lower quartile through the upper quartile, with a bold line marking the median. B. Decreased
intra-sample variance in intensity by globin reduction. Each column shows the distribution of log expression intensities for one sample as reported in
the microarray data. Pre-globin reduction samples are labeled 1b–11b, and post-globin reduction samples are labeled as 1a–11a.
doi:10.1371/journal.pone.0005157.g001
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comparison in the post-globin samples were more significant than

those from the pre-globin samples. The one exception is likely the

result of small sample size. Thus, in the context of biomarker

selection, the post-globin reduction samples yield not only more

statistically significant results than the pre-globin reduction

samples, but also pick out more biomarkers with higher accuracy.

Evaluation of the differentially expressed genes by real
time PCR

As well as improving the detection of low intensity and

biologically informative transcripts, the globin reduction treatment

also resulted in 298 genes (all with strong detection calls in both

treatment groups) exhibiting apparent differential expression

between the pre- and post-globin reduction groups. Among these,

75 genes were up-regulated with fold changes §2; 223 genes were

found down-regulated with fold changes #0.5. We postulate first

that hemoglobin may compete with the target mRNA in binding

to the probe, thus contributing to a higher-than-normal pseudo

binding background signal. Second, the overabundance of

hemoglobin may interfere with target mRNA binding through

an unknown mechanism.

We used real-time PCR to show that the RNA levels of these

genes were, in fact, no different in the pre- and post-globin

reduction samples, and that the differential expression observed in

the array data was an artifact of the noise induced by the

overabundance of globin RNA in the pre-globin reduction

samples. Four hemoglobin genes, HBA1, HBB, HBD, and

HBE1, together with another down-regulated gene, as well as 2

up-regulated genes in bead array were randomly chosen to verify

by real-time PCR. The two most abundant hemoglobin genes,

HBA1 and HBB, were observed at lower levels in the post-globin

reduction group with respect to the pre-globin reduction group in

both the array data and in the real time PCR, indicating that the

globin reduction protocol was effective. Two other hemoglobin

genes, HBD and HBE, were also significantly down-regulated by

globin reduction in both assays. However, AYTL2, the gene

observed to be down-regulated in the array data, and the 2 genes

that showed higher expression levels in the array data, ccl5 and

DYRK2, all showed no significant change in expression level in

the real-time PCR assay (Figure 5).

Discussion

Expression profiling using peripheral whole blood samples is an

attractive method for biomarker detection. However, hemoglobin,

which represents as much as 70% of the total mRNA population

in peripheral whole blood samples isolated by the PAXgene tube,

effectively dilutes the mRNA population and interrupts the gene

expression profiles in the Affymetrix array[9]. It is of interest to

investigate whether and how hemoglobin influences the gene

expression profiles acquired from Illumina bead arrays, which

constitute a high throughput platform. In this study, we compared

the gene expression profile of 11 pre- and post-globin reduction

peripheral whole blood samples hybridized on Illumina bead

arrays. We demonstrated that hemoglobin influenced the gene

expression profiles from these arrays in a clear and consistent

manner. Globin reduction efficiently improved the probe

detection by increasing present calls and decreasing variance, as

well as improving sensitivity of lower abundance genes. More

importantly, the more consistent expression signature of 4 sex

genes in the post-globin reduction group with respect to the pre-

globin reduction group indicates that class prediction was

markedly improved with globin reduction. We reasoned that the

high abundance of hemoglobin might interrupt the target mRNA

binding, or contribute to pseudo-binding (a nonspecific, back-

ground signal that is present in the absence of any significant

sequence similarity) to the probe, and, therefore, distort the true

expression signal.

Real-time PCR is commonly used to validate the mRNA

expressions acquired from microarray experiments due to the

greater specificity of the primer vs. microarray probes[14].

Therefore, real-time PCR was used as a ‘‘truth’’ measurement

to evaluate the reliability of the pre- and post-globin reduction

bead array data. Four hemoglobin genes, HBA1, HBB, HBD and

HBE1, along with 3 randomly selected differentially expressed

genes (one down-regulated and two up-regulated by globin

reduction), were chosen for mRNA level measurement by real

time PCR. We found that, although the GLOBINclear kit is

claimed to only reduce HBA1 and HBB, the other hemoglobin

genes HBD and HBE1 also showed significantly lower mRNA

levels in the post-globin reduction samples when compared to the

pre-globin reduction samples. This might be due to the fact that

HBD and HBE1 have 93% and 79% percent sequence identify

with HBB (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi), respec-

tively. However, the non-hemoglobin gene that was observed to be

down-regulated after globin reduction in the microarray data,

AYTL2, showed no significant change in the real-time PCR data.

This suggests that globin reduction did not actually decrease the

level of other genes’ mRNA, but rather allowed for more accurate

measurement of these levels when the samples were hybridized to

microarrays. The decreased intensity observed for non-hemoglo-

bin genes on the post-globin reduction microarrays might be due

to high abundance hemoglobin providing a non-specific pseudo-

binding signal. On further analysis, no significant sequence

similarity was found between these down regulated genes and

HBA1 and HBB. This again supports our hypothesis that the

higher expression in pre-globin reduction samples of some genes

Figure 2. Probes with improved detection have higher
expression intensity in post-globin reduction data compared
to pre-globin reduction. The histogram shows the distribution of the
difference in average log-reduced intensities between the post-globin
reduction and pre-globin reduction data for the probes with improved
detection p-values. Most of the improved probes show at least two-fold
increase in average expression intensity in the post-globin reduction
data.
doi:10.1371/journal.pone.0005157.g002
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might be due to a non-specific pseudo-binding signals from

hemoglobin. In addition, the two up-regulated genes (ccl5 and

DYR) exhibited no significant changes in expression level in the

real time PCR data. This indicates that hemoglobin may interfere with

target mRNA binding through an unknown mechanism and result in lower

expression signals from the pre-globin reduction microarrays.

In summary, this study demonstrates that the combination of

performing globin mRNA reduction in peripheral whole blood

samples and hybridizing on Illumina BeadChips is a practical

approach for biomarker research. Our future study will focus on

the cancer biomarker detection by using this established platform.

Materials and Methods

Sample collection and RNA preparation
This study was conducted under protocols approved by the

Children’s Hospital Boston Institutional Review Board. Blood

samples were obtained from 11 subjects who voluntarily agreed to

participate and gave written informed consent. Peripheral blood

was drawn with a BD safely LokTM blood collection set (BD,

Franklin Lakes, NJ) into PAXgene RNA collection tube (Qiagen,

Valencia, CA) according to the standard procedure. Total RNA

was prepared with the PAXgene Blood RNA Kit (Qiagen)

according to the manufacturer’s instructions with an on-column

DNase digestion step. RNA quantity and quality were determined

by a NanoDrop ND-1000 Spectrophotometer (NanoDrop Tech-

nologies, Wilmington DE) and an ExperionTM(Bio-RAD, Hercu-

les, CA).

Globin reduction
Since a large amount of hemoglobin exists in erythrocytes,

several studies have shown decreased present calls, reduced

accuracy, and increased variability among replicates in an

Affymetrix GeneChip array when using PAXgene RNA collection

technology[5,13]. To overcome this obstacle, the GLOBIN-

clearTM Kit (Ambion, Austin, Texas) was employed to remove

the highly abundant hemoglobin mRNA according to the

manufacturer’s instructions. In short, 4 mg total RNA from each

sample were hybridized with a biotinylated Capture OLIGO Mix

that is specific for human mRNA hemoglobin a and b.

Streptavidin Magnetic Beads were added to bind the biotinylated

oligonucleotides that hybridized with globin mRNA and then were

Figure 3. Globin reduction improved sensitivity. Probes with Improved Detection Values have Low Intensity. Each histogram shows the
distribution of the ranks of the expression levels of the probes with improved detection p-values in the post-globin reduction data. The X-axis
represents the ranks of expression level of the genes and Y-axis represents the frequency with which a given intensity was observed. All 11 samples
show a clear tendency for the improved probes to have low expression level.
doi:10.1371/journal.pone.0005157.g003
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pulled down by magnet. The globin mRNA depleted RNA was

transferred to a fresh tube and further purified with a rapid

magnetic bead-based purification process.

RNA amplification and hybridization on Illumina Sentrix
humanref-6 arrays

100 ng of total RNA was applied to generate cRNA by using a

Illumina TotalPrep RNA Amplification Kit (Ambion). Reverse

transcription with the T7 oligo (dT) primer was used to produce

first strand cDNA. The cDNA then underwent second strand

synthesis and RNA degradation by DNA Polymerase and RNase

H, followed by clean up. In vitro transcription (IVT) technology,

along with biotin UTP, was employed to generate multiple copies

of biotinylated cRNA The labeled cRNA was purified via Filter

Cartridge and quantified by NanoDrop and RiboGreenH
(Molecular Probes Inc. Eugene, OR). The integrity of cRNA

was evaluated using an ExperionTM (Bio-RAD).

The labeled cRNA target (1.5 mg) was used for hybridization to

an array according to the Illumina Sentrix humanref-6 beadchip

protocol. A maximum of 10 ml cRNA was mixed with a 20 mL

GEX-HYB hybridization solution. The preheated 30 ml assay

sample was dispensed onto the large sample port of each array and

incubated for 18 hours at 58uC at a rocker speed of 5. Following

hybridization, the samples were washed according to the protocol

and scanned with a BeadArray Reader (Illumina, San Diego, CA).

Real-time PCR
Hemoglobin a (HBA1), b (HBB), d (HBD), and e(HBE1) genes

together with 3 other randomly chosen genes from a differential

expression list were picked for evaluating the array data by using

real-time PCR. Primers were designed using primer 3 and shown

in Table 1. Briefly, 1 mg RNA of each sample was used for cDNA

synthesis following the protocol described in the iScript cDNA

synthesis kit (Bio-RAD). Real Time PCR was performed on the

iQ5 Real-Time PCR detection system with the iQ SYBR Green

Supermix (Bio-RAD) and GAPDH was used as an internal

control. The relative quantification of mRNA expression was

calculated according to the literatures[15,16,17].

Data extraction and statistics
Detection p-values produced by the BeadStudio software were

corrected for multiple hypothesis testing[18]. The R software

Figure 4. Globin reduction improves class separation. The panel on the top shows a heatmap of the marker genes in the pre-globin reduction
data, with gender labels for the experiments on the columns and gene identifiers on the rows. Student’s t-test p-values are also shown on the rows,
describing the statistical separation between the male and female intensity distributions. The panel on the bottom shows a heatmap of the same
marker genes in the post-globin reduction data. The post-globin reduction data shows a clear improvement in biological signal. These genes were
identified, as described in Materials and Methods, by repeated ranking for discriminatory power based on the ReliefF algorithm.
doi:10.1371/journal.pone.0005157.g004
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package[19] was used for statistical analysis, as were several

components of the BioConductor[20] libraries for R. The

Wilcoxon Mann-Whitney test was used to identify probes with a

statistically significant separation of adjusted p-values between the

pre- and post-globin reduction groups. Gene selection was

performed independently on the pre- and post- globin reduction

groups using the ReliefF algorithm[21,22,23] as implemented in

the WEKA machine learning package[24].

In order to show that the probes with consistently improved

detection p-values were not an artifact of random chance, a

randomized simulation was run. Each trial in the simulation

consisted of identifying, for each blood sample (a pre- and post-

globin reduction pair of microarray experiments), those probes

with p-values greater than 0.05 in the pre-globin reduction data

and less than 0.05 in the post-globin reduction data. Those p-

values were then randomly reassigned among the probes whose p-

values were not below 0.05 in both the pre- and post-globin

reduction data. After performing this random re-association for

each blood sample, we applied the same criteria for selecting

significantly improved probes as was applied to the observed data,

and recorded the number of probes that passed the selection

criteria. Thus, our simulation generates a distribution according to

the null hypothesis that an improved p-value pair is equally likely

to be associated with any probe whose p-values are not already

below 0.05 in both the pre- and post-globin reduction samples.

To verify the efficacy of the globin reduction treatment in the

context of gene selection, the following normalization and

selection process was run. Analysis of the raw intensity data

revealed that, between pairs of arrays, a non-linear relationship

existed between corresponding pairs of probes. To correct this, we

used a Loess adjustment as implemented in the BioConductor

package for R [20]. Loess normalization is a standard microarray

normalization method that removes non-linear intensity-depen-

Figure 5. Real-time PCR evaluations of genes identified as differentially expressed between pre- and post-globin reduction
samples in the microarray data. A. A heatmap showing seven of the genes in 11 samples differentially expressed between the pre- and post-
globin reduction samples in the BeadArray data. B. The four hemoglobin genes were significantly reduced and no other gene was markedly changed
by globin reduction in real-time PCR data. The X-axis represents 11 samples and Y-axis represents the gene expression ratio of pre-globin reduction
to post-globin reduction.
doi:10.1371/journal.pone.0005157.g005

Table 1. Primers of selected genes for real-time PCR.

Gene Forward Reverse

HBA1 ACGGCTCTGCCCAGGTTAAG GTATTTGGAGGTCAGCACG

HBB GCAACCTCAAACAGACACCA CAGCATCAGGAGTGGACAGA

HBD GGAGGACAGGACCAGCATAA CAGATCCCCAAAGGACTCAA

HBE1 TGGAAACCTGTCGTCTCC TTGCCAAAGTGAGTAGCC

AYTL2 GGTGTGAACTCAAGGGCCTA TATCCAACCTCGGACTGGAG

DYRK2 CTCACGGACAGATCCAGGTT TGCTTCATTGCTTGTTCAGG

CCL5 CGCTGTCATCCTCATTGCTA ACACACTTGGCGGTTCTTTC

GAPDH GAGTCAACGGATTTGGTCGT TTGATTTTGGAGGGATCTCG

doi:10.1371/journal.pone.0005157.t001
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dent artifacts from the data by iteratively fitting a series of local

piecewise curves to the log-mean-difference plots of each pair of

arrays, and effectively subtracting the curve from the data[25].

After normalization, the data was split into pre- and post-globin

reduction groups, each containing eight female and three male

samples. We then performed gene selection independently on

these two groups of 11 experiments using the ReliefF algo-

rithm[21,22,23,24]. Our goal when identifying marker genes was

to find genes that are best able to separate male samples from

female samples, and to determine whether the results were more

reproducible in the post-globin reduction data than in the pre-

globin reduction data. Due to the small sample size and unequal

number of male and female subjects, the gene selection process

was repeated ten times on a subset of the data. Each repeat used

three random female samples and compared them against all three

male samples. To perform the gene selection in each repeat, we

used the ReliefF algorithm. ReliefF ranks the individual genes by

their ability to distinguish gender based on intensity values. Briefly,

for each experiment e, the ReliefF algorithm finds e’s nearest

neighbor with the same class (gender) using Euclidian distance

over all genes. The nearest neighbor of the other class (opposite

gender) is also found in the same manner. These selections are

called the hit and miss, respectively. The importance of each gene

is then computed by taking a normalized sum of differences

between the distance from e to the hit and the distance from e to

the miss. Thus, the greater the difference between the hit and miss,

the greater the importance of the gene in distinguishing class. This

method has the advantage that it makes no assumptions about the

distribution of expression intensities. Marker genes were identified

by picking out genes that were consistently ranked highly across at

least half of the repeats. Heatmaps, as well as Student’s t-test p-

values describing the ability of the genes identified by the above

method to distinguish gender were generated in R.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0005157.s001 (0.52 MB

XLS)
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