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Abstract

Recent models of spiking neuronal networks have been trained to perform behaviors in

static environments using a variety of learning rules, with varying degrees of biological real-

ism. Most of these models have not been tested in dynamic visual environments where

models must make predictions on future states and adjust their behavior accordingly. The

models using these learning rules are often treated as black boxes, with little analysis on cir-

cuit architectures and learning mechanisms supporting optimal performance. Here we

developed visual/motor spiking neuronal network models and trained them to play a virtual

racket-ball game using several reinforcement learning algorithms inspired by the dopami-

nergic reward system. We systematically investigated how different architectures and cir-

cuit-motifs (feed-forward, recurrent, feedback) contributed to learning and performance. We

also developed a new biologically-inspired learning rule that significantly enhanced perfor-

mance, while reducing training time. Our models included visual areas encoding game

inputs and relaying the information to motor areas, which used this information to learn to

move the racket to hit the ball. Neurons in the early visual area relayed information encoding

object location and motion direction across the network. Neuronal association areas

encoded spatial relationships between objects in the visual scene. Motor populations

received inputs from visual and association areas representing the dorsal pathway. Two

populations of motor neurons generated commands to move the racket up or down. Model-

generated actions updated the environment and triggered reward or punishment signals

that adjusted synaptic weights so that the models could learn which actions led to reward.

Here we demonstrate that our biologically-plausible learning rules were effective in training

spiking neuronal network models to solve problems in dynamic environments. We used our

models to dissect the circuit architectures and learning rules most effective for learning. Our

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265808 May 11, 2022 1 / 43

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Anwar H, Caby S, Dura-Bernal S,

D’Onofrio D, Hasegan D, Deible M, et al. (2022)

Training a spiking neuronal network model of

visual-motor cortex to play a virtual racket-ball

game using reinforcement learning. PLoS ONE

17(5): e0265808. https://doi.org/10.1371/journal.

pone.0265808

Editor: Gennady S. Cymbalyuk, Georgia State

University, UNITED STATES

Received: August 6, 2021

Accepted: March 8, 2022

Published: May 11, 2022

Copyright: © 2022 Anwar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All source code for

modeling and data analysis is provided in an open

access repository at https://github.com/

NathanKlineInstitute/SMARTAgent.

Funding: This work was funded by ARO W911NF-

19-1-0402 (SAN), ARO-URAP supplement (SAN),

NIDCD R01DC012947 (PL, SAN), NIH

U24EB028998 (SDB), NIBIB U01EB017695

(WWL), NSF 1904444-1042C (SDB, WWL), and

Google Cloud Platform Research Credits (SAN,

https://orcid.org/0000-0002-3079-4812
https://orcid.org/0000-0002-0057-1060
https://orcid.org/0000-0001-9665-4401
https://orcid.org/0000-0003-2274-2999
https://orcid.org/0000-0001-7494-4555
https://orcid.org/0000-0003-1446-1628
https://orcid.org/0000-0003-3646-5195
https://doi.org/10.1371/journal.pone.0265808
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265808&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265808&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265808&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265808&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265808&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265808&domain=pdf&date_stamp=2022-05-11
https://doi.org/10.1371/journal.pone.0265808
https://doi.org/10.1371/journal.pone.0265808
http://creativecommons.org/licenses/by/4.0/
https://github.com/NathanKlineInstitute/SMARTAgent
https://github.com/NathanKlineInstitute/SMARTAgent


model shows that learning mechanisms involving different neural circuits produce similar

performance in sensory-motor tasks. In biological networks, all learning mechanisms may

complement one another, accelerating the learning capabilities of animals. Furthermore,

this also highlights the resilience and redundancy in biological systems.

Introduction

A variety of Deep Learning (DL) artificial neural network (ANN) models have been developed

and trained to effectively learn complex sensory-motor behaviors [1–8]. DL models, which are

primarily designed with engineering goals in mind, often lack biological details, and therefore

do not shed light on the circuit mechanisms of behavior in real animals [9]. Biophysically

detailed neuronal network models of the sensory-motor cortex can be used to dissect the

mechanisms of learning behaviors in vivo [10], however in the past the focus has been on

developing models of cortical circuits that reproduce electrophysiological activity patterns [11]

rather than on understanding the origins of sensorimotor behavior [12]. Several spiking neu-

ronal networks (SNNs) with moderate circuit complexity have been developed to learn behav-

iors in static sensory environments [13–17]. In this work, we aim to shed light on the

dynamics, decision-making, and learned behavior of a visual-motor circuit in a dynamic envi-

ronment. We develop several SNNs each including multiple visual and motor areas that learn

to interact with the environment using biologically inspired reinforcement learning (RL)

mechanisms.

The success of ANNs can be credited to the backpropagation and gradient descent methods

that successfully tune the connection weights between neurons [18]. From a biological per-

spective, the ideas behind the backpropagation and gradient descent methods are very appeal-

ing but many properties and requirements that it relies on to tune synaptic connections are

not present in the nervous system [19]. Nevertheless, the success of ANNs with backpropaga-

tion and gradient descent has led to achieving superhuman capabilities in learning goals and

learning to operate in an interactive environment [5]. One of the techniques that have been

used to train ANNs interacting with an environment is reinforcement learning (RL), where

the network learns a behavior by maximizing a reward signal from the environment. Our goal

is not to compete with the success of ANNs (although the success of the model is important),

but rather to improve understanding of the intricate networks of the visual and motor systems

that learn using biologically realistic time-dependent and reward modulated learning rules.

Using the biologically inspired RL rule we can not only show that our models perform well but

also that their neuronal activity is directly comparable to recordings of biological networks.

Cortical neural circuits contain very complex connectivity patterns [20–22]. Sensory areas

are connected with one another and to motor and other higher processing areas using multiple

pathways [23–29]. In addition to feedforward connections, feedback and recurrent connec-

tions are hallmarks of biological neural circuits. However, it remains unclear what role each of

those connections serve in neural computations, in multimodal integration of sensorimotor

information, and in generating motor behavior. Using SNN models with feedforward, recur-

rent, and feedback connections in this work, we investigate learning capacity of these models

with different architectures and connectivity patterns.

In sensory-motor tasks, rewards and punishments are typically sparsely delivered at the end

of each trial, where each trial consists of multiple actions in a dynamically changing environ-

ment [30, 31]. The brain utilizes environmental cues in dynamically changing environments
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to make associations with the actions that eventually result in a reward over repeated trials

[32]. Regardless of the temporal delays between the executed actions and rewards, the brain is

capable of assigning credit to intermediate actions during a trial. Several theoretical solutions

have been proposed to solve this distal credit assignment problem in both ANN and SNN

models [33–36]. Reinforcement learning in ANNs has made heavy use of value functions to

assign intermediate credit in sparse reward paradigms, but this methodology remains imprac-

tical in biological SNNs [34, 37–39]. In this work, we use a spike-timing-dependent plasticity

(STDP) rule to establish association between pre- and postsynaptic neurons, and modulate the

STDP weight changes by reward/punishment (critic signal) delivered after an action. Besides

these types of temporally sparse, delayed rewards, we also test another reward paradigm utiliz-

ing intermediate rewards, which were previously used with an SNN model of sensorimotor

cortex trained to move simulated and robotic arms towards targets [14, 40]. However, instead

of broadcasting critic signals to all premotor and motor neuron pairs (non-targeted paradigm),

we provide intermediate rewards/punishments only to the neuronal populations associated

with the executed actions (targeted paradigm).

In this work, we first construct a feedforward SNN model of visual and motor areas and

train it to play a racket-ball game using STDP based RL (STDP-RL) mechanisms with interme-

diate rewards/punishment in both targeted and non-targeted RL paradigms. We then extend

our feedforward model to include feedback and recurrent connections, as well as allowing RL

based learning within premotor and motor areas. Like the feedforward model, we also test our

recurrent model’s ability to learn under both targeted and non-targeted RL paradigms using

both intermediate and sparse rewards. Comparing performance of our models using both feed-

forward and recurrent architectures with different RL paradigms, we show the capability of

SNN models in learning complex visual-motor behaviors, which were previously demon-

strated only using ANNs. Furthermore these models allow us to access the spiking activity of

neurons across different modeled areas that can be directly matched to physiological data.

Once more anatomical and physiological details about neural circuits and RL modalities are

included in our models, these models can be used together with imaging modalities to dissect

the mechanisms of psychiatric disorders associated with deficits in sensory-motor behaviors

[41–43].

Materials and methods

“Racket-ball” game

We designed a “Racket-ball” game to use for training our visual-motor cortex model to play.

Many features of the game were designed to resemble those of the Atari games (especially

Pong except that there was no opponent; (see Image frames in Figs 1A and 7A) provided by

OpenAI’s gym platform (https://gym.openai.com) [44]. In a court (160 pixels x 160 pixels), the

racket (4 pixels wide and 16 pixels high) was controlled by external motor commands to move

vertically up and down at a fixed horizontal position (140th pixel). At every new serve, the

ball’s (4 pixels x 4 pixels) position was reset to the extreme left side of the court with a ran-

domly selected vertical position (possible vertical starting locations of the ball:

40,60,80,100,120 pixels). However, the vertical position of the ball and the racket at the first

serve of each episode could be specified externally. The motion direction and speed of the ball

at each serve was randomly initiated by choosing the displacement in horizontal and vertical

direction from (dx,dy) = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}. When the ball hit

the upper or lower edge of the court, it bounced back in the vertical direction (-dy) without

any change in the speed or the horizontal direction (dx). Every time when the ball was hit by

the racket, it bounced back in a different direction depending on the contact point of the ball
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Fig 1. Constructing a feedforward model of visual-motor cortex that learns to play the racket-ball game. A) Schematic of the closed-

loop feedforward visual/motor circuit model interfaced with the racket-ball game. Visual areas receive inputs from the pixelated image

frames of the racket-ball game, downstream activating association and motor areas. An action is generated after comparing firing rates of

EMDOWN and EMUP excitatory motor populations over an interval. Each action delivers a reward to the model driving STDP-RL

learning rules. B) Raster plot shows the spiking activity of different populations of neurons during a training episode (vertical axis is

neuron identity and horizontal axis is time; each dot represents a single action potential from an individual neuron). Patterned activation
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with the racket. When the ball was hit by the racket’s lower or upper edge, the ball bounced

back with double speed in the new randomly selected vertical direction (dy). Similar to the ball

bouncing after hitting the left edge of the court, when the ball was hit by the racket’s center,

the ball bounced back only with the new randomly selected vertical direction. When the ball

was hit by the racket, a point was awarded (+1) and when the ball was missed by the racket, a

point was deducted (-1) from the total score.

Intermediate reward paradigm

In standard game environments, sparse rewards and punishments are awarded based on scor-

ing or losing a point. But while learning how to play a game, all the correct moves/actions dur-

ing the time available to respond according to the situation contribute towards the end result

i.e. whether a player scores a point or not. In a “Racket-ball” game such moves could be mak-

ing a proper serve, estimating the projection of the ball after bouncing back towards the player,

and taking a proper action/move toward the estimated contact position. Also if the player

makes an incorrect move, they could compensate for the mistake and move in the correct

direction in the next step. All these actions or movements during training eventually lead to

the player becoming an expert over repeated episodes or matches. Based on these intuitive

learnable cues, in addition to the standard reward and punishment, we proposed using inter-

mediate rewards i.e. award a small reward (+0.1) or smaller punishment (-0.01) at each action

the player takes based on whether that action contributed in moving the racket towards the

projected position of the ball to be hit or not. The schematic of the intermediate reward para-

digm is shown in Fig 2B. When the ball moved towards the racket, we used the direction of the

motion of the ball to predict the potential position of the ball where the racket could hit it.

Using this projected position, when the racket moved towards the target position, we awarded

a small reward (+0.1) for making the correct move and when the racket moved away from the

target position, we awarded a smaller punishment (-0.01) for making an incorrect move.

It should be noted that no explicit loss function is used in our SNN in contrast to traditional

ANNs. Rather, it is expected that the total rewards will be maximized with the defined learning

framework without the internal drive to minimize a loss function.

Reinforcement learning paradigms

We used the existing spike-time-dependent reinforcement learning (STDP-RL) mechanism in

this work, which was developed based on the distal reward learning paradigm proposed by

Izhikevich [33], with variations used in neuronal network models [13, 14, 45, 46]. Our

STDP-RL used a spike-time-dependent plasticity mechanism together with reward or punish-

ment signal for potentiation or depression of the targeted synapses. An exponentially decaying

eligibility trace was included to assign temporally distal credits to the relevant synaptic connec-

tions. The term “eligibility trace” is used to define a time window during which an eligible syn-

aptic connection between a pair of neurons can undergo strengthening or weakening.

Historically this term has been used in three-factor learning rules, where the eligibility trace

usually allows a synapse to undergo a plastic change far in time from when the

of early visual neurons (i.e. diagonal lines in raster plots) indicate for example, the ball traversing the court from side to side. These patterns

are visible because the early visual neurons were arranged topographically with increasing neuron number. C) Firing rates of excitatory

motor neuron populations EMUP and EMDOWN in the feedforward model increase over the course of training. The firing rates were

binned for ball trajectories (beginning when the ball is at the extreme left side of the court and ends when the ball hits or misses the racket

on the right side of the court). D) The average weight change of synaptic input onto EMUP and EMDOWN sampled over 20 training

episodes tends to increase with learning, indicating the network tends to produce rewarding behavior.

https://doi.org/10.1371/journal.pone.0265808.g001
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neuromodulator becomes available. Experimental evidence for eligibility traces in striatum

[47], cortex [48], and hippocampus [49–51] shows distinct temporal dynamics ranging from 1

to 5 seconds across different areas. On the molecular level, the striatal three-factor plasticity

depends on NMDA, CaMKII, protein synthesis and dopamine D1 receptors [47, 52]. CaMKII

increases were found to be localized in dendritic spines and to have roughly the same time

course as the critical window for phasic dopamine. This suggests CaMKII could be involved in

the “synaptic flag” triggered by the STDP-like induction protocol. Protein kinase A (PKA) was

found to have a nonspecific cell-wide distribution suggesting an interpretation of PKA as a

dopamine-triggered third factor [47]. The STDP-RL mechanism used in this work is depicted

in Fig 2A: when a postsynaptic spike occurred within a few milliseconds of the presynaptic

Fig 2. Spike-timing dependent reinforcement learning framework: A) An exponentially-decaying synaptic eligibility trace (ET) is triggered after postsynaptic

neuron firing within a short time window after presynaptic neuron firing. If a reward or punishment signal is delivered while ET>0, synaptic weight is potentiated

or depressed proportional to ET. B) IRP delivers rewards to the model for each action it takes based on whether the action moved the racket towards the projected

location of the ball for a hit or away. C) Three different RL versions used in this study (V visual; A Association; M Motor areas): non-targeted RL, all motor

neurons receive ET; targeted RL, motor neurons which contributed to the action receive ET and motor neurons in population for the other directions receive

negative ET; retrograde targeted RL as in targeted RL but middle/hidden layer synaptic connections also receive ET, with ET amplitude reduction based on

number of back-tracked connections.

https://doi.org/10.1371/journal.pone.0265808.g002
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spike, the synaptic connection between this pair of neurons became eligible for STDP-RL and

was tagged with an exponentially decaying eligibility trace. Later, when a reward or a punish-

ment was delivered before the eligibility trace decayed to zero, the weight of the tagged synap-

tic connection was increased or decreased, depending on the ‘critic’ value and sign i.e. increase

for reward or decrease for punishment. The change in synaptic strength was proportional to

the eligibility trace value at the time of the critic’s delivery (see Fig 2A).

Traditionally, when using STDP-RL for learning behavior, all plastic synaptic connections

in the neuronal network model are treated equally considering that the underlying causality

between pre and postsynaptic neurons and the associated action and critic will automatically

choose only relevant synaptic connections for reinforcement. We used this standard STDP-RL

(see non-targeted RL in Fig 2C) approach in this study, but also proposed several variations to

this standard approach, which required the presence of distinct populations of neurons con-

trolling distinct behaviors. In the first variation (see targeted RL in Fig 2C), we delivered full

reward or punishment to the neuronal population that generated the action and additionally,

we delivered opposite and partial ‘critic’ value to the non-action associated neuronal popula-

tion. This ensured that the learning happened only in the part of the circuit which generated

the action. In the second variant (see retrograde targeted RL in Fig 2C), we further extended

the partial ‘critic’ value delivery to the neuronal populations one synapse away from those

directly generating motor action.

The parameters of the STDP-RL were adjusted to incorporate temporally well-separated

motor actions, visual scenes and associated rewards. For intermediate scenarios and associated

rewards, shorter time constants were sufficient to allow learning those intermediate level

performances.

Excitatory and inhibitory neurons used in the model

All modeled neurons were point neurons, and did not include different soma or dendrite com-

partments. However, in order to allow more dynamic complexity in our modeled neurons, we

included state variables and synaptic inputs that represented activation at soma or distal den-

drites. This was done by using longer synaptic delays and longer synaptic time constants from

pre- and post-synaptic locations that represented dendrite vs soma synapses. These details are

fully described in our previous papers [53]. Individual neurons were modeled as event-driven,

rule-based dynamical units with many of the key features found in real neurons, including

adaptation, bursting, depolarization blockade, and voltage-sensitive NMDA conductance [53–

56]. Event-driven processing provides a faster alternative to network integration: a presynaptic

spike is an event that arrives after a delay at a postsynaptic neuron; this arrival is then a subse-

quent event that triggers further processing in the postsynaptic neurons. Neurons were param-

eterized as excitatory (E), fast-spiking inhibitory (I), and low voltage activated inhibitory (IL;

Table 1). Each neuron had a membrane voltage state variable (Vm), with a baseline value

Table 1. Parameters of the neuron model for each type.

Cell type Vrest (mV) Vthresh (mV) Vblock (mV) TauAR (ms) WRR TauRR (ms) ΔVAHP (mV) TauAHP (ms)

Excitatory (E) -65 -40 -25 5 0.75 8 1 400

Inhibitory (I) -63 -40 -10 2.5 0.25 1.5 0.5 50

Low-threshold Inhibitory (IL) -65 -47 -10 2.5 0.25 1.5 0.5 50

Vrest = resting membrane potential; Vthresh = spiking threshold, Vblock = depolarization blockade voltage, TauAR = absolute refractory time constant, WRR = relative

refractory weight, TauRR = relative refractory time constant, ΔVAHP = after-hyperpolarization increment in voltage, TauAHP = after-hyperpolarization time constant.

https://doi.org/10.1371/journal.pone.0265808.t001
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determined by a resting membrane potential parameter (Vrest). After synaptic input events, if

Vm crossed spiking threshold (Vthresh), the cell would fire an action potential and enter an

absolute refractory period, lasting TauAR ms. After an action potential, an after-hyperpolariza-

tion voltage state variable (VAHP) was increased by a fixed amount ΔVAHP and then VAHP was

subtracted from Vm. Then VAHP decayed exponentially (with time constant TauAHP) to 0. To

simulate depolarization blockade, a neuron could not fire if Vm surpassed the blockade voltage

(Vblock). Relative refractory period was simulated after an action potential by increasing the fir-

ing threshold Vthresh by WRR(Vblock-Vthresh), where WRR was a unitless weight parameter.

Vthresh then decayed exponentially to its baseline value with a time constant TauRR.

Synaptic mechanisms

In addition to the intrinsic membrane voltage state variable, each cell had four additional volt-

age state variables Vsyn corresponding to the synaptic inputs. These represent AMPA (AM2),

NMDA (NM2), and somatic and dendritic GABAA (GA and GA2) synapses. At the times of

input events, synaptic weights were updated by step-wise changes in Vsyn, which were then

added to the cell’s overall membrane voltage Vm. To allow for dependence on Vm, synaptic

inputs changed Vsyn by dV = Wsyn(1-Vm/Esyn), where Wsyn is the synaptic weight and Esyn is

the reversal potential relative to Vrest. The following values were used for the reversal potential

Esyn: AMPA, 65 mV; NMDA, 90 mV; and GABAA, –15 mV. After synaptic input events, the

synapse voltages Vsyn decayed exponentially toward 0 with time constants Tausyn. The follow-

ing values were used for Tausyn: AMPA, 10 ms; NMDA, 300 ms; somatic GABAA, 10 ms; and

dendritic GABAA, 20 ms. The delays between inputs to dendritic synapses (AMPA, NMDA,

dendritic GABAA) and their effects on somatic voltage were selected from a uniform distribu-

tion ranging between 3–5 ms, while the delays for somatic synapses (somatic GABAA) were

selected from a uniform distribution ranging from 1.8–2.2 ms. Synaptic weights were fixed

between a given set of populations except for those involved in learning (see RL “on” or “off”

in Tables 2 and 3).

Table 2. Area interconnection probabilities and initial weights for the feedforward model.

Presynaptic type Postsynaptic type Synapse type Connection Convergence Synaptic Weight RL plasticity

EV1 EA AM2 128 6 Off

NM2 0.1 Off

EV1D EA AM2 8 6 Off

NM2 0.1 Off

EA EA2 AM2 30 12.5 Off

NM2 0.15 Off

EM AM2 30 12 On

NM2 0.15 Off

EA2 EM AM2 30 12 On

EM IM AM2 20 10 Off

NM2 0.0195 Off

IML AM2 20 5 Off

NM2 0.098 Off

IM EM GA 22 9 Off

IML EM GA2 8 2.5 Off

https://doi.org/10.1371/journal.pone.0265808.t002

PLOS ONE Learning visual-motor behavior with spiking neuronal network models

PLOS ONE | https://doi.org/10.1371/journal.pone.0265808 May 11, 2022 8 / 43

https://doi.org/10.1371/journal.pone.0265808.t002
https://doi.org/10.1371/journal.pone.0265808


Table 3. Area interconnection probabilities and initial weights for the recurrent model.

Presynaptic type Postsynaptic type Synapse type Connection Convergence Synaptic Weight RL plasticity

EV1 EA AM2 640 12.5 Off

NM2 1 Off

EA2 AM2 30 0.25 Off

EM AM2 30 0.25 Off

EA EA AM2 30 0.05 On

NM2 0.005 Off

EA2 AM2 100 0.5 On

NM2 0.01 Off

EM AM2 100 0.5 On

NM2 0.01 Off

IA AM2 93 1.95 Off

NM2 0.98 Off

IAL AM2 110 0.98 Off

NM2 0.098 Off

EA2 EA AM2 3 0.05 On

NM2 0.005 Off

EA2 AM2 60 0.5 On

NM2 0.01 Off

EM AM2 60 0.5 On

NM2 0.01 Off

IA2 AM2 93 1.95 Off

NM2 0.0195 Off

IA2L AM2 110 0.98 Off

NM2 0.098 Off

EM EM AM2 60 0.5 On

NM2 0.01 Off

EA AM2 3 0.05 On

NM2 0.005 Off

EA2 AM2 3 0.05 On

NM2 0.005 Off

IM AM2 93 1.95 Off

NM2 0.0195 Off

IML AM2 110 0.98 Off

NM2 0.098 Off

IM EM GA 22 9 Off

IM GA 31 4.5 Off

IML GA 2 4.5 Off

IA EA GA 22 9 Off

IA GA 31 4.5 Off

IAL GA 17 4.5 Off

IAL EA GA2 8 2.5 Off

IA GA2 12 2.5 Off

IAL GA2 2 4.5 Off

IA2 EA2 GA 22 9 Off

IA2 GA 31 4.5 Off

IA2L GA 17 4.5 Off

IA2L EA2 GA2 8 2.5 Off

IA2L IA2 GA2 12 2.25 Off

IA2L IA2L GA2 2 4.5 Off

https://doi.org/10.1371/journal.pone.0265808.t003
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Constructing spiking visual-motor cortex models for reward based learning

We built several versions of the spiking network models of the visual-motor cortex which can

be mainly grouped into feedforward and recurrent models. Both models used excitatory (E)

and inhibitory (I and IL) neurons with same excitability properties and synaptic dynamics. As

suggested by the name, the main difference between the two types of models is the connectivity

patterns and the synaptic weights in the network. Based on the distinctive features of the

model, we denoted the first model as “feedforward model” and the other model as “recurrent

model”.

The feedforward model. In the feedforward model (Fig 1A), we included several popula-

tions of neurons in the visual cortex model, one for encoding spatial location and the other 8

populations for encoding motion direction of the objects. Similar to the recurrent model, we

also included two layers of object-associating neurons representing the association cortex and

a single layer with two distinct populations of motor neurons representing the motor cortex.

In the visual cortex model, we included 6400 location encoding E neurons (EV1) and 8 popu-

lations of 400 direction specific neurons (EV1D) each. We increased the association space as

compared to the recurrent model by including 1400 E neurons in each layer (EA and EA2) of

association cortex model. For the motor cortex model (M), we used two populations of 300 E

neurons each (EMUP and EMDOWN) representing the motor areas generating “UP” and

“DOWN” motor commands. We included inhibitory neurons (206 IM and 94 IML) only in

the motor cortex.

Each EV1 neuron received a single input from a spike-generating Poisson process driven

by individual pixels in the input image at 20Hz, with a delay of 1.8 to 2.2 ms (uniform distribu-

tion). Similarly, each EV1D neuron received a single input from a spike-generating Poisson

process driven by the direction of object motion at individual pixels in the input image. Each

EA neuron received excitatory inputs from 128 randomly selected EV1 and 8 randomly

selected EV1D neurons from each of 8 direction selective populations (responsive to move-

ments West, Northwest, North, Northeast, East, Southeast, South, Southwest). Each EA2 neu-

ron received excitatory inputs only from 30 EA neurons. Each EM neuron received excitatory

inputs from 300 EA and 300 EA2 neurons, and inhibitory inputs from 22 IM and 8 IML neu-

rons. Each IM neuron received excitatory input from 20 neurons of each EM subpopulation.

Each IML neuron received excitatory input from 20 neurons of each EM subpopulation. All

neurons received excitation through AMPA (AM2) and NMDA(NM2) synapses. Only motor

neurons received inhibition from IM and IML using GABAA synaptic mechanisms (GA and

GA2). See Table 2 for all the initial synaptic connection weights.

The recurrent model. In the recurrent model (Fig 7A), we included a single layer of neu-

rons encoding spatial location in the visual cortex, two layers of object-associating neurons

representing association cortex and a single layer with two distinct populations of motor neu-

rons representing motor cortex. We included 6400 E neurons in the visual cortex model (V1),

600 E neurons in the first layer of association cortex model (A) and 300 E neurons in the sec-

ond layer of association cortex model (A2). For the motor cortex model (M), we used two pop-

ulations of 300 E neurons each (EMUP and EMDOWN) representing the motor areas

generating “UP” and “DOWN” motor commands. We used two types of inhibitory neurons in

the network, 206 I and 94 IL neurons in A, 103 I and 47 IL neurons in A2, and 206 I and 94 IL

neurons in M. We did not include any inhibitory neurons in V1.

Each E neuron in V1 received a single input from a spike-generating poisson process driven

by individual pixels in the input image at 35 Hz, with a delay of 1.8 to 2.2 ms. Each EA neuron

received excitatory inputs from 640 randomly selected EV1 neurons (feedforward E), 30 ran-

domly selected EA neurons (recurrent E), 3 randomly selected EA2 neurons (feedback E) and
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3 randomly selected EMUP and EMDOWN neurons each (feedback E), and inhibitory inputs

from 22 IA and 8 IAL neurons. Each IA neuron received excitatory inputs from randomly

selected 93 EA neurons and inhibitory inputs from randomly selected 31 IA (recurrent I) and

12 IAL neurons. Each IAL neuron received excitatory inputs from randomly selected 110 EA

neurons and inhibitory inputs from randomly selected 17 IA and 2 IAL neurons. Each EA2

neuron received excitatory inputs from 30 EV1, 100 EA, 60 EA2, 3 EMUP and 3 EMDOWN

neurons, and inhibitory inputs from 22 IA2 and 8 IA2L neurons. Each IA2 neuron received

excitatory inputs from 93 EA2 neurons and inhibitory inputs from 31 IA2 and 12 IA2L neu-

rons. Each IA2L neuron received excitatory inputs from 110 EA2 neurons and inhibition from

17 IA2 and 2 IA2L neurons. Each EM neuron received excitatory inputs from 30 EV1, 100 EA,

60 EA2 and 60 EM neurons, and inhibitory inputs from 22 IM and 8 IML neurons. Addition-

ally, each EM subpopulation receive reciprocal inhibition from the other EM subpopulation

with probability of 0.125. Each IM neuron received excitatory input from 93 neurons of each

EM subpopulation and inhibitory inputs from 31 IM and 12 IML neurons. Each IML neuron

received excitatory input from 110 neurons of each EM subpopulation and inhibitory inputs

from 17 IM and 2 IML neurons. Each excitatory synaptic input was implemented using both

AMPA and NMDA synapses. See Table 3 for all initial synaptic connection weights.

The number of interneurons of a specific type, for example IM and IML, were based on our

previous models of neocortex where a proper balance between the number of fast spiking IM

and low-threshold spiking IML are required to prevent either too much or too little inhibition

in the circuit [14]. Since the IML neurons more readily fire, their number is lower. There is

also evidence in neocortical circuitry of these distinctions in the number of interneurons of

different types. For example, fast-spiking PV interneurons (IM in our model) which target

soma have higher density in the neocortex compared to the SOM dendrite-targeting interneu-

rons, which in our model are simulated using the IML population.

The number of inputs from specific populations were chosen to replicate the somewhat sparse

connection densities, which are seen in the neocortex, and are based on our previous models, as

cited. However, we note that the exact values are not intended to represent values that would be

measured from specific circuit mapping studies, which would be difficult to constrain given that

our number of populations are vastly simplified compared to the dozens of neuronal types seen

in neocortex. Instead, we aimed to use rough values observed from circuit mapping studies.

Generating motor commands

We built a modular model of motor areas specific to the “Racket-ball” game, which required 3

motor commands (Move Up, Move Down, Stay). To encode these commands, we used 2

motor areas, associated with “Move UP” or “Move Down”. The output motor command was

generated from the motor area based on a winner takes all rule, meaning motor commands

were determined by the maximum population-firing rates across motor areas e.g. if the popu-

lation-firing rate of motor area representing motor command “Move Up” was larger than the

population-firing rate of motor area representing motor command “Move Down”, then

“Move Up” command would be generated. If the population-firing rate of motor areas repre-

senting both motor commands is the same, the third motor command “Stay” was generated.

Each action in the feedforward model was produced every 20 ms interval, whereas the recur-

rent model used 50 ms intervals.

Interfacing visual-motor cortical model with the “Racket-ball” game

We interfaced our visual-motor cortex model with the custom built game environment

“Racket-ball”, allowing the model to sense and act on visual information from the game. At
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each game-step (20 ms for the feedforward model and 50 ms for the recurrent model), the

model read screen pixels from an image frame, processed information and generated a motor

command. In return this produced an intermediate reward (0.1 or -0.01), reward (+1) or pun-

ishment (-1) signal (scores), depending on whether the motor command moved the racket in a

favorable direction, or resulted in scoring (hitting the ball) or losing a point (missing the ball).

Visual stimuli (pixel intensities) from the game environment activated a 2D array of time-vary-

ing Poisson inputs (20Hz for the feedforward and 35 Hz for the recurrent model) representing

the retina in a topographical manner, where the Poisson firing rate was controlled in an all or

none manner. These retinal inputs projected topographically to V1. Before driving retinal

inputs with pixel intensities, we converted the red/green/blue values to binary values and then

down-sampled to a fixed width (80 pixels) and height (80 pixels) to allow all games to provide

the same amount of visual information to the model.

The biological visual-motor cortical circuit contains a large variety of neurons, which

encode different visual features like location, time, direction, speed, and velocity. We included

only location and direction encoding neurons. A population of location encoding neurons

received the inputs from the Poisson processes driven by the pixel intensities in a topographic

manner, whereas, 8 populations of direction encoding neurons/ direction selective neurons:

V1DE, V1DNE, V1DN, V1DNW, V1DW, V1DSW, V1DS, V1DSE (V1 denotes visual area

V1, D denotes direction selective neurons, following 1 or 2 letters denote the direction e.g. E

for east, W for west, NE for north-east) received inputs from 8 two-dimensional arrays of

time-varying Poisson inputs also in a topological manner, where the Poisson firing rates were

controlled by the angle of object motion/trajectory. Direction vectors were computed for each

object in the visual scene by tracking the position of the object between the last 2 consecutive

image frames of the game and only Poisson processes at the location of those positions were

driven at particular firing rates.

Architecture design considerations

Our modeling was oriented towards capturing functional aspects of visual and motor areas.

We limited visual areas to the minimum needed to represent important game information

(location and motion direction of objects, as described above). We used a similar design strat-

egy for the motor area, using a single layer that could make the up/down move decisions. For

the association area, we hypothesized that two association layers would allow integration of

both object location and movement direction to enable correct motor decisions.

Initializing weights of synaptic connections

We adjusted initial synaptic weights manually. In this process, the number of synaptic inputs

and their average starting weights on specific circuit pathways were adjusted to prevent both

hyperexcitability and overly sparse firing. In this way, the later learning would allow increasing

or decreasing synaptic weights without totally suppressing neuronal activation, or producing

eplieptic-like activation. This allowed all visual, association (premotor) and motor areas to

show stable firing rates in physiological ranges.

Training the models and evaluating learning performance

All models were trained using training episodes, where each episode was simulated for 500 sec

while the model was controlling the racket learning to hit the ball. At the end of each training

episode, the plastic weights of synaptic connections were saved so that those weights could be

used to train the model for the next episodes. The ball and racket positions, as well as the net-

work states, were reset at the beginning of each training episode. To evaluate the learning
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performance of the model, we ran simulations with the model playing the “Racket-ball” game

using the fixed synaptic weights which we selected based on the cumulative hit to miss ratio

during training. Each simulation was repeated multiple (6–9) times using fixed synaptic

weights and only changing the initial position of the ball and the racket in the court. The per-

formance of the model using fixed weights after training was compared with the model’s per-

formance using the initial random weights to quantify how much the model had learned. All

the simulation parameters were reinitialized at the beginning of each subsequent simulation/

episode except the weights of synaptic connections.

Simulations

The model was developed using parallel NEURON (neuron.yale.edu) [57] and NetPyNE

(www.netpyne.org) [58], a Python package to facilitate the development of biological neuronal

networks in the NEURON simulator. The full source code is available on github (https://

github.com/NathanKlineInstitute/SMARTAgent) and ModelDB (https://senselab.med.yale.

edu/modeldb/). All simulations were run using MPI on the Linux operating system using Intel

Xeon Platinum 8268 2.9 GHz CPUS. Parallelized across 30 cores, 500 sec of simulation time

took between 3–6 hours to run, depending on the particular model, and whether we were run-

ning with the learning turned on or off for performance evaluation.

Results

Constructing a spiking neuronal network model of visual-motor cortex

To test the capabilities of detailed neuronal network circuit models in achieving high perfor-

mance, we first designed a feedforward model of the visual-motor cortex with visual, motor

and association areas each represented as a single layer of spiking neurons (Fig 1A). We con-

nected the neurons across cortical areas only in a feed-forward manner. In the model of visual

cortex, we used two functional types of neurons, EV1 neurons encoding location of the objects

in the visual field and EVD neurons encoding object motion directions. To make associations

between multiple objects in the visual field and their motion trajectories, we included two lay-

ers of association neurons, EA neurons and EA2 neurons, where EA neurons were activated

by both EV1 and EVD neurons and EA2 neurons were activated in turn by EA neurons.

In this model, we assigned high densities of synaptic connections between visual and associ-

ation areas (see details in Materials and methods and Table 2) so that during learning weaken-

ing and strengthening of synaptic weights would shape sparser connectivity patterns. These

counterbalancing effects of increasing and decreasing synaptic weights also contributed to net-

work stability. Motor cortex consisted of two neuronal populations, where each population

contributed to a specific motor action. We adjusted synaptic weights and connection probabil-

ities to make sure that the visual inputs evoked responses in visual cortex neurons and reliably

propagated throughout the neural circuit (see raster plot in Fig 1B), finally generating motor

commands. The motor commands were generated by comparing the firing rates of the motor

cortex EMUP and EMDOWN neuronal populations at each timestep, in a winner-take-all

fashion (e.g. when the EMUP population firing rate was higher than that of EMDOWN, a

move ‘Up’ motor command was produced, and vice-versa; when firing rates of both popula-

tions were the same, the racket was held stationary).

Tuning learning parameters for reinforcement learning

To learn any visuo-motor behavior, the model must first decode and interpret the visual scene,

developing associations between the objects in the scene to understand the visual
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environment. We could have used unsupervised learning mechanisms for learning spatio-tem-

poral visual associations, but because of the long time scales of unsupervised learning in biol-

ogy we decided to keep weights of synaptic connections between visual and association areas

fixed in the hope that a visual scene including only a bouncing ball and moving racket would

not require any plasticity in the early visual areas.

To learn which motor actions must be taken at any instance in a dynamically changing

visual environment, the model should first explore the action space by taking random actions

under the supervision of a critic, which tells the model the value of an action it recently took in

that particular scenario. Such a learning mechanism where the strengthening or weakening of

synapses is associated with a critic’s reward or punishment fits within the framework of rein-

forcement learning (RL). To use RL, we had to deal with two important issues associated with

the distal-credit assignment problem, while learning how to play the bouncing ball game 1.

The reward or punishment is given after many executed actions, which requires tracking all

those actions and all the neurons/synapses contributing to the generation of those actions. 2.

We also need to know how recently the neurons/synapses were activated relative to the

reward/punishment in order to assign them the correct credit. These issues are tackled in

ANNs by recording all of the states, actions, and rewards throughout an episode and then ret-

roactively adjusting the ANN’s action probabilities using discounted episodic returns and

backpropagation [34, 37, 38, 59]. Such a replay and update strategy is quite successful in pro-

ducing a reward-maximizing strategy over a large number of iterations. There is also biological

evidence of such learning mechanisms in the hippocampus [60], and could be useful in naviga-

tion tasks where an agent could pause to allow replaying the novel sequences. Even that would

require adding another SNN modality representing the hippocampus. Furthermore, any

phenomenological implementation of such mechanisms with learning on a trial-by-trial basis

would be extremely difficult in SNNs.

Therefore in our SNN we used a STDP-RL rule to tackle the credit assignment problem [13,

14, 40, 45, 61]. When pre- and postsynaptic neurons both fired within a short time interval, we

tagged the synapse between those neurons with an eligibility trace (Fig 2A). We can choose

time constants for the eligibility trace to stay active depending on how far in time we want to

associate the activity of the neuron pair, with the action produced, and the resulting reward/

punishment. For distal credit assignment problems in small networks, activation of eligibility

traces for long durations may decrease accuracy of the credit assignment due to spatio-tempo-

ral cross talk, resulting in the development of nonspecific visual-motor action maps.

Before we tested the standard STDP-RL we proposed another framework based on the

intermediate rewards paradigm (IRP; Fig 2B) that required prediction of projected ball loca-

tion for possible hits or misses. Once the model was provided information about the projected

ball location, each action delivered a reward when the racket moved towards the target location

or a punishment when the racket moved away from the target location. Because each interme-

diate reward was associated with the past action, we chose a very short time constant (50 ms)

for the eligibility trace while using IRP with the feedforward model. When the correct associa-

tions between visual space and motor space were established, the model knew about the correct

action for each visual scene.

Following the standard, non-targeted STDP-RL, all motor neurons become eligible for

potentiation or depression based on their spike times relative to the spike times of their pre-

synaptic neurons (Fig 2C). Here, we limited action associated rewards and punishments only

to the action associated connections and provided opposite and attenuated reward or punish-

ment to non-action associated areas, similar to asymmetric values used in earlier models [62].

For example, if the reward was associated with a “Move-Up” command, the synapses onto

EMUP became eligible for potentiation and the synapses onto EMDOWN were made eligible
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for depression (targeted RL; Fig 2C). For the plastic synapses not directly making connections

onto motor areas, an additional rule (retrograde targeted RL; Fig 2C) was devised where the

reward and punishment were scaled down as a function of the number of synapses away from

the motor areas. Non-targeted RL and targeted RL were used for training feedforward models,

whereas Non-targeted RL and retrograde targeted RL were used for training recurrent models

that will be discussed in the later part of the manuscript.

Training the feedforward SNN to play the racket-ball game

Using a custom built racket-ball game environment (see Materials and methods for details), we

first trained our feedforward models with non-targeted and targeted RL paradigms using both

intermediate and sparse rewards to hit the ball bouncing around the court using the model-con-

trolled racket. The racket movements were generated by comparing the firing rates of neurons

in motor areas each representing a different motor action (“Move-up” and “Move-down”). The

motor neurons primarily received inputs from the neurons encoding visual features such as the

location and motion direction of the objects in the visual scene, and associations between those

features in the continuously adapting visual environment. When the model-generated action

resulted in a hit or movement towards the ball-projectile, a reward signal was delivered allowing

the model to learn associations between the features of the visual space and appropriate actions

through STDP-RL. Similarly, when the model-generated-action resulted in a miss or movement

away from the ball-projectile, a punishment signal was delivered to weaken the connection

weights mediating the associated visual-motor behavior. We chose a smaller multiplicative fac-

tor for the punishment and larger multiplicative factor for the reward which caused the weights

of the plastic synaptic connections and the firing rates of neuronal populations to increase with

training (Fig 1C) but in general remained stable and we did not observe depolarization-block

anywhere in the circuit during and after training. Only results from the feedforward model uti-

lizing targeted RL paradigm are shown in the following sections because our feedforward model

utilizing non-targeted RL did not learn to play the game.

Evolution of neuronal circuit properties during training

To investigate how the training affected the dynamics of the modeled neuronal circuit, we first

looked at the firing rates of the neuronal populations whose synaptic inputs were allowed to

evolve during the training. For the feedforward model, we only looked at the firing rates of

EMUP and EMDOWN populations. Since the inputs were discretized over time, analyzing firing

rates could be affected by the choice of temporal window size. To avoid that problem, we com-

puted the population mean firing rate sampled over spatially segregated ball trajectories and plot-

ted it against the individual trajectories as experienced by the model during training (Fig 1C).

This increase in firing rates resulted due to increase in the synaptic weights of the connec-

tions onto EMUP and EMDOWN neurons as the average weight change of these populations

is shown in Fig 1D. In the feedforward model, both EMUP and EMDOWN neurons showed

large variance in the average firing rates throughout the training. During the early training

period, the average firing rates varied in the range of ~0.1–12 Hz, with the mean averaged over

the first 10 ball trajectories to be 8Hz. With training, the spread of average firing rates

increased to ~2-30Hz, with the mean averaged over the last 10 ball trajectories to be 20Hz. The

net increase in average weights of EMUP and EMDOWN neurons was about 30%.

Evaluating the performance during training

We trained the feedforward model to play the racket-ball game in episodes, where each train-

ing episode was simulated for 500 sec (Fig 3). Using feedforward models with different
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Fig 3. The performance of the feedforward spiking neuronal network model using spike-timing dependent RL improved over

repeated training episodes. A) The cumulative Hit/Miss ratio at the end of each 500 sec training episode is plotted as a function of

training episodes. B) The total number of Hits and Miss at the end of each training episode is plotted as a function of training

episodes. C, D) The temporal evolution of performance for the training episodes 18 and 19. E, F) Summary of learning

performance for different ball trajectories. E) Four example ball trajectories are shown together with the performance over repeats.

The upper panels show the average of all Input Images corresponding to a unique ball trajectory and the performance is shown in
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parameters, each time we simulated at least 20 training episodes. Every subsequent training

episode resumed learning using the weights of synaptic connections from the end of the previ-

ous training episode. This way, the model remembered what it learned during all previous

training episodes. For each training episode, we evaluated the performance of the model by

taking the ratio of the total number of hits to the total number of misses. The model learned

how to play the game, demonstrated through its performance improving strikingly over

repeated training episodes (Fig 3A): the number of hits increased while the number of misses

decreased (Fig 3B). However, when we looked at the temporal evolution of performance for

training episodes 18 and 19 in Fig 3C and 3D and S1 and S2 Movies, we noticed an evolving

cumulative hit to miss ratio. The model performed extremely well at the beginning of each of

these training episodes (1.78 and 3 for training episodes 18 and 19 respectively), and then the

performance decayed before stabilizing at a high level (0.94 and 0.76 for training episodes 18

and 19 respectively).

This raises the question of why the performance decreased during training for certain epi-

sodes. As the model started playing the game, sometimes the model-controlled racket hit the

ball and other times the model-controlled racket missed the ball. The model-controlled racket

could hit the ball for three reasons: 1) It learned about the ball trajectory and associated racket

behavior, 2) the behavior was intrinsically encoded in the circuit, or 3) completely randomly.

Another important factor to understand the temporal evolution of performance is the vary-

ing ball trajectory during the game. The ball could traverse a different path every time it was

hit or missed by the racket. So in addition to the three factors explained above, an unseen or

unlearned ball trajectory could also explain a decrease in the performance during training.

However, given enough time the model should eventually learn about the new ball trajectories.

This line of reasoning motivated us to further dissect the performance of the game based on

the ball trajectories.

Using data from all 20 training episodes, we first identified all unique ball trajectories (86)

which were repeated at least 5 times. Then for each of those 86 unique ball trajectories, we

extracted the hit to miss ratio for all repeats in order of their occurrence. We noticed diverse

model behaviors for different ball trajectories that could be explained by learning, intrinsic cir-

cuit dynamics, and randomness. We considered each ball trajectory beginning from the time

point when the ball started moving towards the racket until it hit or missed the racket. Some

representative examples of ball trajectories and the associated performances are shown in Fig

3E. The first example ball trajectory (extreme left plot in Fig 3E) occurred 43 times and surpris-

ingly the racket never missed the ball. The second example ball trajectory in Fig 3E occurred

27 times. Similar to the previous example, the racket always hit the ball during the first 15

occurrences, and only after that the racket missed, bringing the hit to miss ratio to ~2. Both of

these examples lack any direct evidence of learning as the model never missed the ball, at least

lower panels. These example ball trajectories show visual input specific model learning. For some ball trajectories (e.g. first

example), the model-controlled-racket always hits the ball, whereas for some other ball trajectories (e.g. fourth example), it never

hits the ball. In the second example, the model-controlled-racket missed the ball only after 15 repetitions. In the third example, the

performance first improved, followed by a big drop. F) The left panel: median and maximum performance for unique ball

trajectories. The middle panel: number of repeats at which the model had peak performance. The right panel: relative number of

repeats at which the model had peak performance. This indicates that for some ball trajectories (# 30–32), the model performed at

peak without any training and the training only reduced the performance of the model. For some ball trajectories (# 0–5), the

model could not learn to hit the ball. This also shows that for some ball trajectories (see the trajectories with relative # of repeats for

max. Hit/Miss values between 0.2 and 0.8), the model first learns to hit the ball and then forgets, whereas for a few ball trajectories

(see the trajectories with relative # of repeats for max. Hit/Miss values 0.8 or above), the model did not forget how to hit the ball

until the end of all training sessions.

https://doi.org/10.1371/journal.pone.0265808.g003
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for quite a few repetitions. Such performance could be attributed to the intrinsic circuit

dynamics emerging from synaptic connectivity patterns and initial synaptic weights.

Unlike the first two presented examples, the model clearly learned about the ball trajectory

with repetitive occurrences in the third example in Fig 3E, where the hit to miss ratio increased

from 0 to 8 over the first 80 repeats, and was sustained around 8 for the following 25 repeats,

and only then decreased to ~2.5 over the next 80 repeats. A few factors that could explain this

decrease in performance are: 1) Overlapped visual-motor association, 2) Forgetting, or 3) Lack

of association between ball trajectory and some racket positions, since in our analysis we only

considered unique ball trajectories and did not control for the racket positions. The first and

second factors are not mutually exclusive and are extensively being investigated by the model-

ing community [63].

Surprisingly, the model could never learn to hit the ball for a few ball trajectories despite

many repetitions (e.g. see right most panel in Fig 3E). Overall, we found that for 26 out of 86

ball trajectories, the model could not learn to hit the ball. Most of these ball trajectories were

targeted towards the corners of the court. However, we could not establish any causal link of

this spatial effect to our model’s circuit features or dynamics. For most of the remaining 60

ball trajectories, moderate learning was observed (Fig 3F). For 22 of the remaining 60 ball tra-

jectories, the model’s performance primarily remained improving during the first 80% of the

repeats (see red dots above 0.8 in the right panel of Fig 3F), whereas for the other 19 ball trajec-

tories, the models’ performance primarily remained declining during the last 80% of the

repeats (see red dots below 0.2 in the right panel of Fig 3F). For the 19 ball trajectories, the

model first learned to hit the ball and then unlearned or kept forgetting (see red dots between

0.2 and 0.8 in the right panel of Fig 3F). Although the model showed peak hit to miss ratios of

15 and ~11.5 for two different ball trajectories, the hit to miss ratio rapidly dropped to 2 during

the later repeats. We found 10 ball trajectories for which the hit to miss ratio remained above 2

after learning. Some other noticeable performances included a ball trajectory for which the

model encountered the trajectory 42 times and hit 42 times, and for two other trajectories, the

model missed only once after 5 repeats and only twice after 10 repeats.

Comparing performance of the model after learning with before learning

In the previous section, we presented the performance of our feedforward model during train-

ing and noticed some drops in the performance for two cases: 1) when we looked at the cumu-

lative performance during training episodes 18 and 19; 2) when we looked at performance for

individual ball trajectories. If there was spatiotemporal interference due to dynamically chang-

ing ball trajectories during training, then the cumulative hit to miss ratio might not indicate

real performance. Another issue with cumulative hit to miss ratio during training is that it is

tracking performance of continuously evolving network states. The ideal test would be to take

a snapshot of weight matrices representing a network state and test the model’s performance

using those fixed weights without additional plasticity. Furthermore, the performance must be

tested against the initial network state to judge how much the model has learned. Next, we

addressed some of these issues.

We first simulated our model using initial weights with STDP-RL turned off. To introduce

diversity in the ball trajectories, we ran six simulations each with a different initial position of

ball and racket and analyzed the cumulative hit to miss ratio for each simulation. We expected

the performance of these simulations to differ from one another because as we mentioned ear-

lier the performance depends on the ball trajectories. The hit to miss ratio of 6 simulations

with initial weights before training varied between 0.3 and 0.42 with an average of 0.35

(Fig 4A). When the simulations were repeated with weights of synaptic connections at the end
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Fig 4. The feedforward spiking neuronal network model sustained its performance after learning. A) The bar plot shows the

mean (n = 6) performance (Hit/Miss) of the model before training (using initial weights), after training episode 18 and after

training episode 19. For each condition, 6 different initial positions of the racket and the ball were used to evaluate and compare

the performance of the model after learning. Each simulation was run for the duration of 500 sec. B) The temporal evolution of the

cumulative performance (Hit/Miss) for the model before learning (using initial weights for synaptic connections). The traces in

different colors show performance for different initial positions of the ball and the racket. C) Same as in B using fixed weights for
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of the training episode 18, the cumulative hit to miss ratio was substantially larger, varying

between 0.72 and 0.89 with an average of 0.8 (Fig 4A). Similarly, the weights from training epi-

sode 19 yielded improved performance between 0.63 and 0.8 with an average of 0.7 (Fig 4A).

Note that the performances at the end of training episodes 18 and 19 were 0.94 and 0.76 (Fig

3C and 3D and S1 and S2 Movies), which were slightly higher than the respective average per-

formances after training. However, such small differences could be easily explained by differ-

ences in the ball trajectories experienced by the model as depicted in the temporal evolution of

cumulative performance for simulations before training (Fig 4B and S3 Movie) and after train-

ing episodes 18 (Fig 4C and S4 Movie) and 19 (Fig 4D and S5 Movie). Overall, the comparison

(Fig 4A) clearly showed that the model robustly learned the behavior.

To further investigate the sustained learning of the model, we next compared hit to miss

ratios based on the ball trajectories and found that the model showed better performance for

most of the ball trajectories after training (Fig 4G). Two such examples are shown in Fig 4E

and 4F, where the model’s performance was well below 1 before training and increased to

much higher value (at least greater than 1) after training. There were still a few ball trajectories

for which the model could never hit the ball before and after training (Fig 4G).

Spatial effects of visual environment on learning behavior

As mentioned above, ball trajectories for which the model was unable to ever hit the ball ended

up near the edges of the court. We wanted to understand if there were any common spatial fea-

tures of the ball trajectories, which had an effect on the learning capabilities of the model.

Therefore, we classified the coordinates of the ball at the time of reward or punishment into

two groups, 1) when the racket successfully hit the ball and 2) when the racket failed to hit (or

missed) the ball, and plotted the counts of hit and miss for different y-positions of the ball (at

the time of reward; left panels of Fig 5A, 5C and 5E). The skewed distribution of blue and red

bars in Fig 5A, 5C and 5E shows that the ball moved more frequently towards the bottom edge

of the court. Accordingly, the propensity of hits was higher towards the bottom edge of the

court before training (Fig 5A), which became more uniform with higher tendency to hit

towards the center of the court during training (Fig 5C). The non-uniformity of hits and

misses appeared again in the histogram after training (Fig 5E), which suggests that the non-

uniformity might be related to the limited sampling of ball trajectories. However, higher red

bars compared to blue bars during and after training (Fig 5C and 5E) suggest that the model

did not effectively learn the behavior associated with the ball trajectories towards the edges of

the court. Longer training that includes sampling of these missing ball trajectories could poten-

tially alleviate these issues.

Although the main training goal was to teach the model to hit the ball, we used intermediate

supervisory rewards at all time steps during each ball trajectory moving towards the racket.

We used additional cues in our model like projected location of the ball when it would poten-

tially cross the racket and used those cues to teach the model which action was favorable or

unfavorable based on whether that action helped the racket reach towards the projected target

location or not. To analyze how well the model learned about those cues so that when the ball

arrived at each location multiple times, the model produced favorable actions, we plotted the

synaptic connections after training episode 18. D) Same as in C using fixed weights for synaptic connections after training episode

19. E, F) Two example ball trajectories where the model showed robust and sustained learning after training episodes 18 (middle)

and 19 (right) as compared to before learning (left) G) The peak (best cumulative Hit/Miss during repeats) and the median

(median of cumulative Hit/Miss during repeats) performance for all different ball trajectories is summarized for the model before

training (left) and after training episodes 18 (middle) and 19 (right).

https://doi.org/10.1371/journal.pone.0265808.g004
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Fig 5. The feedforward spiking neuronal network model learned to perform better for the ball trajectories towards the center compared to the ball

trajectories towards the corners of the court. The bar plots in A,C and E show the number of ‘Hits’ and the number of ‘Misses’ against the ball’s vertical

position (ypos) when crossing the racket for the model before, during and after training respectively. The heatmaps in B, D and F show the probability of

a correct move for each ball location in the court for the model before, during and after training respectively. The color at each pixel in the heatmaps

shows the probability of correct action when the ball was at that location based on the projected Hit coordinates (when the action is the same as the

proposed action). The white pixels represent the locations never parsed by the ball. Similarly the white space on the right side of each heatmap indicates

the region, where no proposed action was available for the model racket (p(correct move) = NaN) as the ball had already passed the racket on the right

side of the court.

https://doi.org/10.1371/journal.pone.0265808.g005
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probability of an action generating the correct/favorable move at all traversed pixels of the

court as shown in Fig 5B, 5D and 5F. Comparing these probability plots before, during and

after training clearly shows that the model was able to identify correct actions at more ball

locations after training as compared to before training. Sparser yellow pixels (indicating high

probability) in the heatmap during training (Fig 5D) might be because of taking into account

all data during training, in which case higher probabilities at later training episodes might get

masked due to the earlier low probabilities of correct actions.

Action generation and motor neurons activity

To investigate how persistently and selectively motor neurons get activated during action

generation based on the ball trajectories and whether their participation changes after train-

ing, we marked all the neurons which were among the top 70% active neurons during each

encounter of the ball trajectory. For repetitions of the ball trajectories, we computed the

probability of each neuron being among top 70% active neurons and plotted it as a heat map.

The heatmap in Fig 6A upper panel shows the probability of each EMUP neuron being

among the top 70% most active neurons during repeated ball trajectories before training and

the heatmap in Fig 6A lower panel shows the same after training (episode 18). Note that the

neuron indices in Fig 6A are the same but the indices of the unique ball trajectories may dif-

fer. Surprisingly some neurons were persistently among the top 70% EMUP population

regardless of the ball trajectory (see continuous yellow vertical stripes) and retained such

characteristics even after learning (Fig 6A lower panel). Some weakly persistent neurons

became more persistent after training (see diffusing yellow vertical stripes in Fig 6A upper

panel becoming solid yellow vertical stripes in Fig 6A lower panel), whereas the other

weakly persistent neurons consistently knocked out of the top 70% category (see some dif-

fusing yellow vertical stripes in Fig 6A upper panel becoming solid blue vertical stripes in

Fig 6A lower panel). To sum up, the persistently active neurons became more active after

training, whereas less persistent neurons, which might be representing the association

between visual inputs and respective ‘rewarding’ actions showed two distinct types of behav-

iors. Some of those weakly persistent neurons became more responsive whereas others

became less responsive to the inputs.

In the above analysis, a threshold of 70% was chosen arbitrarily, therefore to test whether

these observations are independent of the threshold value, we extended our analysis to 40%,

50% and 60% of the most active neurons and plotted the average (across ball trajectories)

probability of each neuron being among the top 40, 50 and 60% most active EMUP neurons

as shown in Fig 6B. High values of average probability could mean either the neuron was per-

sistently among the top X% of the population (where X is 40, 50, 60 and 70) across all ball tra-

jectories, or the neuron was persistently active for the repeated ball trajectories. Similarly, low

values of average probability could mean either the neuron was infrequently among the top X

% of the population (where X is 40, 50, 60 and 70) across all ball trajectories, or the neuron

was sparsely active for the repeated ball trajectories. Note that the neuron identifiers were

sorted using the top 70% data. Changing the threshold for data analysis for the simulations

before training primarily resulted in linear shifts (Fig 6B left panel), suggesting that the rela-

tive contribution of each neuron in action generation was uniform e.g. the neuron with largest

average probability of being among 70% most active neurons remained the neuron with larg-

est average probability of being among 40% most active neurons. After training, the shifts in

the average probabilities of EMUP neurons being among different ranges of activation were

nonlinear (Fig 6B right panel) indicating non-uniform participation of different neurons.

Furthermore, we found that the neuronal population developed a larger dynamic range after
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Fig 6. After training, the dynamics of motor neurons taking part in action generation change. A) The heat maps show how often each EMUP neuron was among

70% most active neurons during repeated occurance of the same ball trajectory before training (upper heatmap) and after training episode 18 (lower heatmap). Note

that the neuron ids are the same in both heatmaps but input seq ids may vary. B) The plot shows how often each EMUP neuron was among 70%, 60%, 50% and 40%

most active neurons during repeated occurance of the same ball trajectory before training (left: BT) and after training episode 18 (right: AT18). Note that the neuron

ids are sorted using top 70% neuron indices. C) Comparing the average probability of each motor (EMUP) neuron being among 70% most active neurons before and

after training episodes 18 and 19. D) The plot compares the percentage of times a motor (EMUP) neuron actively contributed to action generation. After training, the

contribution of each motor (EMUP) neuron in action generation increased proportionally (with some variability) to the contribution before training. E) The plot

compares how many times at least 1 EMUP neuron was involved in action generation before and after training. Before training, at least 1 EMUP neuron was active for

28% of actions generated. After training, at least 1 EMUP neuron was active for 42% of actions generated. F) The plot compares how many times at least 1 motor

neuron (either EMUP or EMDOWN) was involved in action generation before and after training. Before training, at least 1 motor neuron was active for 53% of

actions generated. After training, at least 1 motor neuron was active for 83% of actions generated.

https://doi.org/10.1371/journal.pone.0265808.g006
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learning (0.32–1; Fig 6C) as compared to before learning (0.02–1; Fig 6C), indicating better

discriminating power of the motor population after training.

Next, we analyzed for what percentage of actions regardless of the ball trajectory, each

motor neuron was active. The whole population participated sparsely in action generation

before training as the least participating neuron was active only during 4% of actions, whereas

the most participating neuron was active only during 6.2% of actions (Fig 6D). This increased

nonlinearly to 10% participation by the least active neuron and to 20% participation by the

most active neuron. The increment in participation of individual neurons in action generation

after training was mainly independent of their contribution before training. Even with

increased participation of the most active neuron to 20%, many neurons would have to collec-

tively participate at each time point in action generation.

To investigate how many neurons were active during action generation, we analyzed the

cumulative probability distributions of active EMUP neurons during action generation

(Fig 6E). The cumulative probability distribution of active EMUP neurons before training

shows that during 72% of actions, no EMUP neuron was active. For the remaining 28% of

actions, one or more EMUP neurons were active, with a steep increase in population size of

active EMUP neurons during action generation (see blue curve in Fig 6E). After training, the

percentage of action generation without a single EMUP neuron being active reduced to 58%.

For the remaining 42% actions (after training episodes 18 and 19), one or more EMUP neu-

rons were active, with a slower increase in population size of active EMUP neurons during

action generation. Does this mean that 72% actions before training and 58% actions after

training were generated without motor neuron activity? This is unlikely because these num-

bers only show EMUP neuronal population’s participation in action generation. When EMUP

neurons were silent, EMDown neurons might be actively participating in action generation.

To check that, we looked at the cumulative probability distribution of active neurons in both

populations of motor areas during action generation (Fig 6F). The comparison in Fig 6F

shows that before training 47% of actions (i.e. No-Move) were generated without any motor

neurons being active, whereas after training only 17% of actions (i.e. No-Move) were gener-

ated without any motor neurons being active. In this section, we only presented the analysis

for the EMUP population, because all the observations described for the EMUP population

were consistently present in the EMDown population too.

Extending the model by incorporating feedback and recurrent connections

The goal of our study was to construct a biologically detailed model of the visual-motor cortex

and to train it to learn complex sensory-motor behaviors. As a first step, we successfully con-

structed a simple version of the model which included only feed forward synaptic connections

while ignoring feedback and recurrent connections, which are characteristic of cortical cir-

cuitry and are thought to be involved in enhancing learning capacity and computational capa-

bilities of the cortex [20, 21, 64]. We then trained the simple model to perform while playing a

racket-ball game. As a next step in this study, we extended our model by including feedback

and recurrent connections as shown in Fig 7A (see Materials and methods for details). Expect-

ing that the feedback and recurrent connections would intrinsically inform the circuit about

the events back in time and would thus be sufficient to encode motion direction, we therefore

excluded direction selective (EVD) neurons from the recurrent model. At the same time,

including recurrent connections in the model with plasticity increased the risk of hyperexcit-

ability and depolarization blockade [65, 66]. Therefore, to counteract hyperexcitability and

depolarization-blockade, we added inhibitory neurons to the circuit (see details in Materials

and methods) in each modeled area. We also added noise inputs to association (EA, IA, IAL,

PLOS ONE Learning visual-motor behavior with spiking neuronal network models

PLOS ONE | https://doi.org/10.1371/journal.pone.0265808 May 11, 2022 24 / 43

https://doi.org/10.1371/journal.pone.0265808


Fig 7. The synaptic weights of the recurrent spiking neuronal network model were adjusted to ensure reliable

transmission of the input information across all network areas. A) The schematic shows the racket-ball game

interfaced with the recurrent model of visual and motor areas. B) Raster plot showing the spiking activity of different

populations of neurons during a training episode. C) Firing rates of motor neuron populations ‘EMUP’ and

‘EMDOWN’ in the recurrent model. D) same as in C for ‘EA’ and ‘EA2’. The firing rates in C and D were binned for

ball trajectories (each ball trajectory from the extreme left to the right side of the court where the ball hits or misses the

racket). E) Average weight change of synaptic input onto ‘EMUP’ and ‘EMDOWN’ sampled over 40 training episodes.

F) same as in E for ‘EA’ and ‘EA2’ sampled over 40 training episodes.

https://doi.org/10.1371/journal.pone.0265808.g007
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EA2, IA2 and IA2L) and motor neurons (EMUP, EMDOWN, IM and IML) both to maintain

minimum firing rates, and also to increase exploration of motor actions and sensory-motor

associations.

Before training the recurrent model to play racket-ball, we tuned the synaptic weights to

allow faithful transmission of spiking activity across the network. Although the addition of

recurrent and feedback connectivity increases learning flexibility, it was more difficult to find

the parameters that allow learning, while ensuring balanced activity during and after training.

Because of the difficulty to find the appropriateness of the chosen parameters apriori, we

trained several versions of the recurrent model with different parameters and evaluated their

performance. Although the performance of those models varied, we found that the network

dynamics remained relatively stable (see Fig 7B–7D and S1A, S1B Fig in S1 File). The firing

rates and the weight changes for one example model with good performance are shown in Fig

7B–7D. An average increase of 12% in the weights of synaptic connections onto EM neurons

after 40 training episodes (Fig 7E) caused a 30–50% increase in population firing rates. Despite

a relatively large increase in firing rates of the EM neurons, the absolute change was minimal

i.e. ~0.03–0.05 Hz (Fig 7C). We observed similar characteristics of average synaptic weight

(Fig 7F) and population firing rate changes of EA2 neurons (Fig 7D). Surprisingly, the popula-

tion firing rate of EA neurons remained constant during training (Fig 7D), despite a 650%

increase in the average synaptic weights onto EA neurons (Fig 7F).

Training the recurrent model to learn visuo-motor behavior using sparse

rewards

In this study, we showed that using intermediate rewards with a reinforcement learning frame-

work, our SNN models could be trained to perform dynamically adapting visuo-motor behav-

iors effectively. However, traditionally, sparse rewards are used with a reinforcement learning

framework [2, 5]. We next tested the performance of our more biologically detailed recurrent

SNN model using reinforcement learning with sparse rewards. To allow association of neuro-

nal activity driving the motor actions with the distal reward, we increased the time constant of

eligibility traces to 10 sec. Just like the recurrent model with intermediate rewards (S2A Fig in

S1 File), the performance increased but kept oscillating between higher and lower values indi-

cating better and worse performance across training sessions (Fig 8A and 8B). We let the

model run for 40 training episodes and found that the model performed reasonably (Hit/

Miss = 0.88) well during the training episode 31 (Fig 8A and 8B). During training episode 31,

the model-controlled racket hit the ball 22 times and missed the ball 25 times, which was better

than all other training episodes (Fig 8B). Overall, the temporal evolution of performance dur-

ing the training showed similar behavior to the other models i.e. the performance was better

during the early training period, dropping to a more sustained value during the late training

period (Fig 8C and S6 Movie). As we learned from earlier results that it was difficult to judge

learning capabilities of the model during training, we ran control simulations using initial

weights and weights at the end of training episode 31. As expected, we observed larger variance

in the performance of the model for both cases (Fig 8D and S7 and S8 Movies) i.e. before learn-

ing (performance range of 9 simulations: 0.24–0.36; S8 Movie) and after learning (perfor-

mance range of 9 simulations: 0.32–0.69; S7 Movie). However, the average performance after

learning (0.52) was significantly (p<0.001 using t-test) better than the performance of the

model before learning (0.26) as shown in Fig 8D.

Next, we compared the performance of the recurrent model before training and after train-

ing for individual ball trajectories. Similar to the feedforward model, the recurrent model

learned to play the game for many ball trajectories. Two such examples are shown in Fig 8E,
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Fig 8. The recurrent model with sparse rewards shows sustained performance after learning. A) cumulative performance at the end of 40 training episodes. B)

Cumulative Hits and Misses at the end of 40 training episodes. C) Temporal evolution of performance during training episode 31. D) Comparing performance of the

model using weights from the end of training episode 31 (right) with the performance of the model before training (using initial weights; left). For both cases, the

simulation was repeated 9 times each with different initial positions of the ball and the racket and the performance of each simulation is shown using black dots. The

bar plot shows the average of those 9 simulations. E, F) Learning by the model is shown using two example ball trajectories. The left panels show the model’s

performance for the repeated encounter of the ball trajectory when simulated using the initial synaptic weights (before learning). The right panels show the same as in

the left panels but using the synaptic weights at the end of training episode 31 (peak performance AT in F is 3).

https://doi.org/10.1371/journal.pone.0265808.g008
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where the model clearly learned after training. Altogether, these results clearly show that the

biologically detailed models with spiking neurons together with reinforcement learning with

sparse rewards can be trained to perform complex sensory-motor behaviors.

Motor neurons sparsely participate in action generation

We had observed a dynamic shift in participation of different neurons in action generation

after training the feedforward model (Fig 6). We next examined whether those characteristics

of neuronal populations persist when we used a more biologically-realistic recurrent model

(Fig 9). The comparison of heatmaps in Fig 9A shows that most of the sparsely active neurons

before training did not change their behavior. Instead, they remained sparsely active, likely

showing selective responses to the ball trajectories (compare heatmaps for the neuron identifi-

ers greater than 100). Similarly, learning did not have any effect on many of the persistently

active neurons (compare yellow colored areas in heatmaps), which were active non-selectively

for all ball trajectories. Only a small fraction of the EMUP neurons changed their characteris-

tics after the training as some robustly active neurons before training became more selective to

the ball trajectories (compare EMUP-neurons between 20 and 50 in Fig 9A). When we

changed the threshold for activity participation from 70% to 60%, 50% and 40%, it revealed

that the neurons non-uniformly participated in action generation. The least active ~120 neu-

rons were persistently active during action generation as lowering the threshold did not

change the average probability of those neurons being among sparsely active neurons. The

other ~180 neurons were relatively more active but as the threshold decreased their participa-

tion probability decreased showing those neurons being selective to the ball trajectories. Sur-

prisingly, these characteristics did not change much after learning (compare panels in Fig 9B

and 9C) and no increase in discriminability was observed for motor neuronal populations

(compare Figs 9C with 6C).

Analyzing how actively each motor neuron participated in action generation we found that

all neurons were sparsely active during action generation i.e. during less than 1% of generated

actions. The least active neuron participated only during 0.28% of actions, whereas the most

participating neuron was active only during 0.62% of actions (Fig 9D). This increased nonli-

nearly to 0.35% participation by least active neuron and to 0.74% participation by the most

active neuron. The increment in participation of individual neurons in action generation after

training was mainly independent of their contribution before training. Overall the relative

increase in each neuron’s participation in action generation was much smaller than in the

feedforward model. The cumulative probability distribution of active EMUP neurons before

training shows that during 45% of actions, no EMUP neuron was active (Fig 9E). For the

remaining 55% of actions, one or more EMUP neurons were active, with a much less distinc-

tive increase in population size of active EMUP neurons after training (compare blue and

orange curves in Fig 9E). The percentage of action generation without a single EMUP neuron

being active remained the same after training. Although the neurons were sparsely active,

either motor neurons, EMUP or EMDOWN were active during 92% of action generations,

which slightly changed after training (Fig 9F).

Discussion

In this work, we developed and trained several spiking neuronal network models of the visual-

motor cortex to play a racket-ball game using biologically inspired STDP-RL. To train our

models, we first proposed two types of reward systems based on intermediate and sparse
rewards/punishments and then evaluated the learning performance of our feedforward (Figs 1,

3, 4 and 5) and recurrent models (Figs 7 and 8 and S1-S3 Figs in S1 File) using both reward
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Fig 9. After training the recurrent model with sparse rewards, the dynamics of motor neurons taking part in action generation change. A) The heat maps

show how often each EMUP neuron was among 70% most active neurons during repeated occurance of the same ball trajectory before training (upper heatmap)

and after training episode 31 (lower heatmap). Note that the neuron ids are the same in both heatmaps but input seq ids may vary. B) The plot shows how often

each EMUP neuron was among 70%, 60%, 50% and 40% most active neurons during repeated occurance of the same ball trajectory before training (left) and after

training episode 31 (right). Note that the neuron ids are sorted using top 70% neuron indices. C) Comparing the average probability of each motor (EMUP)

neuron being among 70% most active neurons before and after training episode31. D) The plot compares the percentage of times a motor (EMUP) neuron actively

contributed to action generation. After training, the contribution of each motor (EMUP) neuron in action generation increased proportionally (with some

variability) to the contribution before training. E) The plot compares how many times at least 1 EMUP neuron was involved in action generation before and after

training. Before and after training, at least 1 EMUP neuron was active for 55% of actions generated. F) The plot compares how many times at least 1 motor neuron

(either EMUP or EMDOWN) was involved in action generation before and after training. Before training, at least 1 motor neuron was active for 92% of actions

generated. After training, at least 1 motor neuron was active for 93% of actions generated.

https://doi.org/10.1371/journal.pone.0265808.g009
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systems in targeted and non-targeted fashion (Fig 2). The goal was to explore the potential of

different circuit architectures, connectivity patterns and RL rules in learning visual-motor

behaviors. Both feedforward (Fig 1) and recurrent (Fig 7) architectures facilitated robust learn-

ing of the visual-motor behavior except when the feedforward model was trained using non-
targeted RL and intermediate rewards (results not shown). The recurrent model showed better

performance using sparse rewards and non-targeted RL (Fig 8) compared to intermediate
rewards and targeted RL (S2 Fig in S1 File). When we compared the models’ performance

after training with before training, we mostly observed a sustained performance. A larger vari-

ability in the performance of the recurrent model (Fig 8D and S3E Fig in S1 File) could be

attributed to the unattenuated extrinsic noise in the model which was included to allow explor-

ing broader visual-motor associations. When the learning performance was further dissected,

we found that the model learned extremely well for most of the ball trajectories (Figs 3E, 3F,

4E–4G, 8E and 8F and S2D, S2E and S3C Figs in S1 File). Comparing the spiking activity of

motor neurons, we found sparser but more sustained activity in the recurrent model as com-

pared to the feedforward model (Figs 6D–6F and 9D–9F). Additionally, we found that all our

models recruited more motor neurons in decision making after training (Figs 6D–6F and 9D–

9F).

Instead of developing a visual-motor cortex model with detailed anatomical and physiologi-

cal characteristics, we started with minimal essential details to capture biological realism. We

modeled visual (EV1 and EV1D), sensory integration (EA, EA2, IA, IAL, IA2, IA2L), and

motor areas (EMUP, EMDOWN, IML, IML2) as a single layer of excitatory and inhibitory

neurons. Instead of including dedicated functional neural circuits for object recognition [67–

69] and motion direction processing [70, 71], we used standard image processing routines to

identify objects and to compute their motion directions. Bypassing the neural processing of

thalamocortical circuits of visual processing, we directly simulated the neurons assigned to

specific visual features. We set up our models in such a flexible manner that makes it possible

to plug-in neural circuits of detailed visual processing later without affecting the functionality

of the developed model. The population size of the visual area (80x80 neurons) encoding loca-

tion was chosen specifically for the visual environment of the game (160x160 pixels). We

downsampled the visual field by a factor of 2 to reduce the network size and speed up the simu-

lations. We chose a factor of 2 for scaling down the image because further downsampling

introduced additional variability in the evoked responses of the input sensory neurons as it

introduced unrealistic changes in the ball and the racket size due to aliasing. For the direction

selective neurons (EV1D) we chose smaller populations (400 neurons each), assuming that the

varying input from the EV1D neurons onto the EA neurons could be filtered out by more

robust input from the location encoding neurons (EV1). For the middle layers EA and EA2,

several simulations were run using different population sizes starting from 400 upwards and

the final population sizes were chosen based on an increased game performance of the model.

Since the transmission of the neural responses across any layer depends on reliability of inputs,

the population size of the layer and synaptic weights of the inputs each of the neurons receive,

the increased population size of middle layers of the neural circuit should at least exhibit simi-

lar performance if the weights are re-tuned properly.

There are many differences between ANNs and SNNs that contribute to differences in

dynamics and learning performance. These differences range from differences in how individ-

ual neurons are modeled, to circuit architecture and organization. In addition, even the basic

learning algorithms differ markedly. At the neuronal level, ANNs typically model neurons as

simple linear/nonlinear activation functions, with synaptic connections modeled as integrated

scalar weights. In contrast, more biologically-realistic neural circuit models often use biophysi-

cally and morphologically detailed neurons, diverse synaptic mechanisms, and detailed
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microcircuit connectivity patterns. The level of biological realism is often restricted by how

much we know about the biophysics of individual neurons, their diversity, their connectivity

patterns, and the dynamics of synaptic currents passing through their connections. Even when

accurate biological information is available, modeling choices often depend on the computa-

tional costs vs benefits of including certain biological features. For example, despite highly

nonlinear integration of synaptic inputs in real neuronal dendrites, relatively basic single-com-

partment neuron models have been shown to capture a reasonable level of neuronal respon-

siveness [72], which also reduces computational costs significantly. Along similar lines, we

used simple integrate-and-fire neuron models with adjusted time constants to reasonably rep-

licate dynamics of real cortical neurons. For instance, to model synaptic integration properties

of real cortical neurons with large apical dendrites, we used longer synaptic delays and time

constants for pre-and post-synaptic locations compared to the synapses at the soma as done

previously [53]. Although individual spiking neurons may require more computational time

than simplified ANN neurons, sparse activation of spiking neurons at the population level

(Figs 1B, 6, 7B and 9), as shown in biological neural circuits, also reduces computational costs

significantly.

The scale and circuit complexity of neocortex can also be used to highlight key differences

between ANNs and SNNs. Due to the extremely large number of neurons in the cortex (15 to

32 billion in humans [73]), determining the precise number and type of connections between

each pair of neurons is almost impossible. Therefore, connection probabilities are estimated

between different sampled neuronal populations to devise connectivity rules. Cortical neurons

are organized in a columnar structure with layerwise specific neuronal distributions and com-

plex connectivity rules [11, 20, 21, 74, 75]. Capturing those details in silico for accurate circuit

reconstruction poses a challenge in itself, let alone using those for tuning to behavior. Based on

our simplistic choices for the neuron models and single layer architecture for each modeled

area, including biologically constrained connectivity patterns was not a realistic option. There-

fore, we tuned connectivity probabilities and initial average weights (Tables 2 and 3) by trial

and error to choose models that produced excellent performance. However, it is likely that

other models with different connectivity patterns would show similar performance after train-

ing. Many existing network models either only include feedforward connections or when

including recurrent connections, all neurons are fully connected with one another [76, 77].

Both of these configurations contrast with biological circuits where local populations of neu-

rons are often sparsely interconnected [11]. Additionally, none of our models include feedback

connections, which are also found widely in biological circuits. Based on common practices

and biological realism, we tested both feedforward (Fig 1) and recurrent (Fig 7) SNN models

in this work and both models exhibited good performance after training (Figs 4A and 8D).

Training for multiple tasks, where meta learning capabilities are required may show addi-

tional advantages of using recurrent and additional feedback connectivity motifs, compared to

solely relying on feedforward connections. However, in the models used in this work we did

not rely on feedback connections, so have not yet ascertained their benefits. In future work, we

aim to disentangle the role of each circuit motif in learning behavior, by perturbing circuit

architecture and measuring performance.

Another important theme in neuronal network modeling is the balance between excitation

and inhibition, which stems from the types of neurons and synapses used in ANNs and SNNs.

In contrast to SNNs, ANNs usually lack exclusively defined excitatory or inhibitory neurons

since excitation/inhibition can be modeled by simply using positive/negative weights. In addi-

tion, ANNs usually do not need inhibition to achieve stable performance, and including inhi-

bition could even impair their learning abilities. Recently, inspired by feedforward inhibitory

interneurons in the brain, inhibition was included in an ANN model without sacrificing its
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learning performance [78]. In SNNs where the weights may change due to learning, too much

excitation to a neuron can either lead to depolarization blockade or hyperexcitability, both of

which can prevent a neural circuit from functioning properly. In biological neural circuits, at

least two kinds of mechanisms prevent neurons and neural circuits from arriving at such

states: inhibition and homeostatic plasticity [65]. In our work, including inhibitory neurons in

modeled cortical areas with plastic synaptic connection was sufficient to keep the network out-

put and performance stable. Including homeostatic plasticity rules in our model might allow

continued learning in a biologically plausible manner.

The learning algorithms used in ANNs and SNNs also differ in important ways. Learning

In feedforward ANNs takes place through a backpropagation algorithm, in which synaptic

weights are adjusted proportional to the error gradient which is fed backwards from output to

input layers [59]. In addition to biological implausibility, such methods are also computation-

ally expensive as they require repeated ‘playback and update’ sessions. In contrast, strong evi-

dence for plasticity mechanisms such as spike-timing dependent plasticity exist in biological

neural networks [79], where the learning takes place locally and on a trial-by-trial basis. There-

fore it was a natural choice for us to use STDP based learning mechanisms in our spiking neu-

ral networks.

Besides biological plausibility, one obvious advantage of using hebbian plasticity rules such

as STDP-RL is that network models learn in real time and do not require training using infor-

mation from the entire game/task, as often used in nonbiological ANNs. Hebbian plasticity

rules are deemed so effective in learning that even when adapted for use with ANNs, they

show rapid and robust learning behavior [80]. A potential limiting factor in backpropagation

and other optimization based learning strategies is their lack of support for continued learning

as the weights are required to be kept fixed after training to maintain robust performance. In

biological neural networks, synaptic strengths continuously evolve [81–86] due to homeostatic

maintenance and random turnover [87–89], however it remains unclear how memories of

learned experiences are maintained given continuously changing synaptic connections. Com-

pensatory plasticity mechanisms have been proposed to account for maintaining the memories

in the face of such constant synaptic change [90, 91]. Compensatory plasticity can be induced

by external reinforcement signals [92], interactions between different brain areas and circuits

[93], or spontaneous, network-level reactivation events [94]. Inspired by these mechanisms,

Najarro and Risi further showed added advantage to the hebbian and other biological plasticity

mechanisms. Including additional plasticity mechanisms and randomizing synaptic connec-

tions and weights might lead to even better performance as such capabilities of multi-timescale

learning in SNNs for learning visual-motor behaviors have been shown in another study [95].

Animals learn sensorimotor behaviors primarily through three distinct mechanisms: rein-

forcement learning via striatum, error-based learning via cerebellum, and use-dependent

learning in the cortex [31, 96, 97]. Ideally all those structures capturing biological details and

function should be included in the model of sensory-motor learning. Although a lot is known

about individual circuits, how those circuits operate in parallel juggling the tasks remains

unclear. Therefore, integrating those circuits in our model would be almost impossible and

probably overly done for the task in hand. Reinforcement learning only tells whether the

action performed was “good” or “bad”, primarily relies on a reward, and it does not tell how to

improve the accuracy of the action to reach the goal, which is instead learned in the cerebellum

utilizing sensory feedback. Furthermore, to learn the behavior only via reinforcement learning

would require exploration of many actions to choose the best action leading to the reward and

it may take an extremely long time to experience the best action, if ever. Supervised learning

via cerebellum helps fine tune motor actions to rapidly produce optimal action. Since we

wanted to test effectiveness of learning mechanisms operating at different time scales in a
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comparable manner, instead of building circuit models tackling different time scales, we

designed our learning rules mimicking those timescales e.g. we used intermediate reward
based on visual feedback with 50 ms eligibility trace capturing the working of error-based

learning in a “black-box” and sparse-reward with 10 s eligibility trace allowing integration of

many actions to the behavioral outcome (hit or miss the ball). Some might argue that our

intermediate reward paradigm is cerebellum-dependent and biologically non-overlapped with

RL based circuits, however, even in that case there are clearly interactions between cerebellum

and basal ganglia in the brain [98, 99], and our intermediate reward paradigm could be viewed

as a phenomenological implementation of this type of interaction. RL based on intermediate

reward has been used previously in an arm model, which was trained to reach a fixed target

[14]. Here, we extended the RL paradigm to utilize both the intermediate and distal/sparse
rewards/punishments (Fig 2B). Although we used both the intermediate and the sparse rewards

in the feedforward model, choosing a single small time constant for eligibility traces prevented

developing associations between distally active neuron pairs (in time) to the actual reward.

Using both intermediate and sparsely occurring actual rewards with RL would require separate

mechanisms with different eligibility time constants (shorter time constant for intermediate
rewards and longer time constants for sparsely occurring actual rewards) in parallel. Alterna-

tively, the brain could use multiple types of rewards for the reinforcement learning [100–104]

(e.g. could use different types of dopamine receptors), but we are not aware of any direct

experimental evidence of how associations between different rewards and respective motor

actions take place at multiple time scales. Combining different timescales of reward/behavior

in parallel, or independently [95] has also been shown to enhance performance. The time-

scales underlying other learning mechanisms (such as homeostatic plasticity, sleep consolida-

tion, etc) could provide additional benefits [105]. We therefore expect that including credit

assignments at multiple time scales in our model will further improve its performance.

In addition to using intermediate rewards, we also developed a new targeted RL algorithm

(Fig 2C). Instead of providing reward to all neuronal populations, we provided a reward or a

punishment only to the neuronal population responsible for the associated action. While there

is no direct evidence from biology supporting our exact implementation of the targeted RL

framework, we assume that such mechanisms exist based on the experimental evidence of

topologically distinct cortico-striatal loops across sensorimotor areas [106]. Such specific feed-

back configurations could allow distinct motor areas projecting onto the striatum to release

dopamine only in specific subnetworks. Some anatomical evidence from invertebrates suggests

nonuniform delivery of reward prediction error signals across brain areas in compartmental-

ized manner [107]. We took a step further and proposed our targeted RL to evaluate its poten-

tial as a proximal credit assignment mechanism. To speed up learning, we also provided

asymmetrical reward/punishment to the nonassociated population i.e. if the reward was deliv-

ered to the EMUP population because Move-Up was the expected action and the model gener-

ated Move-Up command, then some punishment was delivered to the EMDOWN population.

The targeted RL was essential for the intermediate rewards due to their frequent occurrences,

otherwise many nonassociated pre and post motor neuronal pairs would have encoded nonse-

lective associations. Some evidence of such selective reward based learning can be found in

invertebrates [108], where selectivity is often implemented by anatomical constraints. Further-

more, we proposed retrograde targeted RL where a scaled down reward or punishment for the

neuronal connections not directly synapsing onto motor neurons (if those neurons are

involved in reinforcement learning), where the scaling factor could be based on the number of

connections between the postsynaptic neuron and motor neurons. Such strategy was based on

observed lower distribution of dopamine receptors in early sensory areas [109], however the

exact value was only chosen to estimate biological variance in dopaminergic signaling across
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cortex. We found all these strategies to be equally effective in learning behavior (Figs 4A and

8D) with differences in temporal evolution of learned behavior (Figs 3A and 8A).

However, it must be noted that the goal of training using sparse rewards was to maximize

the hits, whereas the goal of training using intermediate rewards was to move the racket

towards the projected ball trajectory which would eventually lead to hitting the ball. This is evi-

dent in the heatmaps showing the increased probability of the racket moving towards the pro-

jected ball location for the hit after training (compare Fig 5F with Fig 5B). Based on our

results, we hypothesize that a brief and localized delivery of reward prediction error signal

could encode temporally precise associations between sensory information and motor actions.

Such a system could work in parallel to the global reward prediction error generating system

which is thought to mediate distal credit assignment of rewards to sensory cues and associated

actions.

When we used the non-targeted RL with the feedforward model, the model could not learn

the behavior despite trying different parameters and training for several episodes (results not

shown). One possible reason for the feedforward model’s inability to learn the behavior could

be the use of both intermediate and sparsely occurring rewards with a single eligibility trace

(fixed time constant). The problem might have occurred due to the temporal incompatibility

of both types of rewards with a single eligibility trace i.e. intermediate rewards are appropriate

for associations between neurons at each step whereas sparse rewards require a memory trace

of all steps (mediated via long eligibility traces) leading to the reward generation. The fre-

quently occurring intermediate rewards might have strengthened the synapses between coac-

tive pre and post neuron pairs driven by intrinsic noise and might have interfered with

neuronal activity generated in the following steps before the actual reward got delivered, by

changing the state of the network many times before the associations between the actual

reward and neuronal network were established. However, when we used non-targeted RL and

sparse rewards with the recurrent model, the model learned to hit the ball over repeated train-

ing episodes (Fig 8). This time the proper associations between the ball trajectories and actions

to improve the chance of a hit were made because of the long time constant for eligibility traces

(10 sec) which acted as a memory trace for the neuron pairs active during action generation

for all steps during the ball trajectory.

Although our model learned to play the bouncing ball game effectively, the performance

during training plateaued after some episodes suggesting that the model learned to its capacity

despite continued increase in weights. Increase in synaptic weights can encode learning as

long as they can differentially activate the postsynaptic neurons. If an increase in weight does

not change the firing rate of the postsynaptic neuron, the learning remains ineffective. This

could happen for intermediate timesteps when the increase in weights is so small that it does

not translate into increase in firing rate but would count towards learning after multiple incre-

ments in weights eventually increasing the firing rate. In another scenario, any further increase

in weights could push the neuron to depolarization block. An effective strategy to increase the

capacity of the network could be homeostatic synaptic scaling which has been shown to signifi-

cantly enhance the performance of neuronal networks [110, 111]. Several models of synaptic

scaling have been developed [65, 66, 112–114], each with their own advantages and biological

plausibility. Inclusion of synaptic scaling in the future model is also necessary to allow learning

more behaviors without pushing the network towards hyperexcitability leading to seizures.

Additionally, increasing the size of the middle and output neuronal populations in the model

could also be helpful in increasing the memory storage capacity of the network.

When we first looked at the temporal evolution of the models’ performance, we could not

understand why the performance is better during some training episodes and worse during

other training episodes. One possible explanation for such variable performance could be the
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noise inputs that we included in the models to allow more exploration of the motor actions.

Most probably that is the case with the recurrent model as we see a larger spread of perfor-

mance measurement during (Fig 8A) and after training (Fig 8D) and in fact a lot more noise

inputs were used in the recurrent model as compared to the feedforward model. The plasticity

for noise inputs will be included in the future models to address noise induced variability in

the performance, so that as the visual-motor associations develop in the circuit, the noise input

becomes weaker [115]. But this is not the only factor driving variability in the performance. If

we break down the bouncing ball game into individual ball trajectories, we notice that the ball

trajectories vary from one training episode to the other. The variety of ball trajectories arises

because every time the ball is hit, it moves along a different path depending on the point of

impact between the ball and the racket. Depending on which ball trajectories have already

been learned by the model, the performance may vary from one episode to another. Therefore

to make a fair comparison of performance between different learning states (fixed weight

matrix after learning) and naive states (before learning), we compared the performance of the

model based on ball trajectories. This analysis further revealed that our models learned very

well for some ball trajectories compared to a few others (Figs 3E, 3F and 4E–4G). For most of

the learned ball trajectories, the model showed sustained performance (Fig 4F). However, for

the others, we observed that the performance decreased with repeated encounters of the same

ball trajectories (2nd and 3rd ball trajectories in Fig 3E).

The neural activity patterns representing past experiences are replayed widely across hippo-

campus and cortex [116, 117] during sleep and passive awake states [118–120]. These replays

are thought to be crucial in stabilizing existing memories and allowing continual learning of

other tasks. In the absence of such mechanisms, the brain may forget what it learned. Despite

impressive performance in state of the art ANNs, sometimes old memories are lost upon train-

ing for new tasks. Storing and replaying learned sequences of neural activations can rescue the

old memories but can be computationally expensive. To overcome this limitation, van de Ven

et al. [121] proposed including a reservoir/generator which can learn and store different acti-

vation patterns and can mimic replay of different neural sequences randomly. Our SNNs faced

similar challenges of forgetting even within a task. This might be linked to the network capac-

ity or architecture choice, which resulted in encoding overlapping sensorimotor representa-

tions. More specifically, the decreases in performance after learning could be due to

overlapped representation of multiple ball trajectories in visual-motor space so that changes in

the circuit required to learn about one ball trajectory may interfere with the visual-motor

representation of the other ball trajectory. These issues have been observed in ANNs and are

commonly termed “catastrophic forgetting” [63, 121–126] and could be mitigated by expand-

ing the dimensions of the circuit and including recurrent computing reservoirs representing

PFC and Hippocampus. The observed “forgetting” behavior in our model could also be

explained by our choice of RL model, where we used reward to model dopamine as has been

extensively done in earlier biological models of RL [13, 14, 16, 33, 45, 110], whereas in vivo

dopamine encodes reward prediction error (RPE) [127]. Using reward instead of RPE prevents

the model from not learning once the sensory cues become familiar and the model has learned

the correct action or sequence of actions that could lead to over-writing of information.

Another feature we observed was that for some ball trajectories, the model always hit the

ball from the very first encounter and continued to do so until the end of the simulation (e.g

first ball trajectory shown in Fig 3E). Something similar is observed for other ball trajectories,

where the model knew to hit the ball for many encounters and then further training led it to

forget. In both cases, the performance profile suggests that the naive state (initial weights) of

the model was sufficient to capture the visual-motor association for these particular ball
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trajectories. It would be interesting to further dissect out the anatomical features of the net-

work that enable such intrinsic performance.

Animals use cognitive maps to relate tasks and goals to relevant rewards. In the absence of

neural mechanisms encoding cognitive maps of tasks, ANNs or SNNs require defining the

goals or behaviors of the sensorimotor tasks explicitly. Just like a point awarded to the winning

player when the opponent fails to hit the ball in tennis, other types of rewards can be explicitly

defined and used for the training. More complex tasks like any strategy game or chess, which

may require including higher cognitive function areas in the model for devising strategy or

planning, are beyond the scope of this work.

Our motivation for this work was to develop a framework that could be further extended to

incorporate more biological details in spiking neuronal network models to bridge the gap

between responsiveness and functioning of the circuit and its elements. Does our current

approach and model allow bridging that gap? In a recent paper [128], the authors demonstrate

the similarity between the responsiveness of V1 neurons and receptive fields generated by con-

volutional neural networks (CNNs). In our work here, we did not implement biophysically

detailed visual system features using a layered approach following the canonical model of the

visual system (V1!V2!V4!IT), as it would have added unnecessary complexity to our

model for the required task. Instead, we designed our SNN to simply capture the functionality

of visual cortical areas by driving location and direction selective neurons using topographical

information consisting of object location and motion direction. Our goal was to train the net-

work to use this information to learn a visual-motor task using biology based mechanisms. In

future work, we plan to increase the biological realism of our models’ visual and motor areas,

and explicitly compare neuronal responsiveness with neuronal electrophysiology data.

In conclusion, we developed a framework to train more biologically detailed spiking neuro-

nal network models to perform sensorimotor-dependent behaviors in dynamic visual environ-

ments. Moving forward, including detailed circuit elements of cortico-basal ganglia loops and

other interacting sensory-motor learning modalities like cerebellum would allow a more

detailed exploration of the biological mechanisms of sensorimotor behavior and learning.

Electrophysiological recordings from sensory-motor circuits are scarce in behaving animals

but once available the model could be further refined to match both electrophysiology and

behavior. Testing the related hypotheses using this framework would require adopting both

behavioral paradigms as well as the modeled circuit elements. In addition to circuit elements

supporting reinforcement and cerebellar learning, we aim to expand this framework by adding

other sensory modalities such as auditory [129] and somatosensory. We will be sharing the

software and the model with the neuroscience community to expand its functionality and use

in research.
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