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Abstract

Sequence similarity tools like Basic Local Alignment Search Tool (BLAST) are essential components of many functional gen-
etic, genomic, phylogenetic and bioinformatic studies. Many modern analysis pipelines use significant sequence similarity
scores (p- or E-values) and the ranked order of BLAST matches to test a wide range of hypotheses concerning homology,
orthology, the timing of de novo gene birth/death and gene family expansion/contraction. Despite significant contrary find-
ings, many of these tests still implicitly assume that stronger or higher-ranked E-value scores imply closer phylogenetic re-
lationships between sequences. Here, we demonstrate that even though a general relationship does exist between the
phylogenetic distance of two sequences and their E-value, significant and misleading errors occur in both the completeness
and the order of results under realistic evolutionary scenarios. These results provide additional details to past evidence
showing that studies should avoid drawing direct inferences of evolutionary relatedness from measures of sequence simi-
larity alone, and should instead, where possible, use more rigorous phylogeny-based methods.
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Introduction

Local sequence alignment tools are central to many molecular
comparative analyses and informatics pipelines. The Basic
Local Alignment Search Tool (BLAST) [1] revolutionized the
speed with which sequences could be compared with large
databases. As such, BLAST has become essential in many ana-
lyses ranging from assessment of gene homology, orthology
and annotation to large-scale phylogenetics, phylogenomics
and phylostratigraphy [2–13]. While BLAST is ubiquitously used
to address questions in these areas, its specific uses and inter-
pretations vary widely.

Unlike exact search approaches like Smith-Waterman that
guarantee optimal local alignments [14], BLAST uses a heuristic
method to quickly produce significant local alignments and

provide several similarity scores. Alignments that have scores
above a specified threshold are presented in ranked order by
significance. The significance score often used by BLAST users
is the E-value, which is interpreted as the expected number of
random alignments with at least the same quality as the align-
ment calculated by BLAST between the query and subject se-
quence. The smaller the E-value, the fewer random alignments
are expected for the given parameters.

While the BLAST algorithm was intended for simple se-
quence or motif similarity searches, modern usages make sig-
nificantly broader assumptions. One common application of
sequence similarity programs is the interpretation of reciprocal
best hits (RBH) between species as homologous or orthologous
[15, 16]. However, homology and orthology are hypotheses
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concerning common descent (rather than mere similarity) and
are therefore phylogenetic in nature [9]. Using sequence similar-
ity alone has been considered insufficient evidence for identify-
ing common ancestry (i.e. orthology or homology) [17, 18] and
imposes a potentially unsupported evolutionary interpretation
on sequence similarity scores. Other applications that rely on
the rank-order of results from BLAST make the same assump-
tion. Many phylogenomic and phylogenetic analysis pipelines
use either BLAST or other related similarity scores for homolog
and ortholog identification at an early stage, including eggNOG,
OrthoMCL, OMA, HaMStR and OrthoFinder [2, 3, 19–22]. While
alternatives that incorporate phylogeny exist (e.g. [9, 23, 24]),
rank-based BLAST analyses are still common.

Phylostratigraphy, another research approach that relies on
sequence similarity searches, attempts to determine the age of
a gene based on the phylogenetic completeness of sequence
similarity hits [4, 5, 25, 26]. Phylostratigraphy assumes sequence
similarity searches will return unbiased and complete (or nearly
complete) significant hits from a sequence database. Recent
examinations have demonstrated that differences in molecular
rates of evolution and gene length can bias phylostratigraphy
results [12], but these analyses primarily focus on biases related
to molecular properties of the sequences themselves rather
than phylogenetic bias.

Several factors may cause BLAST results not to reflect phylo-
genetic relationships (Figure 1). In general, sequence similarity
measures presumably suffer from the same problems that com-
plicate all distance-based phylogenetic measures and methods
[27]. In addition, the specific challenges that affect phylogenetic
reconstruction should also affect BLAST results (Figure 1),
including lineage-specific rate heterogeneity, saturation and
non-stationarity of composition [8, 27–30]. Even sophisticated
molecular evolutionary models that accommodate for these
processes can still have difficulty reconstructing phylogenies [8,
31], and therefore these factors are expected to complicate
BLAST results as well.

Understanding the biases and expectations for sequence
similarity analyses and how these relate to phylogenetics is im-
portant for a number of reasons. As described above, many
phylogenetic and phylogenomics analyses interpret the signifi-
cance scores or the order of search hit completeness as a proxy
for evolutionary relatedness (i.e. phylogeny). If results from se-
quence similarity analyses are to be used to make decisions
confidently about further evolutionary analyses, then they
should reflect phylogeny as accurately as possible. But if BLAST
results do not accurately reflect relatedness, then BLAST should
not be used instead of phylogenies where approximation of
phylogenetic relationships is needed. The suggestion to use
phylogenies instead of BLAST to increase the accuracy of infer-
ence in functional genomics is far from a recent, with the first
findings on this subject appearing over 15 years ago [32] and
related debates over distance-based phylogenetic methods
stretching back even further (e.g. [33]). Despite these past find-
ings and clear arguments against the use of BLAST to approxi-
mate phylogenetic relationships, this practice still persists,
perhaps in part because this relationship has been under-exam-
ined statistically.

Here, we detail some of the potential problems for using
BLAST (or other similarity-based measures) to address ques-
tions of sequence relatedness (Figure 1) and examine these
issues through simulations (Figure 2; see also Supplementary
Figure S1A). Specifically, we explore lineage-specific rate hetero-
geneity, compositional bias and saturation in relation to both
the ranked order and completeness of BLAST results. These

realistic scenarios using BLAST represent only a few of the
many possible parameters, problems and approaches that com-
plicate similarity score results, but already demonstrate the
danger of presuming phylogenetic relationships based on E-val-
ues in situations where even simple phylogenetic methods
would be more appropriate.

Methods

Phylogenies and molecular sequence data were simulated
under several scenarios. Pure birth trees were simulated with
100 and 1000 taxa with a standard molecular model (JC for 2000
nucleotide sites and WAG for 400 amino acid sites), including
indels, rate heterogeneity (low¼RHþ, high¼RHþþ) and biased
base composition (CBþ). Tree heights (in substitutions per site)
varied for each of these scenarios from 0.5, 1, 2, 5 and 10. For
each scenario, 100 replicates were performed and summarized.
More detailed description of the simulation scenarios can be
found in the Supplementary Methods and Supplementary
Results.

Pairwise alignment analyses were conducted using blastn
for nucleotides and blastp for amino acids. BLAST and associ-
ated programs are heuristic and so the alignments are not guar-
anteed to be the best possible hits. Therefore, pairwise
alignments were also conducted using the exact Smith-
Waterman algorithm as implemented in SWIPE [34]. The par-
ameters used for blastn and blastp included an E-value cutoff of
E � 10�10 and word sizes of four for blastn and three for blastp.
The state space of amino acids and nucleotides differs such that
the E-value may perform differently. However, here we are

Figure 1. Examples of phylogenetic scenarios that pose potential problems for

BLAST analyses. Each scenario shows the ‘true tree’ over which sequences have

evolved. Branch intensities and labels show –log10(E) for BLAST hits using query

sequence Q� against all other sequences in the tree, where higher values indicate

a stronger match and white with dotted lines indicates no BLAST hit. (A) A sim-

ple example where BLAST of Q� results in E-values that reflect phylogenetic dis-

tances. All branch lengths are 0.125. (B) An example where lineage-specific rate

heterogeneity will mislead in the order of results. The branch length of a is twice

that of Q� . The first hit for Q� is b and not a. (C) An example of a gene duplication

where each ortholog (Q� ;a; b; c and Q 0 ;a0 ; b0 ; c0) has a different local rate of molecu-

lar evolution. A BLAST of Q� in the faster gene hits only the slow ortholog and in-

correctly hits Q 0 first. (D) An example of compositional bias where Q� ;a0 ;d0 ; e0

have biased and similar nucleotide composition and other sequences have equal

composition. A BLAST of Q� hits, in order, a0 ;d0 ; e0 . (E) A simple example demon-

strating the problem of saturation. The height of this tree is such that BLAST of

Q� does not hit each sequence and instead only hits, in order, a, c, f.
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interested in the bias and so E-values were not corrected for
this inherent nucleotide-amino acid difference. While BLAST
does not guarantee that all best hits will be returned, SWIPE
guarantees that all best hits will be reported given a particular
E-value cutoff. SWIPE reports exact best hits and therefore
served as more complete all-by-all results. The SWIPE E-value
cutoff used was E � 1:0 for both amino acids and nucleotides.

The resulting BLAST results were compared with the phylog-
enies used to generate the sequences in a number of different
ways (Figure 2). The –log10 transformation of the E-values were
used in all comparisons primarily because they are the most
frequently used statistic in phylogenomics. Briefly, the E-value
is the number of hits with the same or better score expected to
randomly be hit given the particular parameters of the search.
They are closely related to p-value as E ¼ �lnð1� pÞ. The –log10

transformation of the E-value is the commonly used statistic in
homology/orthology assessment and phylogenetic studies be-
cause this transformation allows for higher E-values to be asso-
ciated with lower p-values. To determine the rough correlation
of E-values with phylogeny, we compared pairwise E-values
with phylogenetic distance as measured by the sum of the
branch lengths (i.e. substitutions per site) separating the subject
and query sequence in the pairwise alignment. To examine the
completeness of the returned hits, the results returned from
BLAST were compared with those returned by SWIPE. Those re-
sults from SWIPE that were not recorded in BLAST were re-
corded, including the E-values (as recorded from SWIPE) and the
phylogenetic distance of the sequences involved. To determine
how complete results are from BLAST in relation to phylogeny,
the proportion of BLAST hits that were recorded within a clade
along with the number of hits recorded outside of each clade
was recorded (Figure 3C, see also Supplementary Figures S3 and
S4). To facilitate the comparison of results across different
simulations, a statistic that we name qMRCA was calculated for
each simulation.

When a BLAST search is conducted using a given query se-
quence (xq) on a given tree (T), each potential subject sequence
(xs) in T that is hit by the BLAST search must also share a most
recent common ancestor (MRCA) with xq. All other sequences in
T that also descend from the MRCA of xs and xq can be defined
as the set of sequences Xqs. If xs is a BLAST hit of xq and similar-
ity scores are correlated with phylogenetic relatedness, then all
sequences in Xqs are expected to also be BLAST hits of xq. We de-
fine the measure qMRCA (for a given xq and xs) as the proportion
of sequences in Xqs that do not have a BLAST hit for xq (i.e. are
‘missed hits’). If one or more hits are missed among these
equally or more related sequences, then 0 < qMRCA � 1.
Alternatively, if BLAST hits all sequences in Xqs, then this would
result in an optimum score of qMRCA ¼ 0. The mean of qMRCA was
calculated across the set of sequences for a tree, and the mean
of these tree-wide values was calculated across each simulated
sequence set.

In addition to the phylogenetic pattern of missed hit, the
order of hits can be important for certain phylogenetic and phy-
logenomic analyses. We also calculated the phylogenetic error
in first BLAST hits. This is useful not only because BLAST first
hits are used in some analyses, but also as a general proxy for
errors in order.

Results and discussion
Sequence similarity correlates broadly but variably with
phylogenetic distance

To demonstrate potential problems with using similarity scores
to infer phylogenetic relatedness, we first need to characterize
the relationship between sequence similarity and phylogenetic
relatedness. We found BLAST E-values (expressed as –log10E)
were correlated (Spearman’s q) with phylogenetic distance for
both nucleotide and amino acid sequences (Figure 3A–B,

Figure 2. Analyses of BLAST results examined here. (A) Shows a query taxon and the BLAST –log10(E)-values as distributed on the phylogeny. (B) Shows a query taxon

and a focal node identifying a clade and the missed hits within the clade, hits outside the focal clade and hits within the clade. (C) Three sets of query taxa and the

identification of the set of hits that would be correct phylogenetically.
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Supplementary Figure S2 and Table S1). The relationship be-
tween the E-value and phylogenetic distance remained with
simulations including indels (Supplementary Figure S2 and
Table S1) or rate heterogeneity (Supplementary Figure S2 and
Table S1). No significant difference was shown with rate hetero-
geneity runs including 1000 taxa. Simulations that included
biases in base composition are better compared with the same
data sets without biased composition (‘CBþ ’ versus ‘CB0’) as
these use a single tree on which to simulate data and both use
the p4 simulation engine (instead of indelible, Supplementary
Figure S2 and Table S1). Collectively, these results demonstrate
that, in general, sequence similarity and phylogenetic distance
are grossly correlated though composition bias and rate hetero-
geneity somewhat weaken this correlation.

Missing and misordered hits

One common way BLAST scores are used in a broad phyloge-
nomic comparative and phylostratigraphy analyses is to exam-
ine phylogenetic patterns of the presence or absence of BLAST
hits. When a given query sequence is used to conduct a BLAST
search, the expectation might be that it will hit all most closely
related sequences until reaching a most distantly related
sequence that is still a BLAST hit. We can then define a new
measure, called qMRCA, as the proportion of sequences
missed by BLAST that share the same MRCA as the query and
most-distant-hit (i.e. are members of the clade defined by these

sequences). For amino acids and relatively small tree height (i.e.
low substitutions), BLAST performs well and generally hits all
sequences within a clade before hitting outside of a clade
(qMRCA ¼ 0, see Methods for an extended definition). However,
for tree height¼ 2 and no other molecular processes present, on
average 20% of the sequences within the MRCA of the hits for a
sequence were missing (Figure 3C). For nucleotides and large
tree height (i.e. complete saturation), BLAST also performed
generally well. However, for tree height¼ 0.5, on average 18% of
the hits within the MRCA were missing. In the presence of lin-
eage-specific rate heterogeneity or biased base composition, the
missing hit percentages rose sharply to>30% and>50%, re-
spectively. While the composition bias examined here is ex-
treme, it demonstrates the potential for errors (though probably
at lower rates).

While completeness can be important for some analyses,
the exact order can be important for many others (e.g. RBH ana-
lyses). To examine error in the order of hits, the first significant
BLAST hit was examined. This serves not only to address pro-
cedures that specifically use the first BLAST hit, but also gives a
simple measure to describe errors in the order of hits. The low-
est error rates, 0.3% for nucleotides and 2% for amino acids, was
with tree height equal to 10 as generally only closely related se-
quences would have successful hits (Figure 3D). As with the
other measures, introducing indels, lineage-specific rate hetero-
geneity and biased composition increased the error. The highest

Figure 3. Correlation of phylogenetic distance and E-values for both (A) nucleotides and (B) amino acid results, shown for tree height of 1 and 10, respectively. The

dashed line identifies an E-value cutoff of E � 10�10, and BLAST has an implicit maximum of 10�180. Because of the density of points, a random sample of 10 000 points

for each plot is shown. Spearman’s rank correlation (q) is shown on each plot. See also Supplementary Figure S2. (C) The mean of the qMRCA (i.e. hits missed among taxa

sharing the same MRCA) statistic as calculated across each simulated tree (see Methods for details). (D) Examination of the errors in the first hits. When the first hit is

not phylogenetically sister, it is recorded as ‘false’. The proportion of false sister BLAST hits are presented here. Results from BLAST for both nucleotide and amino

acids are presented. See also Supplementary Figures S3 and S4.
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error rates were found with lower root heights, but this could
simply be owing to high sequence similarity at lower root
heights. Data sets with extreme rate heterogeneity in amino
acids produced error rates of 20–24%. The source of the error in
the order of BLAST hits can be demonstrated on a small simu-
lated data set (Figures 1 and 2). These findings highlight the first
hit often is not the most phylogenetically related sequence and
should not be used to identify orthologs. Orthology is funda-
mentally a phylogenetic question, and therefore a phylogeny
should be constructed to infer orthology (e.g. [9]).

Interpretation of E-values

The issues examined here may be somewhat alleviated by more
focused and precise interpretations of BLAST results. For ex-
ample, instead of using the resulting p- or E-values as a quanti-
tative measure of homology, these scores could be interpreted
as a Boolean (i.e. true or false). In this way, p- and E-values
would be used—as intended—as frequentist significance test
statistics. The null hypothesis in a BLAST analysis is that the
proposed alignment between the query and subject sequences
is random and follows a null distribution. A significantly small
p-value, as used for BLAST, is evidence against the null hypoth-
esis that the alignment could have been generated by random
sequences, given the sequence database and search param-
eters. The E-value is interpreted as the number of random hits
expected with an alignment score equal to or better than the
score obtained between the query and subject. As with any fre-
quentist statistic, an insufficiently small p-value does not ne-
cessarily mean that the alignment is random, but rather lacks
sufficient information to distinguish it from a random align-
ment. Furthermore, sufficiently small p- and E-values do not ne-
cessarily mean that the alignment is the result of common
descent. First, a small p-value offers evidence that the null hy-
pothesis does not adequately explain the observation. However,
the alternative to the null hypothesis for a BLAST analysis is
a non-random alignment and not a homologous one. A smaller
p-value more strongly refutes the null hypothesis of random se-
quences, but does not more strongly support homology. This
more conservative usage of BLAST not only is a more accurate
representation of the measures themselves, but also avoids ex-
plicitly addressing phylogenetic questions.

Sequence similarity, phylogenetic relatedness and
suggestions

Many of the potential pitfalls discussed and examined here will
not be surprising to phylogeneticists, and significant research
has demonstrated the failings of particular methods for phylo-
genetic reconstruction methods, including those relying solely
on sequence distance [27, 35]. Fundamentally, sequence dis-
tance alone has limited ability to reflect phylogeny. As expected
and shown here, a rough correspondence exists between
E-value and phylogenetic distance. However, this does not
imply that distance matrices alone can replace construction of a
phylogeny. Also, lineage-specific rate heterogeneity, saturation
and compositional bias exacerbate errors in these types of inter-
pretations of BLAST results. Unfortunately for BLAST analyses,
these problematic molecular patterns can occur in common
scenarios. For example, aside from the lineage-specific rate het-
erogeneity that is common throughout the tree of life [36, 37],
few data sets (even small ones) conform to a strict molecular
clock, which has spurred extensive research in relaxed molecu-
lar clock models [38–41]. Even though phylogenies may better

model these processes, they can still pose problems for phyl-
ogeny reconstruction [8, 28, 31].

While in this study we have focused examining how aspects
of similarity-based searches impact phylogenetic conclusions,
our results are also relevant to ongoing community efforts to
codify methods and assessment of ortholog prediction ([42, 43],
and reviewed in [44]). Some studies in this area have found
mixed performance for some tree-based prediction of orthologs
and assignment of gene function (e.g. [45]). In particular, these

studies cite weaker performance of phylogenetic ortholog pre-
diction methods compared with similarity-based ones, particu-
larly more rigid tree topology-based reconciliation methods that
do not incorporate gene tree discordance owing to biological
processes (i.e. incomplete lineage sorting, introgression). While
our study does not advocate a particular practical solution for
ortholog prediction or gene functional annotation, we would
agree with these studies that improvements to phylogenetic
ortholog prediction methods are needed, specifically in resolv-
ing both phylogenetic discordance (produced by both error and
biological forces) and heterogeneity of both molecular rates and
compositions that we describe. However, we would also caution
that similarity-based searches, as we have demonstrated here,
suffer from major biases in relation to these common molecular
evolutionary processes.

BLAST and other sequence similarity tools will continue to
be essential for bioinformatics, phylogenetic, genomic and phy-
logenomic analyses. However, the lessons from decades of
phylogenetic method development need to be integrated into
the culture of homolog identification, phylostratigraphy and
other analyses. As expected from the large phylogenetic litera-
ture on distance-based methods, significant biases exist in how
BLAST similarity corresponds to phylogenetic relatedness, and
indicate that applications of BLAST that presume to estimate
phylogenetic relationships are misguided. Instead of a particu-
lar approach, we advocate caution when using and interpreting
sequence similarity results, especially as they are more fre-
quently applied to phylogenetic questions or act as inputs for

more complex analysis methods. Finally, where a phylogenetic
relationship is needed, a phylogeny will likely produce more ac-
curate results than the order of BLAST results.

Key Points

• BLAST is often incorrectly used to infer evolutionary
relatedness of sequences.

• Reciprocal best hits from BLAST are often not the clos-
est related phylogenetically under common scenarios.

• Phylogenetic methods should be used to infer orthol-
ogy instead of similarity-based methods.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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