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We used a recently proposed graph index to investigate connectivity redundancy in resting state MEG recordings. Usually, brain
network analyses consider indexes linked to the shortest paths between cerebral regions. However, important information might
be lost about alternative trails by neglecting longer pathways. We measured the redundancy of the connectivity by considering
the multiple paths at the global level (i.e., scalar redundancy), across different path lengths (i.e., vector redundancy), and between
node pairs (i.e., matrix redundancy). We applied this approach to a robust frequency domain functional connectivity measure,
the corrected imaginary part of coherence. The redundancy in the MEG networks, for each frequency band, was significantly
(P < 0.05) higher than in the random graphs, thus, confirming a natural tendency of the brain to present multiple interaction
pathways between different specialized areas. Notably, this difference was more evident and localized among the channels
covering the parietooccipital areas in the alpha range of MEG oscillations (7.5–13 Hz), as expected in the resting state conditions.
Interestingly enough, the results obtained with the redundancy indexes were poorly correlated with those obtained using shortest
paths only, and more sensitive with respect to those obtained by considering walk-based indexes.

1. Introduction

Over the last decade, there has been a growing interest in
the detection of functional connectivity in the brain from
different neuroelectromagnetic and hemodynamic signals
recorded by several neuroimaging techniques. Many meth-
ods have been proposed and discussed in the literature with
the aim of estimating the functional relationships among
different cerebral structures [1, 2]. The recent application of
graph theoretical analysis to human brain time series is a
valuable approach to the study of functional brain archite-
cture [3]. Graph theoretical properties of neural networks
have been studied in healthy subjects [4–8] and in patients
with brain pathologies such as Alzheimer’s disease (AD)
[9, 10], schizophrenia [11, 12], and brain tumors [13]. These
studies suggest that brain functional network parameters

might serve as useful biomarkers for neurocognitive disor-
ders and to improve therapies [14].

Usually, graph-based studies consider indexes linked to
the shortest path between two interacting cerebral regions.
However, the consideration of the shortest pathway alone
seems rather reductive, possibly providing incomplete infor-
mation about the alternative longer pathways by which two
cerebral regions could interact. In particular, in this work
we considered path-based alternative longer pathways, that
is, pathways in which nodes can be visited only once. Other
strategies including nodes and links that can be revisited sev-
eral times along the way (walks), as described in [15, 16] and
named “communicability,” are possible although less bio-
logically plausible.

The information about longer pathways appears strictly
related to the concepts of “redundancy” and “robustness.”
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These properties are critical for the survival of many bio-
logical systems as they allow for reliable functions despite
the death of individual elements. Indeed, the number of dif-
ferent pathways between two areas, rather than the shortest
one, could highlight the importance of the link between two
regions. Even more importantly, in brain pathologies (Alz-
heimer, Parkinson, Stroke, etc.) the availability of alternative
anatomical and functional pathways would allow the brain to
reshape its physiologic mechanisms in order to compensate
the critical consequences of the disease [17].

A graph-based index that includes robustness—taking
inspiration from the recent findings on the evaluation of
multiple paths between network elements [18–20]—has
been defined and successfully applied in rest EEG [21]. In
particular, three complementary indexes have been derived:
(i) the scalar redundancy, a scalar number that characterizes
the global level of redundancy in the network; (ii) the vector
redundancy, a vector characterizing the overall redundancy
for each path length; (iii) the matrix redundancy, a matrix
describing the redundancy in each of the node pairs regard-
less of path length.

Indeed, De Vico Fallani and colleagues [21] showed that
functional brain networks exhibit a high degree of redund-
ancy, consistently with a natural tendency of the brain to
establish multiple connections. However, EEG connectivity
profiles are known to be strongly biased from volume con-
duction effect due to the low pass spatial filtering properties
of the head and are influenced by the choice of the reference
electrode [22, 23].

In this work, we calculate redundancy indexes from rest
MEG data to avoid possible confounds from volume conduc-
tion and reference electrode effects. In fact, MEG does not
require a reference channel and is intrinsically less influenced
by volume conduction effect [24]. Moreover, the connectivity
metric estimated from MEG data is a corrected version of
the imaginary part of coherency [25] aimed at suppressing a
spatial bias towards remote interactions. Finally, redundancy
indexes from rest MEG data are compared to those identified
using shortest path and walk-based pathways.

2. Materials and Methods

2.1. MEG Recordings. The present data were acquired in 7
healthy young adult subjects. The study was approved by the
local ethical committee and all subjects gave their written
informed consent. The subjects contributed one 5 min
resting state MEG run during which they were instructed to
maintain fixation on a visual crosshair. MEG was recorded
using the 165-channel MEG system installed at the Uni-
versity of Chieti [26]. This system includes 153 dc SQUID
integrated magnetometers arranged on a helmet covering
the whole head plus 12 reference channels. Two electrical
channels were simultaneously recorded (electrocardiogram
and electrooculogram) to be used for artifact rejection. All
signals were band-pass-filtered at 0.16–250 Hz and digitized
at 1025 Hz. The position of the subject’s head with respect to
the sensors was determined by five coils placed on the scalp
recorded before and after each MEG run. The coil positions
were digitized by means of a 3D digitizer (3Space Fastrak;

Polhemus), together with anatomical landmarks (left and
right preauricular and nasion) defining the head coordinate
system. After downsampling to 341 Hz, the recorded data
were analyzed using Independent Components Analysis
(ICA) by means of the fast ICA algorithm [27]. The ICs were
automatically classified, the artefactual components were
removed, and the nonartifactual ICs were then recombined
thus providing cleaned time domain signals. In the present
work, we considered only 61 evenly spaced MEG channels to
compare the results with those reported with standard 64 ch
EEG data [21].

2.2. Functional Connectivity. In the present study, we esti-
mated a corrected version of the imaginary part of coherence,
a robust measure of the linear relationship between two-time
series in the frequency domain [25, 28].

Given two-time domain signals, xi(t) and xj(t), and their
fourier transforms, Xi( f ) and Xj( f ), coherence is a complex
valued measure of interaction defined as

Cij
(
f
) ≡ Si j

(
f
)

√
Sii
(
f
)
Sj j
(
f
) , (1)

where

Si j
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(
f
)
X∗j
(
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)〉
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is the cross-spectrum between Xi( f ), and Xj( f ), Sii( f ) is the
power spectrum of Xi( f ), and Sj j( f ) is the power spectrum
of Xj( f ). The symbols ∗ and 〈 〉 in (2) indicate complex
conjugation and expectation value, respectively. In practice,
expectation value is estimated as the average over signal
epochs.

A nonvanishing imaginary component of complex
coherence (ImCoh) can only indicate a phase-shifted rela-
tionship between Xi and Xj . As a consequence of this pro-
perty, and assuming the quasistatic regime for Maxwell’s
equations, ImCoh is robust to self-connectivity induced by
volume conduction or crosstalk at the sensor level [25, 29].
Thus, ImCoh robustly measures functional connectivity [30–
33] meaning that a significant deviation from zero cannot be
generated by independent sources but rather by true brain
interaction.

Since classical ImCoh might exhibit a spatial bias towards
remote interactions, we rely on a corrected version of ImCoh
(cImCoh) with the same properties introduced above and
with the additional feature of compensating for preference
for remote interactions [28]:
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) . (3)

The corrected ImCoh was estimated for each run as the
average over signal epochs of 2-second duration. Therefore,
a single complex coherence value for each frequency bin was
generated for each possible channel pair combination. In
order to study the level of synchronization in specific physio-
logical frequency bands, we averaged the corrected imaginary
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coherence values within specific ranges, thus, generating a
single value for each frequency band of interest, namely: delta
(1–3.5 Hz), theta (3.5–7.5 Hz), alpha (7.5–13 Hz), beta (13–
24 Hz), and gamma (24–60 Hz). The frequency band specific
values were thus, stored in a channel matrix. This matrix
describes a functional network, where the particular combi-
nation of the ith row with the jth column indicates the syn-
chronization value between the MEG signals of the ith and
jth channels. At this stage, the functional brain connectivity
is a fully connected and undirected network. To compute
topological features, a network has to be converted into undi-
rected and unweighted graph by considering a threshold,
expressed as connection density, that represents the number
of the most powerful connections to be considered. We
choose an “optimal” connection density of 0.101, as this is
the best statistical tradeoff to differentiate between the global
and local structural properties of a network with 61 nodes.
This highest separation would increase the independence
between the two indexes when measuring the global and local
properties of the network [34, 35]. This threshold retains the
370 highest values (in magnitude) for the MEG network by
setting them equal 1 and by setting the remaining ones to 0.

2.3. Network Redundancy. A graph is defined as a set of
vertices/nodes N and a set of links/connections representing
some sort of interaction between the vertices. The adjacency
matrix A of size N × N contains the information about
the graph connectivity structure. If a link connects the two
nodes i and j, the corresponding entry of A is given by
ai j = 1; otherwise, ai j = 0. In a graph, a path is an alter-
nating sequence of vertices and links, beginning and ending
with a vertex, where each vertex is incident to both the
preceding link and the following link in the sequence. Given
such definition, it is clear that the shortest path is only one
of the possible ways in which two nodes in a graph can
interact. To account for all the possible ways, longer pathways
should also be considered for characterizing functional
brain connectivity [34, 35]. Our algorithm, implemented in
Matlab (The MathWorks Inc., Natick, MA, USA), computes
all the possible paths in a graph by counting the total num-
ber of links between the nodes excluding vertices already vis-
ited (self-connections). The main steps of this algorithm are
highlighted in the flowchart of Figure 1. The algorithm out-
put is a three-dimensional matrix P of size N × N × L,
containing the number of all the possible paths of length l =
1, . . . ,L in each node pair, where L ≤ N−1. Starting from this
P-matrix, we evaluate the following characteristic measures.

2.3.1. Scalar Redundancy. The scalar redundancy Rs is the
total sum of the number of paths, of any length l = 1, . . . ,N−
1, found between all the nodes, that is, (N2−N)/2, excluding
the self-connections:

Rs =
N∑

i=1

N∑

j=1

L∑

l=1

P
(
i, j, l

)
. (4)

It represents the global level of network redundancy by
means of a scalar number. The higher is Rs, the higher is the
tendency of the graph to exhibit multiple alternative path-
ways.
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Figure 1: The main steps of this algorithm are highlighted in the
flowchart that computes all the possible paths in a graph, able
to count the total number of paths between the nodes excluding
vertices already visited (self-connections).

2.3.2. Vector Redundancy. The vector redundancy Rv is the
total sum of the number of paths found between all the
nodes, that is, (N2 − N)/2, excluding the self-connections,
with respect to each path length l = 1, . . . ,N − 1:

Rv(l) =
N∑

i=1

N∑

j=1

P
(
i, j, l

)
. (5)

It represents the total level of network redundancy across
different path lengths. The higher is Rv(l), the higher is the
tendency of the graph to exhibit multiple alternative path-
ways with a specific length l.

2.3.3. Matrix Redundancy. The matrix redundancy Rm is the
total sum of the number of paths of any length l = 1, . . . ,N−
1 in each node pair:

Rm
(
i, j
) =

L∑

l=1

P
(
i, j, l

)
. (6)

It represents the total level of redundancy between the nodes
of the graph. The higher is Rm(i, j), the higher is the tendency
of the graph to exhibit many alternative pathways between
the nodes i and j.

In the present study, the analysis of the network redun-
dancy indexes was addressed by exploring paths of a maximal
length of L = 5.
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Table 1: Mean z-score values of scalar redundancy (Rs) and vector redundancy (Rv). Different rows correspond to different bands. In the Rv

section, each column refers to a different path length l. Asterisks denote a significant (P < 0.05) difference from random graphs.

Rs
Rv

l = 1 l = 2 l = 3 l = 4 l = 5

Delta 38.32∗ — 20.34∗ 23.74∗ 30.95∗ 39.60∗

Theta 45.30∗ — 19.86∗ 25.56∗ 34.41∗ 47.16∗

Alpha 60.03∗ — 24.77∗ 33.21∗ 45.76∗ 62.42∗

Beta 39.40∗ — 20.36∗ 24.62∗ 31.78∗ 40.72∗

Gamma 54.54∗ — 24.40∗ 31.41∗ 42.09∗ 56.68∗

2.3.4. Random Network Comparison. The same redundancy
indexes were computed in a set of reference graphs whose
links were arranged in a random fashion. Indeed, random
connections correspond to a scrambled situation, where no
anatomical nor functional organization is implied, and are
a baseline for the evaluation of all networks. In this work,
100 random graphs were generated by maintaining the same
number of nodes and connections of the original MEG
networks. Each time, links were randomly shuffled without
preserving the node degree distribution [36]. This choice is
motivated by the fact that the networks are rather small (61
MEG channels) and sparse (connection density ∼0.1), and
preserving the degree distribution would generate very simi-
lar network topologies due to reduced number of different
possible random combinations.

Finally, the statistical contrast with the random networks
was addressed for the experimental subjects and for each
frequency band by calculating the z-score of the obtained
redundancy indexes.

2.3.5. Comparison with Other Indexes. Redundancy indexes
were also compared with those found by using the shortest
paths between all the node pairs. Starting from the three-
dimensional matrix P of size N ×N × L defined before, and
containing the number of all the possible paths of length
l, we calculated the matrix PS containing the number of
shortest paths between the nodes (two-dimensional matrix
of shortest path):

PS
(
i, j
) = P

(
i, j, k

)
,

k = min(l) such that P
(
i, j, k

)
> 0.

(7)

Shortest path-based PS values were compared with the
redundancy matrix index Rm (with Lmax = 5). In order to
reduce any effect related to the different range of values (i.e.,
the number of shortest paths could significantly deviate from
the number of paths of any length), the original values were
normalized by the mean values obtained from 100 random
networks through a z-score. Then, the difference was assessed
by computing the difference of the normalized matricial
values, for each subject and frequency band.

Similarly, we implemented a matricial index using the
number of alternative pathways (with Lmax = 5) as revealed
by walks, along the line of the communicability concept
introduced in [16]. Starting from the adjacency matrix A,
we evaluated the matrix communicability indexG containing

the number of walks of length l = 1, . . . ,Lmax that started at
node i and finished at node j:

G
(
i, j
) =

Lmax∑

l=1

Al
(
i, j
)
. (8)

Again, G(i, j) was compared with the redundancy matrix
index Rm. In order to reduce any effect related to the different
range of values (i.e., the number of walks could significantly
deviate from the number of paths of any length), the original
values were normalized by the mean values obtained from
100 random networks through a z-score. Then, the difference
was assessed by computing the difference of the normalized
matricial values, for each subject and frequency band.

3. Results

The MEG network in the alpha frequency band relative to
one subject is shown in Figure 2(a), whilst Figure 2(b) shows
one random network obtained by randomizing the original
links among the channels. As it can be observed, there is a
clear difference between the two connectivity patterns. Not-
ably, in the MEG network the nodes of the temporal, parietal,
and occipital areas are strongly interconnected, while there is
no particular structure in the random network.

Figure 3 shows the cumulative MEG graph in alpha fre-
quency band relative to all of the 7 subjects.

Only values larger than 2 are shown. The cumulative
MEG network resembles the functional structure shown in
Figure 2(a), highlighting the consistency of temporal, pari-
etal, and occipital interconnections in resting state MEG net-
works.

All three redundancy indexes—Rs, Rv, Rm—computed
for MEG data showed statistically significant difference (P <
0.05) with respect to the random graph set for all frequency
bands: delta, theta, alpha, beta, and gamma, as indicated by
z-scores listed in Table 1.

Figure 4 details mean Rs values in the alpha frequency
band calculated from single subject MEG networks as well as
the mean Rs values from the random networks. The scalar
redundancy in the MEG networks is significantly higher
(P < 0.05) with respect to random graphs. Figure 5 details
mean Rv values in MEG and random networks in the alpha
band. Although they have similar trends, showing a vector
redundancy that increases with path length, the statistical
comparison between their values is highly significant. In
particular, the vector redundancy of the MEG network is
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MEG

(a)

Random

(b)

Figure 2: (a) Representation of the MEG network in alpha frequency band. Nodes represent MEG channels, while links indicate a significant
synchronization in the frequency domain between the time series of all the MEG channels (1342 highest values of corrected imaginary
coherence magnitude). (b) Representation of a simulated random network with same number of nodes and links of the MEG network.
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1

0

Figure 3: Representation of the MEG network in alpha frequency
band for all subjects. Nodes represent MEG channels, while
thickness and color line code the number of subjects who share
that particular connection. Only values larger than 2 are shown.
According to the color bar, connections common to many subjects
are identified by green-black colors.

significantly higher (P < 0.05) than that of random graphs
for the path lengths l = 2, . . . , 5. Actually, the results for l = 1
are identical due to the statistical threshold that made all the
inspected networks having the same number of connections
(see Functional connectivity paragraph in Section 2).

Figure 6 shows the mean z-score values of the matrix
redundancy Rm for the representative alpha frequency band.
Also in this case, Rm calculated for MEG networks is signi-
ficantly different from that of random graphs. Similar results

MEG Random
0

0.5

1

1.5

2

2.5
×106

Figure 4: Mean scalar redundancy values for MEG network in the
alpha frequency band and for random graphs. Vertical bars denote
the standard deviation (of the values of 7 subjects for MEG graph
and of the values of 100 random graph). A significant difference
between the MEG and random values is found (P < 0.05).

were also obtained in the other frequency bands. Further-
more, MEG networks show a clear topographical specificity
as revealed by a very high redundancy between the nodes of
the parietal and occipital areas.

Finally, Figure 7 summarizes the comparison of redun-
dancy index with those obtained from shortest path and
communicability in the alpha frequency band. In particular,
we show in Figure 7(a) the mean z-score values related to
shortest path-based matricial index, in Figure 7(c) the mean
z-score values related to communicability-based matricial
index. Figures 7(b) and 7(d) show the difference between
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Figure 5: Mean vector redundancy values in logarithmic scale for
MEG network in the alpha frequency band (solid blue line) and
for random graphs (dashed black line). Vertical bars denote the
standard deviations. A significant difference between the MEG and
random values is found (P < 0.05).

the mean z-score values for the matrix redundancy index
(shown in Figure 6(a)) and the mean z-score for the shortest
path and the communicability, respectively. Moreover, the
number of nodes significantly correlated according to Spear-
man coefficient between redundancy index and shortest
path-based index is 0.93% (P < 0.05, corrected for multiple
comparisons through the rough false discovery rate [37]),
while is much higher (56,12%) between the redundancy
index and communicability-based index. Similar results were
obtained in the other frequency bands.

4. Discussion

In this study, we derived graph theory parameters from a
robust frequency domain functional connectivity measure,
the corrected imaginary part of coherence estimated from
MEG data. Indeed, MEG is immune to reference electrode
effect and is less confounded by volume conduction effect
[24]. The graph connectivity structure is represented as a
binary quantity in the adjacency matrix and provides infor-
mation about the links between vertices (i.e., MEG chan-
nels). Our data show that the MEG network features a less
spread topology with respect to similar networks mapped by
EEG [21]. In fact, the widespread topology found in EEG can
possibly be ascribed to volume conduction effect and/or to
the bias towards remote interactions.

In our study, we calculated three different indexes: scalar,
vector, and matrix, to the aim of characterizing overall
network redundancy, global network redundancy for a given
path length, and redundancy of pairwise connections in the
network. As a general rule, these indexes are related to the
maximum path length (Lmax) explored. The results presented
here are obtained for Lmax = 5, which corresponds to a
computationally reasonable amount of time and space (20 s
per subject and per frequency band on a Intel i5-2400 CPU
@ 3.10 GHz with 8 GB of RAM). The needed amount of time
diverges for higher Lmax values. Nevertheless, as it can be seen
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Figure 6: z-score values of matrix redundancy for MEG network in
the alpha frequency band. (a) the degree of z-score redundancy for
each channel pair is colour coded: highest values of redundancy,
significantly different between MEG and random networks, are
identified by yellow-red colours. (b) only values larger than 70%
of the maximum value are shown. According to the colour bar,
highest values of redundancy, significantly different between MEG
and random networks, are identified by green-black colours.

from Figure 5, where the dependence of vector redundancy
from L is shown, a linear trend (in semilogarithmic scale)
rules such dependence. Thus, the vector redundancy for
higher values of Lmax can be extrapolated. Moreover, the
matrix redundancy obtained for Lmax = 5 typically shows
a high spatial correlation degree with respect to matrix
redundancy obtained for higher L values (up to 10), meaning
that topographical information is preserved also for lower
L values. Graph theory parameters derived from adjacency
matrices are usually calculated by considering the shortest
possible pathway of interaction between two vertices. Never-
theless, shortest distances alone could provide an incomplete
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Figure 7: Comparison between redundancy, shortest path, and communicability for the alpha frequency band: (a) z-score values related to
matrix containing the number of shortest paths between all the node pairs; (b) difference between mean z-score values of redundancy and
mean z-score of shortest path; (c) z-score values of matrix of communicability, that is, redundancy indexes based on the computation of
walks; (d) difference between mean z-score values of redundancy and mean z-score values of communicability.

characterization of a network, since connectivity in complex
systems with similar shortest paths distribution can indeed,
exhibit distinct structural and dynamical properties [34, 35].
In particular, by neglecting the longer pathways important
information might be lost about the alternative trails that
could connect two nodes in a network. The possibility to
inspect multiple pathways within a system is strictly related
to the concept of redundancy and robustness, which is sup-
posed to be a natural mechanism of the brain for enhancing
the resilience to neural damages and dysfunctions [38].

Scalar redundancy is related to overall network resilience.
This index appeared significantly different than the corre-
sponding value obtained from random networks in all the
frequency bands.

Similar results were obtained with EEG recordings [21].
This difference suggests that scalar redundancy might be a
functional correlate of brain connectivity disruption with a
possible prognostic value.

Vector redundancy is related to global network redun-
dancy for a given path length. Higher vector redundancy val-
ues for MEG graphs compared to random graphs indicate the
network tendency to build a larger number of connections
for a given path length L, regardless of specific node con-
tribution. Analogous results were found for EEG [21]. Again,
this parameter might serve as a prognostic index.

The matrix redundancy index informs us about the
robustness of a given pairwise connection. Indeed, our data
showed the most redundant interactions between the parietal
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and occipital channels in the alpha frequency band, as
expected in relation with the posterior alpha rhythm origi-
nating in occipito-parietal areas during rest [39]. Notably,
our MEG results on the network topology show an improved
spatial specificity with respect to its EEG counterpart [21],
possibly thanks to the diminished bias from volume conduc-
tion and reference electrode effects.

Methodological Considerations. One of the main issues
related to the used redundancy indexes is if they carry
different information from other existing measures like for
instance that related to the shortest paths or to walks.

As it can be noticed by comparing Figures 6 and 7(a), the
connections characterized by high redundancy values differ
from those obtained using shortest path-based values. A
direct comparison between the z-scores (Figure 7(b)) shows
that the redundancy values were generally higher than short-
est path-based values, the difference being largely positive.
Interestingly, the highest differences were located between
the occipito-parietal regions. The significant correlation
(Spearman) between the distribution of the shortest path-
based and redundancy index gathered from the population
observed in less than 1% of the connections strengthens the
finding that the two indexes are not related and provide
different information. Taken together these results indicate
that the topological information carried by shortest paths is
different from that obtained by redundancy. Furthermore,
these two measures are generally not correlated, thus, justify-
ing the additional time needed for redundancy computation.

When comparing communicability-based and redun-
dancy matrix index, we observed a high degree of correlation.
We would like to stress that the redundancy indexes are
based on paths which never visit the same vertex twice, [40]
thus, avoiding cycles that have a difficult interpretation in
functional brain networks and that are generally neglected
by the existing literature [41]. From a general point of view,
this can be seen as the main difference between the present
method and the communicability-based indexes. Indeed,
pathways visiting a node more than once are fake alternatives
to the possibly damaged link. To give an example, a link
between two nodes (just suppose that this is the only way they
can connect) is identified as a walk of distance equal to 3 and
as a path of distance 1. In our view, there is no real redundant
information between these two nodes, since they are directly
connected as correctly identified by the path-based distance.

Nevertheless, Figure 7(d) shows that z-scores found from
the redundancy values were generally higher than the ones
obtained from communicability-based values. Thus, there
exists a general tendency of the walk-based index to overesti-
mate the number of actual interactions between nodes, and
to generate lower z-scores with respect to redundancy values.
This suggests that redundancy indexes are in general more
sensible in identifying significant redundant interactions
between nodes.

Overall, in the present work, we demonstrated that a nat-
ural high degree of redundancy, confidently ascribed to func-
tional brain network behavior, is also exhibited by the MEG
networks in a group of healthy subjects. Moreover, although
we believe that it is not good practice to draw strong

conclusions about the underlying brain functioning from
channel level information, our results may be attributed
to the role of alpha band in mediating interactions in or
between visual, attention, and default mode networks [42].

Finally, it would be interesting to investigate how differ-
ent mental states or behavioral conditions, as well as alter-
ations due to cerebral diseases, can affect this high natural
redundancy of spontaneous functional brain networks.

5. Conclusion

This work has shown that functional brain networks as mea-
sured by MEG exhibit a natural high redundant degree of
frequency specific interaction between different regions. The
redundancy indexes used are defined to capture different
information at the global level (scalar), at each path length
(vector), and between any node pair (matrix). In our opin-
ion, this information might integrate rather than substitute
indexes based on the shortest path, thus, allowing for a
more comprehensive understanding of network properties.
In particular, the inclusion of redundancy metrics in a bench-
mark set of graph indexes might be particularly relevant for
studying plasticity in connectivity pattern organization [17]
such as those occurring during brain development in the first
span and in healthy aging [6] in the last part of life, as well
as brain injuries or diseases (e.g., Alzheimer’s disease, brain
tumors, etc.) [38].
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