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Abstract: This study reports on the use of traveling wave ion mobility quadrupole  

time-of-flight (ToF) mass spectrometry for plasma metabolomics. Plasma metabolite 

profiles of obese Zucker fa/fa rats were obtained after the administration of different oral 

doses of Xanthohumol; a hop-derived dietary supplement. Liquid chromatography coupled 

data independent tandem mass spectrometry (LC-MSE) and LC-ion mobility spectrometry 

(IMS)-MSE acquisitions were conducted in both positive and negative modes using a 

Synapt G2 High Definition Mass Spectrometry (HDMS) instrument. This method provides 

identification of metabolite classes in rat plasma using parallel alternating low energy and 
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high energy collision spectral acquisition modes. Data sets were analyzed using pattern 

recognition methods. Statistically significant (p < 0.05 and fold change (FC) threshold > 1.5) 

features were selected to identify the up-/down-regulated metabolite classes. Ion mobility 

data visualized using drift scope software provided a graphical read-out of differences in 

metabolite classes. 

Keywords: obesity; xanthohumol; travelling wave ion mobility; mass spectrometry; lipidomics 

 

1. Introduction 

Metabolomics, the analysis of endogenous metabolites (<1,500 Dalton) in complex mixtures, is 

heavily based on the combination of separation techniques and mass spectrometry. The predominant 

analytical methods are hyphenated approaches combining gas chromatography with mass spectrometry 

(GC-MS) [1,2], liquid chromatography and mass spectrometry (LC-MS) [3,4] and capillary electrophoresis 

and mass spectrometry (CE-MS) [5–7]. As an analytical science, advances in metabolomics are 

predominately achieved by technology advancements [8,9]. During the last decade, mass analyzers 

have seen significant improvements in resolving power, mass accuracy and sensitivity. The 

combination of soft ionization techniques, such as atmospheric pressure chemical ionization (APCI) 

and electrospray ionization (ESI), and hyphenated LC-MS/MS techniques are the current method of 

choice for the analysis of polar metabolites [10,11]. 

The precise and accurate quantification of metabolites is the key objective of targeted metabolomics. 

Targeted metabolite profiling analyses are often conducted using triple quadrupole instruments operated in 

the selected reaction monitoring mode. Q-trap-type instruments allow data-dependent acquisition 

modes that combine selected reaction monitoring and product ion scanning modes, providing good 

quantification of analytes and increased confidence in metabolite identification [4,12,13]. In contrast, 

the main objective of untargeted metabolomics is the detection and identification of as many 

metabolites as possible. Accurate mass measurement of the metabolites is of paramount importance for 

the success of untargeted metabolome analyses, because the mass-to-charge ratio (m/z) value of the 

metabolite ion is used initially for searching metabolite databases. Current mass analyzers that enable 

accurate mass measurements with high resolution are modern time-of-flight (ToF) instruments, Fourier 

transform (FT) orbitraps and ion cyclotron resonance (ICR) analyzers. However, if metabolite 

identification is the goal of the analysis, the mass information needs to be complemented with 

structural data that can be obtained by performing collision-induced dissociation (CID). The most 

common acquisition mode in untargeted metabolomic experiments is the acquisition of full scan data 

and product ion data using data-dependent acquisition (DDA) modes [14,15]. DDA acquisitions are 

technically realized in hybrid tandem mass spectrometry instruments by combining multiple mass 

analyzer, such as the Q-ToF-type instruments, quadrupole orbitraps (Q Exactive), and combinations of 

linear trap quadrupole (LTQ) instruments with high resolution mass analyzer, e.g. LTQ-orbitraps and 

the LTQ-FT instruments. A possible drawback of DDAs is that a substantial proportion of the 

acquisition cycle is spent acquiring product ion spectra; therefore, the accuracy with which the 

intensities of the precursor ions are measured in the first MS stage (MS1) are compromised [16]. More 
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recently, data-independent acquisition (DIA) methods have become available that do not select specific 

precursor ions for gas phase fragmentation and acquire ion signals for precursor and fragment ion 

seemingly uninterrupted. It is for this reason that DDA methods deliver more accurate quantitative 

precursor ion signals suited for quantitative studies [17,18]. Independent of the mode of acquisition, 

untargeted metabolomic experiments greatly benefit from the availability of high resolution accurate 

mass measurements of precursor and product ions, enabling the assignments of metabolites with 

greater confidence. 

Recent developments in quadrupole time-of-flight (q-ToF) hybrid instruments led to improvements 

in sensitivity, duty cycle and dynamic range. In addition, the introduction of collision energy profiles 

for the non-selective MS/MS acquisition mode, so-called MSE, provides an untargeted and unbiased 

methodology for metabolite fragmentation [17,19,20]. The combination of MSE acquisitions with the 

separation power of Ultra Performance Liquid Chromatography (UPLC) enables conducting many 

precursor and neutral loss acquisitions over a single experimental run and can overcome duty cycle 

issues associated with similar types of experiments involving other scanning-type instruments [21,22]. 

Furthermore, MSE supports the analysis of any compound of interest irrespective of its signal intensity 

and has been applied for many proteomic and metabolomic studies [17,23–25]. Additionally, MSE in 

conjunction with a high-end ToF analyzer provides exact mass information for precursor and fragment 

ions, a prerequisite for determining elemental compositions and minimizing false positive identifications. 

The combination of ion mobility spectrometry (IMS) with hybrid mass spectrometry (MS) 

instruments offers an additional dimension of separation for complex mixtures. In ion mobility 

spectrometry, ions are separated as they drift through gas (He, Ar, CO2) under the influence of an 

electric field. The rates of drift depend on the size, charge and the collisional cross section of the 

respective ions. Adding the drift time information may add an additional level of specificity to the 

mass-to-charge (m/z) analysis. The integration of ion mobility spectrometry with mass spectrometry 

(IMS-MS) provides a rapid method for the analysis of isobaric molecules, such as small molecule 

regioisomers and polypeptides adopting different conformer structures [26–28]. In the current report, a 

commercial ion mobility mass spectrometry instrument that features a TriwaveTM geometry in which 

the ion mobility cell (IMS T-wave) is placed between two traveling wave ion guides (trap T-wave and 

transfer T-wave) was used. These devices can be used as either ion guides or collision cells, depending 

on the collision energy voltages applied. Fragmentation of ions can be induced in both devices, the trap 

(pre-IMS separation) and/or the transfer (post-IMS separation) [29]. With the trap-only fragmentation, 

the ions will undergo high energy collisions before they enter into the IMS T-wave region. Then, the 

fragments will be separated in the second travelling wave device based on their collisional cross 

sections and be guided to the ToF detector with minimum or no collision at the transfer T-wave cell. 

With the transfer-only fragmentation, the ions pass through the first travelling wave cell with no 

collision energy applied, and the parent ions will separate by the IMS T-wave cell, followed by 

fragmentation in the transfer T-wave region. When the ions fragment in this region, they retain the 

original drift time of the parent ion., The combined use of both retention time- and drift time-alignment 

of parent and fragment ions enables the identification of metabolites with high confidence even in 

complex matrices. Another way to get more structural information on the ions is to use time-aligned 

parallel (TAP) fragmentation, in which both trap T-wave and transfer T-wave cells are kept at high 

voltage. In the TAP mode, the ion of interest will be selected in the quadrupole region and will 
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undergo first generation fragmentation in the trap cell, and the resulting fragment ions will separate in 

the ion mobility cell. The mobility-separated fragment ions will undergo further fragmentation, 

resulting in second generation fragment ions, which are time-aligned with the first generation fragment 

ions [26]. In this study, we used ion mobility separation in combination with MSE acquisition for the 

identification of plasma metabolites from obese Zucker rats. In this method, precursor ions are 

separated by ion mobility and, then, subjected to MSE acquisition, which applies parallel low and high 

energy cycles for achieving exact mass analyses and fragment ion generation. In this mode, the 

fragment ions are aligned with their precursors with respect to their drift times. 

Xanthohumol (XN), a prenyl flavonoid extracted from the hop plant, has gained much attention, 

due to its anti-inflammatory, antimicrobial, antioxidant and anticancer properties [30,31]. Work by  

Legette et al. indicated that the XN lowers body weight and improved glucose homeostasis in obese 

Zucker (fa/fa) rats [32]. As part of a larger ongoing effort to investigate the possible health promoting 

effects of XN in obesity, the objective of this study was to apply electrospray travelling wave ion 

mobility mass spectrometry (ESI-T-wave-IMS-MS) to investigate the plasma metabolome of obese 

Zucker (fa/fa) rats treated with different oral doses of xanthohumol. 

2. Results and Discussion 

2.1. HPLC-TOF-MSE Analysis 

Identification of Up-/Down -Regulated Metabolites 

Plasma samples from both untreated or treated (low, medium or high dose xanthohumol) male and 

female Zucker rats were analyzed by UPLC-MSE and UPLC-IMS-MSE in positive and negative mode. 

Initially, we used unsupervised principal component analysis (PCA) to evaluate the data sets and to 

obtain a first indication of general separation trends. This indicated that groups were separated by 

gender (Supplemental Materials, Figure S1); therefore, we evaluated female and male treatment groups 

separately. The PCA scores plot generated from the female rat data sets of all four groups (control and 

three xanthohumol treatment groups) indicated that the xanthohumol treatment groups showed little 

separation tendency, whereas the data sets of the male rats showed clear separation between control 

and the different dose groups (Supplemental Materials, Figure S2). This observation is consistent with 

previous findings by Legette et al. that showed XN treatment caused loss of bodyweight in male, but 

not in female, obese Zucker rats [32]. 

We, therefore, concentrated our metabolomic analyses on the data sets obtained from the male rat 

plasma samples of the control group (n = 6) and the group treated with the high dose of xanthohumol 

(n = 6). Pre-processing of the data using XCMS, an open-source metabolomic data processing software 

(http://metlin.scripps.edu/xcms/), resulted in a three-dimensional matrix, mass-to-charge ratio (m/z), 

retention time (RT) and intensity values, consisting of 4,331 and 4,019 features in the positive and negative 

mode, respectively. These features were used for both univariate and multivariate data analysis. The 

scores plot showed a separation tendency between the control and the treatment group. Consequently, 

a Partial Least Square-Discriminant Analysis (PLS-DA) was performed to identify discriminating 

features between the groups. As shown in Figure 1, top left, the control group clustered well and is 

separated from the treatment (high dose) group; however, treated samples were spread out. Student t-
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tests were performed for statistical comparisons between the control and treated group, and p-values of 

0.05 or less were considered significant. Further visualization of data was carried out using a heat map 

with two way-hierarchical clustering using the Ward algorithm and Euclidian distance on the top 50 

discriminating features between the two study groups. This hierarchical clustering resulted in better 

separation of the control group from the treated group by reducing the variation in the treated group 

(Figure 1A, B). Finally, the candidate markers were selected by examining the volcano plot and 

considering a fold change threshold of 1.5 and a p-value less than 0.05 (Supplemental Materials, 

Figure S3). In addition, XN and XN-related metabolites [31,33] were excluded from the candidate 

marker list before performing the database searches. A total of 121 features were selected for accurate 

mass-based annotation using the Metlin, Lipidmaps, Madison Metabolomics Consortium Database 

(MMCD) and Human Metabolome Database (HMDB) databases. Differential metabolites are listed in 

the Supplemental Materials, Table 1. 

Figure 1. Partial Least Square-Discriminant Analysis (PLS-DA) plot (A, B) and 

unsupervised hierarchical clustering plot (C, D) for control and high dose groups (male 

animals). (A, C) positive ionization mode; (B, D) negative ionization mode; a heat map 

was constructed using the top 50 important metabolites created from MetaboAnalyst 

software (2.0). The metabolites and samples were hierarchically clustered by the Ward 

algorithm using Euclidian distance. Each column represents a unique feature with a 

characteristic mass-to-charge ratio and retention time value. As shown in the heat map 

alignment, the two groups were clustered by an unsupervised algorithm, which confirms 

the presence of discriminating features between the high dose and control groups. 
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In the current study we utilized the MSE mode, which acquires low energy full scan spectra and 

high energy fragmentation spectra in a single run. MSE data provides access to exact mass information 

for precursor, the fragment ion and neutral loss data to search for diagnostic ions or common neutral 

losses. In the current study, we focused on the impact of xanthohumol treatment on lipid species. 

Utilization of MSE allowed us to extract mass spectral data of distinct lipid classes based on class-specific 

fragment ions. For example, Figure 2B shows the extracted ion chromatogram (XIC) for an m/z of 

184.07, characteristic for the phosphocholine head group, which enabled the extraction of elution 

profiles for the following lipid classes: lysophosphatidyl choline (Lyso-PC), phosphatidyl cholines 

(PC) and sphingomyelin (SM) lipids. Accurate mass measurements and high mass spectral resolution in 

both the low and the high energy mode allowed for higher confidence in metabolite assignments. 

Figure 2. (A) Full scan mass spectrometry (MS) chromatograms obtained in MSE mode 

using low (top) and high (bottom) energy regimes. Extracted ion chromatogram (XIC) 

obtained with an m/z of 184.0740 (phosphocholine head group) enables localization of the 

elution window for lysophosphatidyl choline (Lyso-PC), phosphatidyl cholines (PC) and 

sphingomyelin (SM) lipid classes. (B) Extracted mass spectra of low- (top) and  

high- (bottom) collision energy for [Lyso-PC (16:0) + H]+ − (C24H51NO7P). The  

low-energy spectrum contains the precursor ion at m/z 496.3417 ([M+H]+), whereas the 

high-energy spectrum is dominated by the fragment ion for the phosphocholine head group 

(m/z 184.0740). 

  

A B 

Lipid identifications were carried out by the Metabosearch software with four embedded metabolite 

databases. There were many m/z values that did not match any of the database entries. This is a 

common phenomenon associated with untargeted metabolomic data and is at least partly attributable to 

possible adduct formation (Na+, NH4
+) and/or in-source fragmentation (loss of H2O, loss of CO2). 

Lipids that showed significant fold changes (Student t-test, p < 0.05) are compiled in Table 1. The 

observed changes of different lipid classes suggest that xanthohumol affects lipid metabolism. 

Based on the fold-change values obtained with the treated vs. control group, the level of plasma 

fatty acyl groups increased in the treated group. In contrast, plasma phosphatidic acid (PA) levels were 

lower in the treated animals compared to the controls. PAs are important intermediates in the biosynthesis 

of triacylglycerols and phospholipids and play an important role as signaling molecules [34]. 

Full scan low energy

Full scan high energy

LPC,PC,SM
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Noteworthy, most of the phosphatidic acids were detected as Lyso-PA species. It was reported that the 

level and the composition of Lyso-PA changes rapidly due to external stimulants and inflammatory diseases. 

Lyso-PAs have been linked to metabolic defects associated with obesity [32,35]. Obesity is a chronic 

inflammatory disease. Under conditions of inflammation, phospholipases are activated and hydrolyze 

the sn-1 (PLA1) or sn-2 (PLA2) acyl bond of phospholipids [36,37]. The ratio of PC/Lyso-PC has been 

reported as an indicator for inflammation [38]. We examined the sum of the normalized response of 

the PC/Lyso-PC ratio for the control and high dose group, and about a 10%–20% variation for the 

PC/Lyso-PC ratio was observed with the high dose treatment. For example, the fold change 

(treated/control) for the PC/Lyso-PC ratio between PC (18:0/18:3) and Lyso-PC (18:0) was calculated to be 

1.2, which suggests that high dose treatment with xanthohumol reduced inflammation. 

Table 1. Differential lipids in control vs. treated groups. Metabolites with identification 

probability < 0.05 and a fold change (FC) threshold > 1.5, with a mass error < 5 ppm, were 

selected as significant features in both positive and negative ionization modes. Comparison 

of the distributions of differential lipids within the control and high treatment groups are 

provided as box-and-whisker plots in Supplementary Figure 4. Putative compound identifications 

were based on the accurate mass measurements and confirmed by high energy fragmentations. 

Putative metabolites 
Up-/down-
regulation 

(T/C) 
m/z 

Molecular 
formula 

Mass error 
(ppm) 

Detected 
fragments 

Hexadecanedioic acid ↑ 285.206 C16H30O4 −2.45 [M–H–H2O]− 
Lauroyl–EA ↓ 244.228 C14H29NO2 2.87 [M+H–H2O]+ 
Octadecanedioic acid ↑ 313.237 C18H34O4 −3.51 [M–H–H2O]− 
PA(18:1/0:0) ↓ 435.254 C21H41O7P 4.82 [FA 18:1–H]−  
PA(18:2/0:0) ↓ 433.236 C21H39O7P −1.15 [FA 18:2–H]−  
PA(20:4/0:0) ↓ 457.235 C23H39O7P −3.5 153 [C3H6PO5]

− 
PA(O–16:0/18:2) ↓ 657.485 C37H71O7P −1.67 [FA 18:2–H]− 

PG(18:1/0:0) ↓ 509.287 C24H47O9P −2.55 
(153 [C3H6PO5]

−), 
[FA 18:1–H]− 

PI(18:3/0:0) ↑ 593.273 C27H47O12P 0.34 153 [C3H6PO5]
− 

PI(P–18:0/22:4) ↑ 897.583 C49H87O12P −3.57 153 [C3H6PO5]
− 

PS(18:4/22:6) ↓ 826.464 C46H70NO10P −3.62 
(153 [C3H6PO5]

−), 
[FA 22:6–H]− 

PS(20:1/22:6) ↓ 862.559 C48H80NO10P −0.35 [M+H–185]+ 
Sphingosine–1–
phosphate 

↓ 378.24 C18H38NO5P −4.49 
(79 [PO3]

−), (97 
[H2PO4]

−)  

T/C—treated vs. control; m/z—mass to charge ratio; PA—acylglycerophosphate; PG—phospho-glycerol;  

PI—phospho-inositol; PS—phospho-serine; EA—ethanol amine; FA—fatty acid. 

Other lipid classes that appeared to be significantly dysregulated in the treated groups are 

glycerophospho-glycerols (PG), phosphatidyl serines (PS) and glycerophospho-inositols (PI). Taken 

together, the metabolome changes suggest that xanthohumol in the obese Zucker (fa/fa) rat alters the 

levels of circulating phospholipids. Up-/down-regulation of these lipid classes in the xanthohumol-treated 

group is consistent with the findings in a previous study that reported that xanthohumol alters cholesterol 
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and bile acid metabolism, as well as lowers the plasma triglyceride levels of obese rats [39]. Dicarboxylic 

fatty acids are the products of fatty acid metabolism and can be found in high abundance when mitochondrial 

beta oxidation is dysfunctional [40]. We found significantly decreased levels of dicarboxylic acids in 

the plasma samples from xanthohumol-treated animals, which may support the notion that xanthohumol 

treatment enhances the mitochondrial beta oxidation process. These findings agree with the recently 

published rat plasma and cell culture studies conducted by Kirkwood et al. with similar XN treatments [41]. 

2.2. Traveling Wave Ion Mobility Mass Spectrometry (LC-IMS-MSE Analysis) 

During the last few years, there has been a steady increase in the use of ion mobility mass 

spectrometry (IMS-MS) for the rapid separation of metabolites in complex mixtures [42]. Technical 

advancement in instrument design and modern electronics has enabled continuous improvements in the 

resolution of the ion mobility device. The combination of ion mobility separators and high resolution 

mass analyzers is poised to impact and advance the field of metabolomics [12]. The inclusion of ion 

mobility separations to complex mixture analyses is twofold: first, ion mobility separation expands the 

separation space by adding an orthogonal dimension of separation to chromatographic separations; 

second, ion mobility spectrometry enables the extraction of collisional cross sections and, hence, provides 

an additional level of specificity to structure elucidations. The number of applications of IMS-MS for 

the advanced structure analyses of metabolites of small molecule drugs is growing and includes the 

elucidation of the hydroxylation and glucuronidation patterns of small molecule drugs [43], applications to 

untargeted metabolome analyses [44], lipid analyses [45,46] and carbohydrates [47–49]. In this report, we 

applied travelling wave ion mobility in combination with MSE acquisition (IMS-MSE) to reduce the 

congestion of ion signals of lipids that were insufficiently separated under the applied LC conditions. 

Figure 3 shows an example of a 2D image plotted with drift time vs. retention time, for a plasma 

sample from the xanthohumol (high dose)-treated group. Ion mobility separation facilitated the 

detection of low abundant lipid ions by separating the lipid ions from matrix ions and other spectral 

interferences. As described earlier, most of the lipid classes with a polar phosphocholine head group 

co-eluted, because of the relatively short LC gradient used in this study. The additional separation 

space provided by ion mobility enabled the separation of lipid classes that co-eluted at the 

chromatographic scale, leading to mass spectral overlap and data crowding. As shown in Figure 3, 

post-acquisition spectral extraction of the two regions marked in the 2D image enabled the 

interrogation of the distinct lipid classes with minimal spectral interference. Based on the accurate 

mass measurement, the ion cluster with a drift time distribution centered on seven milliseconds belongs 

to Lyso-PC lipids, whereas the SM lipids show a drift time distribution around 4.75 milliseconds. PC and 

SM share the same characteristic fragment ion with the loss of the polar phosphocholine head group  

(m/z 184.0739). The main difference between these two lipid classes is the linkage with the phosphatidyl 

head group. In SM lipids, the head group is linked via an N-acyl fatty acid group with a long chain 

hydrocarbon [18]. In a regular MSE experiment, some of the information of these co-eluting 

compounds can be lost due to the differences in ion abundance. Separating these compounds in an 

additional dimension enabled the identification of more low abundance ions and provided relatively 

“cleaner” spectra for both MS and MS/MS analyses. Figure 4 illustrates the high energy fragmentation 

of selected Lyso-PCs isolated from drift time region 2 (see Figure 3). Collision energy ramping from 
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15–45 eV was applied to fragment “all” ions entering into the transfer region, and the resulting spectra 

showed the characteristic fragmentation pattern with the loss of the phosphatidyl choline head group 

(m/z 184.0740) as the dominating ion in all the samples. With the application of high energy, the 

phosphatidyl head group fragmented further to give another characteristic ion with m/z 104.1041 

([C5H14NO]+). Fragmenting after IMS generates product ions that are drift time- and retention time-aligned, 

with their precursors providing more confident metabolite identifications with low or only minimal 

matrix interferences. 

Figure 3. An example of a 2D image (drift time vs. retention time) showing the ion 

mobility separation of different compound classes in rat plasma samples. The encircled 

regions mark the compound classes that eluted within a similar retention time window  

(26–28 min). Drift time-extracted spectra (bottom) show that these two clusters belong to 

different lipid classes, namely Lyso-PC and SM lipids (sphingosine phosphocholines) that 

have drift time distributions centered around 7.02 ms and 4.75 ms, respectively. 

 
  

_ _ _

dt region 1

dt region 2

dt region 1

dt region 1

dt region 2

dt region 2
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Figure 4. MS/MS spectra extracted from the high energy ion mobility spectrometry (IMS) 

function corresponding to drift time region 2 (~7.0 ms), which contains different  

Lyso-PCs. The general structure and the predicted fragmentation positions are given at the 

top. Both saturated and unsaturated ions give rise to the same characteristic fragment ion in 

high energy mode. The top right corner of each spectrum contains the molecular formula 

for the selected Lyso-PC ion. 

 

Ion Mobility-Mass Correlation Analyses 

After identifying the masses, ion mobility correlations were analyzed for various metabolite classes 

identified in the Zucker rat (fa/fa) plasma samples. Figure 5 shows the correlation plots with m/z on the 

x-axis and drift time on the y-axis. A total of five compound classes were assigned for significant 

metabolites detected in the negative and positive ionization modes. These correlation analyses can be 

used as a predictive tool to determine the compound class for an unknown metabolite. If a compound 

class database can be created (varying carbon chain lengths, number of double bonds) using a set of 

standards, these correlation analyses can be used as an additional tool for the verification of a 

metabolite with regard to using the m/z value alone. One of the caveats of this method is the occurrence of 

multiple charge state molecules. Multiply charged ions overlap with one another in the three-dimensional 

conformational space and decrease overall peak capacity. This will result in one analyte being represented 

by several ion signals in the spectrum. Additionally, different adduct formations can lead to false 

identification of compound classes with the same m/z-drift time pairs. 

[Lyso-PC (16:0)+H]+ = C24H51NO7P

[Lyso-PC (18:2)+H]+ = C26H51NO7P

[Lyso-PC (20:4)+H]+ = C28H51NO7P

184

104



Metabolites 2013, 3           

 

 

711

Figure 5. Ion mobility correlation analyses for the significant features identified in  

(A) positive and (B) negative ionization modes. Data were acquired in low energy  

IMS-MSE mode, and the tentative compound identifications were obtained based on their 

accurate mass measurements. 

A B 
PC—phosphatidyl cholines; PG—phospho-glycerol; PI—phospho-inositol; PS—phospho-serine;  

EA—ethanol amine; FA—fatty acid 

3. Experimental Section  

3.1. Sample Preparation 

Samples were prepared according to the method described by Kirkwood et al. [41]. Briefly,  

four-week old male and female Zucker fa/fa rats were purchased from Harlan (Livermore, CA, USA). 

All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity, 

followed by a normal AIN- 93G (15% kcal fat) diet for the last 3 weeks of the study. After a 2-day 

acclimation period following transportation, 48 animals (24 males and 24 females) were divided into 

four treatment groups (n = 6/gender group): control (0 mg xanthohumol /kg body weight (BW)), low 

(1.86 mg xanthohumol /kg BW), medium (5.64 mg xanthohumol /kg BW) and high (16.9 mg 

xanthohumol /kg BW). Animals were euthanized with an overdose of CO2. Plasma metabolites were 

extracted using an ice-cold methanol: ethanol mixture (sample/solvent = 1/4). Sample extracts were 

kept in a −80 °C freezer prior to LC-MS/MS analysis. A quality control (QC) sample was prepared by 

pooling 10 µL from each of the biological samples. 

3.2. LC-MS Analysis 

3.2.1. LC Setup 

High-performance liquid chromatography was performed on a Shimadzu Nexera system (Shimadzu, 

Columbia, MD, USA) coupled to a Synapt G2 HDMS mass spectrometer (Waters, Manchester, UK). 

Chromatographic separations were carried out on an Inertsil phenyl-3 column (150 × 4.6 mm, 5 µm, 

MetaChem Technologies, Torrance, CA, USA) for positive ion and negative ion analysis. Flow rate 

was set to 0.4 mL/min, and the mobile phases consisted of water (A) and methanol (B), both with 0.1% 
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formic acid. The elution gradient was as follows: 0 min, 5% B; 1 min, 5% B; 11 min, 30% B; 23 min, 

100% B; 35 min, 100% B; 37 min, 5% B; and 47 min, 5% B. Column temperature was held at 70 °C, 

and the injection volume was 10 µL. 

3.2.2. MSE 

The inlet (HPLC system) was coupled to a hybrid quadrupole orthogonal time-of-flight mass 

spectrometer (SYNAPT-G2 HDMS, Waters, MS Technologies, Manchester, UK). Electrospray positive 

and negative ionization modes were used for the analysis. A capillary voltage and cone voltage of −3 kV 

and −35 V, respectively, were used in both polarities. The desolvation source conditions were as follows: 

for the desolvation gas, 550 L/h was used, and the desolvation temperature was kept at 400 °C. Data 

acquisition took place over the mass range of 50–1200 Da in centroid MSE mode. The reference 

internal calibrant (Leucine enkephalin, m/z 556.2771 for positive ion mode and m/z 554.2615 for 

negative ion mode) was introduced into the lock mass sprayer at a constant flow rate of 10 µL/min. 

Lock mass acquisition was controlled automatically by the acquisition software, and a reference scan 

was conducted every 10 s lasting 0.3 s. The mass spectrometer was calibrated with sodium formate in 

both positive and negative ionization modes. During this acquisition method, the first quadrupole, Q1, 

is operated in a wide band radio frequency (RF) mode only, allowing all ions to enter the T-wave 

collision cell. Two discrete and independent interleaved acquisition functions are automatically created. 

The first function, typically set at 5 eV, collects low energy or unfragmented data, while the second 

function collects high energy or fragmented data typically set by using a collision energy ramp from 

15–45 eV. In both instances, Argon gas was used for collision-induced dissociation. 

3.2.3. IMS-MSE 

Similar ionization parameters were used to acquire continuum data in IMS-MSE mode. The trap, 

IMS and transfer traveling wave devices were operated with traveling wave amplitudes and velocities 

of 8.0 V and 508 m/s, 40.0 V and 1,000 m/s and 3.0 V and 450 m/s, respectively. The trap/transfer 

cells were operated with argon at a pressure of 2.5 × 10−2 mbar. Nitrogen as the drift gas was 

introduced into the IMS cell to maintain a pressure of 3.1 mbar. The ToF analyzer was operated in the 

V-mode with an average mass resolution of m/Δm 20,000 (full-width at half-maximum definition). 

The ToF pusher and trap-gate frequencies were 18.5 kHz and 92.5 Hz, respectively. Data acquisition 

and processing were performed using MassLynx (V4.1, SCN714), Driftscope (V2.2) and MSE  

viewer (V1.2). 

3.3. LC-MS Data Preprocessing and Statistical Analysis 

MSE data were converted into NetCDF format (Network Common Data Form) using MassLynx 

software (Waters Corp, Milford, MA). Converted data sets were analyzed by the XCMS program using 

the R package (2.15.1) for initial data processing, including peak grouping, retention time alignment 

and filling in missing features [50]. The resulting data matrices were then imported into 

MetaboAnalyst software (2.0) for statistical analysis [51,52]. Xanthohumol and its related metabolites 

were excluded from the sample list prior to statistical validation [31,33]. Features in a data matrix were 
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filtered based on relative standard deviation (RSD) of whole intensity values, and log transformation and 

auto-scaling were incorporated to ensure equal contributions from each variable to the models. Partial 

Least Square Discriminant Analysis (PLS-DA) was performed to identify discriminating features 

between control treatment groups. Data visualization using unsupervised, two-way hierarchical 

clustering was performed using the Ward algorithm using the Euclidian distance on the normalized 

metabolites. A Student t-test was performed for statistical comparison between control and high dose 

rat samples, and a p-value of 0.05 or less was considered significant. Significant features were selected 

based on the p-value (p < 0.05) and fold change threshold (FC > 1.5). MetaboSearch was used to 

perform m/z-based searches simultaneously against the four major metabolite databases: Human 

Metabolome Database (HMDB), Madison Metabolomics Consortium Database (MMCD), Metlin and 

LipidMaps [53]. Finally, the compound assignments were confirmed by matching the high energy MSE 

data with the reported and predicted fragmentation patterns for selected metabolites. 

4. Conclusions 

Application of MSE and IMS-MSE for untargeted metabolomics has been demonstrated for plasma 

samples obtained from obese Zucker (fa/fa) rats that were treated with different oral doses of 

xanthohumol. Data-independent MSE allowed the acquisition of both low energy and high energy 

spectra in the same analysis. Addition of ion mobility as an additional separation dimension enabled 

the detection and identification of low abundant sphingolipids in a congested mass spectral region. 

Based on the dose response studies, the differential metabolites identified confirmed the anti-inflammatory 

properties of xanthohumol and further suggest that xanthohumol affects lipid metabolism in obese 

Zucker (fa/fa) rats. 
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