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Objective. To identify trastuzumab-resistant genes predicting drug response and poor prognosis in human epidermal growth
factor receptor 2 positive (HER2+) breast cancer. Methods. Gene expression profiles from the GEO (Gene Expression
Omnibus) database were obtained and analyzed. Differentially expressed genes (DEGs) between the pathological complete
response (pCR) group and non-pCR group in a trastuzumab neoadjuvant therapy cohort and DEGs between Herceptin-
resistant and wild-type cell lines were detected and evaluated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways analyses were performed to select the functional hub genes. The hub genes’ prognostic power was
validated by another trastuzumab adjuvant treatment cohort. Results. Fifty upregulated overlapping DEGs were identified by
analyzing two trastuzumab resistance-related GEO databases. Functional analysis picked out ten hub genes enriched in
mitochondrial function and metabolism pathways: ASCL1, CPT2, DLD, ELVOL7, GAMT, NQOI, SLC23A1, SPR, UQCRB, and
UQCRQ. These hub genes could distinguish patients with trastuzumab resistance from the sensitive ones. Further survival
analysis of hub genes showed that DLD overexpression was significantly associated with an unfavorable prognosis in HER2+
breast cancer patients. Conclusion. Ten novel trastuzumab resistance-related genes were discovered, of which DLD could be
used for trastuzumab response prediction and prognostic prediction in HER2+ breast cancer.

1. Introduction

HER2 (human epidermal growth factor receptor 2) positive
breast cancer accounts for 20-30% of the total primary breast
cancer population [1]. HER2 positive (HER2+) patients were
traditionally correlated with the poor outcome before the
discovery of trastuzumab, a monoclonal antibody targeting
to suppress HER2 activity [2]. Until now, trastuzumab is still
the first-line therapeutic drug for treating HER2+ breast
cancer patients [3]. Trastuzumab can immensely increase
the clinical prognosis of primary HER2+ breast cancer and
metastatic HER2+ breast cancer [4]. However, the resistance

of trastuzumab is a major impediment to impairing its effi-
cacy for patients. So, further identification of genomic alter-
ations of trastuzumab insensitivity is crucial to provide
potential biomarkers for precise treatment of trastuzumab
and to dig novel therapeutic strategies.

Gene profiling and signatures are utilized to quickly
detect differentially expressed genes (DEGs), which have sig-
nificantly promoted the progress of tumor research during
the past decades. A few studies have analyzed the predictive
and prognostic value of transcript sequencing-based genes
from breast cancer patients. Through analysis of genome-
wide expression profiling, Sotiriou et al. found out that
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topoisomerase II-alpha (TOP2A) expression could effectively
predict the response of anthracycline (epirubicin) for estro-
gen receptor- (ER-) negative breast cancer patients who
received neoadjuvant chemotherapy (NCT) [5]. Addition-
ally, a 4-microRNAs-based signature was found to be of sig-
nificant value in predicting the pathological complete
response (pCR) for basal-like triple negative breast cancer
(TNBC) breast cancer patients [6], and a 17-gene signature
was found to have an excellent predictive and prognostic role
in TNBC patients who receive anthracycline-based NCT [7].
However, a few studies were conducted to identify gene sig-
natures predicting trastuzumab sensitivity for HER2+
patients. Hence, we performed a profound analysis using
integrated bioinformatic methods for massive public data.
Ultimately, we identified essential genes that could predict
the therapeutic sensitivity of trastuzumab in HER2+ patients,
which is of great clinical significance.

With the widespread application of high-throughput
techniques, GEO (Gene Expression Omnibus) provides a
platform that includes millions of datasets, tissues, and cell
samples to analyze public gene expression. This allowed
gene analysis from discovering molecular biomarkers and
classifying disease by comparing phenotypes. Our study first
calculated the DEGs by drug response in a trastuzumab neo-
adjuvant treatment cohort in GEO databases. We also found
another DEG cluster between Herceptin-resistant and wild-
type cell lines. We identified an upregulated gene set with
DEGs based on the overlapping analysis. Several functional
evaluations revealed that 10 DEGs were related to mitochon-
dria, identified as hub genes. The survival analysis of the hub
genes in another trastuzumab adjuvant cohort demonstrated
that only DLD overexpression was significantly associated
with poor outcomes. Further survival and immune studies
explored that DLD may be discovered as a biomarker for
trastuzumab response prediction and HER2+ breast cancer
prognosis assessment.

2. Methods

2.1. Data Collection. The NCBI- (National Center for Bio-
technology Information-) GEO datasets GSE62327,
GSE15043, and GSE58984 were searched using “trastuzu-
mab” and “breast cancer” as keywords. GSE62327 contains
the RNA-seq data and clinical information, especially drug
responses to different neoadjuvant therapy. We chose 6
patients with pCR and 18 patients with non-pCR in patients
who used trastuzumab as neoadjuvant therapy. GSE15043
comprises the RNA-seq data of 8 Herceptin-resistant breast
cancer cell lines and 2 wild-type breast cancer cell lines.
GSE58984 has the RNA-seq data and clinical information
from a cohort of 94 patients who used trastuzumab as adju-
vant therapy. All microarray data were obtained from the
GEO database: https://www.ncbi.nlm.nih.gov/geo/. The raw
data were downloaded as MINiML files.

The RNA-sequencing data of all upregulated genes and
corresponding clinical information were downloaded from
the cancer genome atlas (TCGA) dataset (https://portal.gdc
.com) in HER2+ breast cancer despite the status of hormone
receptors. Finally, 185 samples were chosen. Counting data
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is converted to transcripts per million (TPM) and normal-
ized log2 (TPM+1) while keeping clinical information intact.

2.2. Identification of DEGs (Differentially Expressed Genes).
The “limma” R package was used to compare the genome
expression profile of GSE62327 and GSE15043. In
GSE62327, DEGs between the pCR and non-pCR group with
a false discovery rate (FDR) <0.05 were picked. In GSE15043,
DEGs between wild-type and Herceptin-resistant breast can-
cer cell lines with an FDR <0.05 were chosen. DEGs associ-
ated with overall survival (OS) were assessed using a
univariate Cox proportional hazard regression model analy-
sis. Volcano plots and forest plots were constructed using
ggplot2 packages. The overlapping DEGs were drawn in a
Venn diagram using the “VennDiagram” R package.

2.3. Functional Enrichment Analysis. The “clusterProfiler” R
package was used to conduct Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
analysis, and GO and KEGG pathways’ network figure.
The network’s top nodes with the most connectivity lines
were identified as hub genes.

2.4. Construction of PPI (Protein-Protein Interaction) Network.
The PPI networks for overlapping DEGs were conducted by
the STRING database (version 11.5) and Cytoscape software
(version 3.9.1). The top nodes with mitochondrial function
were identified as hub genes.

2.5. Mitochondrial Proteins and Pathways Annotation.
The annotations of mitochondrial-related genes were
interpreted by MitoCarta3.0 downloaded from https://
pubs.broadinstitute.org/mitocarta/mitocarta30-inventory-
mammalian-mitochondrial-proteins-and-pathways.

2.6. Validation and Screening of Hub Genes. To confirm
the prognostic effect of hub genes in patients using trastu-
zumab as adjuvant therapy, survival analyses were carried
out in GSE58984 using the hub genes’ profile. The distant
disease-free survival (DDFS) of each hub gene was calcu-
lated by Kaplan-Meier analysis with the log-rank test.
The Kaplan-Meier curves were drawn using the “survimi-
ner” R package.

2.7. Estimate the Proportion of Immune and Cancer Cells
(EPIC). Estimation of immune fractions of DLD was deter-
mined through HER2+ breast tissue in TCGA database
using EPIC by R package “GfellerLab/EPIC.” The student ¢-
test was calculated and visualized using R software.

2.8. Statistical Analysis. Wilcoxon rank-sum test was used
to compare the gene expression between two groups.
Kruskal-Wallis test was used to compare the gene expres-
sion among different groups. The OS, disease-specific sur-
vival (DDS), and progress-free interval (PFI) between
other groups were calculated by Kaplan-Meier analysis with
the log-rank test. Spearman’s correlation analysis was used
to describe the correlation between quantitative variables.
All statistical analyses were performed with R software (Ver-
sion 4.1.3). All P values were two-tailed unless otherwise
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F1GuRrE 1: Flow chart of data collection and screening of trastuzumab-resistant gene DLD. GSE62327 and GSE15043 were selected to find
potential trastuzumab resistance genes. Then, we carried out the functional analysis and figured out ten hub genes. GSE58984 was
chosen as the prognostic validation cohort of hub genes. Finally, DLD was discovered. The detail of data collection was demonstrated in

the methods part.

TaBLE 1: A total of 86 DEGs were picked from 2 GSE62327 and GSE10543, including 50 upregulated and 38 downregulated genes.

DEGs

Gene names

ZHX2, RIDA, SPR, GAMT, LACTB2, MYRIP, TATDN1, FBXO15, CRIP1, MYBLI1, MRPL15, NPRL2, ECI2, ELOVL7,

Upregulated

TUBAL3, ZCCHCI10, UPKIA, SLC23A1, MED11, RAB27B, DCAF10, GFRA1, DLD, RIMS2, TMEM150A, IK, PMAIP],
EIF1AX, UQCRB, PTPRN2, RNF125, NQOI, INPP4B, PJA2, USP38, ARHGAP5, UQCRQ, SMIM19, CPT2, SSTR1,

CSTF2T, SLC25A46, ESCOI1, ACSLI, TFEC, BOLAI, COLEC12, TM2D2, SLAIN1, STOX1
LTF, SLC4A11, OSMR, SLC13A3, BPIFB2, PCDHB4, RBP1, CSRP2, PLA2G5, ATP11A, RDH10, KANK1, MAGIX,

Downregulated

HSD17B6, ZNF350, SZT2, LTBP1, PGM1, GMDS, SCMHI, ARHGAP44, SLPI, MBNL2, FIGN, SUSDI1, ZNF341,

TRIM38, LIMKI, PTPN14, FZD1, RASAL2, EGFR, RAPH1, COL26A1, KCTD7, GALNTI12, CDCA7L, COPS7B

DEGs: differentially expressed genes.

specified, and P values less than 0.05 were considered statis-
tically significant.

3. Results

3.1. Identify DEGs in Trastuzumab Neoadjuvant Therapy
Cohort and Herceptin-Resistant Cells. Twenty-four patients
from GSE62327 were assigned to the “pCR” group (n=6)
and “non pCR” group (n = 18) by the response to trastuzu-
mab monotherapy as neoadjuvant therapy at the pathologi-
cal level (Figure 1). The detailed clinical information of
these patients was summarized (Supplementary Table 1). In
another queue, 10 cell lines from GSE15043 were divided into
the “wild-type” group (n =2) and the “Herceptin-resistant”
group (n=38) (Figure 1). We compared the whole-genome
expression profile between groups in each cohort. A total of
399 DEGs from GSE62327 and 2250 DEGs from GSE15043
were detected, respectively (Table 1). The volcano plots of

the DEGs were presented in Figure 2(a) (p < 0.05). The Venn
diagrams (Figure 2(b)) obtained 50 upregulated DEGs and 38
downregulated DEGs in common. Most upregulated over-
lapping DEGs (31/50, 62%) were overexpressed in tumor tis-
sues compared to adjacent nontumorous tissues in TCGA
datasets (Figure 2(c)). In turn, the majority of the downregu-
lated overlapping DEGs (31/38, 81.56%) had a lower expres-
sion level in tumor tissues (Figure 2(c)). The univariate Cox
proportional hazard regression analysis of all overlapping
DEGs was performed (Figures S1(a)-S1(b)). The trastuzu-
mab resistance-related DEGs did not provide a unified prog-
nostic value in each group. There were more significant
results in the upregulated group than downregulated ones
(Figure 2(d)), so we focused our attention on upregulated
genes.

3.2. Conduct Functional Analysis of Upregulated DEGs and
Find out Hub Genes. GO enrichment analysis and KEGG
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FIGURE 2: Demonstration of the DEGs in 2 GEO datasets and identification of overlapping genes. (a) Volcano plot of DEGs in GSE62327
and GSE5043. Red dots: upregulation; blue dots: downregulation; grey dots: non-differentially expressed genes. (b) Venn diagram to identify
the common upregulated and downregulated DEGs in two cohorts. (c) Pie charts to compare expression in tumor tissues and adjacent
nontumorous tissues in 50 upregulated DEGs and 38 downregulated DEGs separately. (d) Forest plots to demonstrate the univariate Cox
regression analysis results between DEGs expression and OS. The most significant 15 DEGs were shown. DEGs: differentially expressed

genes.
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F1cure 3: Construction of DEGs’ GO and KEGG network and identification of hub genes. (a) Top 5 terms in GO pathway enrichment
results of upregulated and downregulated DEGs separately. Blue charts: downregulated DEGs enrichments. Red charts: upregulated
DEGs enrichments. (b) Top 5 terms in KEGG pathway enrichments results of upregulated DEGs. (c) A total of 10 hub genes via GO
and KEGG network. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; BP: biological process; CC: cellular

component; MF: molecular function.

pathway analysis was carried out to elucidate the biological
functions and pathways of the upregulated DEGs. The
GO analysis demonstrated that upregulated DEGs were
significantly enriched in mitochondrial-related terms
(Figure 3(a)), such as mitochondrial electron transport,

respiratory chain complex III, and electron transfer activ-
ity. According to the GO analysis, the KEGG pathway
analysis of upregulated DEGs (Figure 3(b)) also proved
that they participated in many energy metabolism path-
ways. The protein-protein interaction (PPI) network among
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TaBLE 2: GO and KEGG analysis terms of DEGs in network.

Ontology ID Description Gene ratio Gene

BP GO:0035384 Thioester biosynthetic process 3/44 DLD, ACSL1, ELOVL7

BP G0:0071616 Acyl-CoA biosynthetic process 3/44 DLD, ACSL1, ELOVL7

BP GO:0006732 Coenzyme metabolic process 6/44 DLD, ACSL, GAMT, SPR, SLC23A1, ELOVL7
CcC GO:0005750 Mitochondrial respiratory chain complex III 2/45 UQCRB, UQCRQ

CcC GO:0045275 Respiratory chain complex IIT 2/45 UQCRB, UQCRQ

CC G0:1990204 Oxidoreductase complex 3/45 DLD, UQCRB, UQCRQ

MF GO0:0009055 Electron transfer activity 4/43 NQOI, DLD, UQCRB, UQCRQ

MF GO:0008121 Ubiquinol-cytochrome-c reductase activity 2/43 UQCRB, UQCRQ

ME GO:0016681 Oxidoreductase activity, acting on diphenols and 2/43 UQCRB, UQCRQ

related substances as donors, cytochrome as acceptor

KEGG hsa01212 Fatty acid metabolism

3/23 CPT2, ACSL1, ELOVL7

the DEGs also indicated that mitochondrial-related genes
play hub gene roles (Figures S2(a)-S2(b)). To further investi-
gate which part of genes plays the most critical role, the GO
and KEGG network with nodes and connectivity lines was
performed (Figure 3(c)). The top-ranked linker nodes were
ASCLI1, CPT2, DLD, ELVOL7, GAMT, NQOI, SLC23Al,
SPR, UQCRB, and UQCRQ, which were defined as hub genes
cluster (Figure S2C). The enrichment ID table of hub genes
also demonstrated the recurring keyword “mitochondrial”
(Table 2). To explore the mitochondrial-related upregulated
DEGs’ function, we searched the hub genes in MitoCarto 3.0
database (Supplementary Table 2). Interestingly, we found
that these genes are widely related to metabolism, mitochon-
drial central dogma, mitochondrial dynamics and surveil-
lance, OXPHOS, etc. During all related genes, DLD had been
mostly labeled (Figure S2(d)).

3.3. Validate Prognostic Effect of the Hub Genes in
Trastuzumab Adjuvant Therapy Cohort. We further tested
their prognostic robustness in an adjuvant treatment cohort
to determine if the hub genes could predict the prognosis. In
GSE58984, 94 patients received trastuzumab as adjuvant
treatment (Supplementary Table 2). The cohort also offered
DDFS information, allowing us to test hub genes’ prognostic
value (Figures 4(a)-4(j)). Among ten hub genes, high
expression of ACSL1, DLD, ELVOL7, and SPR increased
the risk of distant disease relapse. To our interest, only
patients with DLD overexpression showed a significantly
reduced DDFS compared to the low expression group
(HR =3.54, P=0.047).

3.4. Explore DLD in Breast Cancer and HER2 Overexpression
Subtype. To make in-depth knowledge of DLD, we further
compared breast cancer tissues and adjacent normal tissues
in TCGA breast cancer patients (Figure 5(a)). The DLD
expression exceeded in the adjacent normal tissue than in
tumorous tissues. We also made correlation analysis strati-
fied by DLD expression level in the T stage, N stage, M stage,
pathological stage, histological type, ER status, HER2 status,
PAMS50 subtypes, menopause status, and age (Table 3). As a

result, DLD expression level was significantly associated with
M stage, age, and histological type (Figures 5(b)-5(d) and
S3(a)-S3(e)). In survival analysis of the TCGA cohort, the
high expression of DLD was associated with an increased
risk of death and relapse (Figures 5(e) and S3(f)). We also
performed a survival analysis of DLD, especially in those
with HER2 overexpression (Figures 5(f) and S3(g)). In par-
ticular, the survival analyses showed that DLD was a more
sensitive index in the HER2 overexpression subtype. More-
over, we also evaluated the immune landscape of DLD in
the EPIC algorithm. EPIC estimated scores revealed that
NK cells had the most significant correlation with DLD
expression in HER2+ BRCA (Figure 5(g)). DLD had a nega-
tive correlation with NK cells (r = —-0.333, P < 0.001), while
CD4+ T cells (r=0.378, P<0.001) and CD8+ T cells (r =
0.268, P < 0.001) had a positive correlation (Figure 5(h)).

4. Discussion

The widespread application of trastuzumab for HER2+
breast cancer patients significantly increased patients’ metas-
tatic status and prognosis. However, a considerable number
of people will develop trastuzumab insensitivity or resis-
tance. Thus, our study first discovered a 10-gene signature
that could predict the pCR rate of patients who received
trastuzumab as a neoadjuvant therapeutic drug. Moreover,
we also found that one of 10 genes, DLD, could be the pre-
dictive factor for the DDFS of HER2+ patients who received
trastuzumab as postoperative adjuvant therapy. Totally, our
study is the first one to uncover the trastuzumab-related
gene both for neoadjuvant and adjuvant trastuzumab
therapy.

Our study analyzed one GEO database based on the
HER2+ breast cancer tissues of patients who received single
trastuzumab therapy and one GEO database based on HER2
+ cell lines, which are trastuzumab-resistant. Ultimately, we
identified 86 DEGs with 50 upregulated genes and 38 down-
regulated genes in all three GEO databases. Then, we per-
formed GO enrichment analysis and KEGG pathway
analysis using genes upregulated. The pathways shown in
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FIGURE 4: The distant disease-free survival (DDFS) analysis of 10 hub genes in GSE58984. Only patients with overexpression of DLD had a

reduced DDFS compared to the low expression group (P < 0.05).

GO enrichment were oxidoreductase complex, mitochon-
drial ATP synthesis coupled electron transport, respiratory
chain complex, and mitochondrial respirasome pathways.
And KEGG pathway analysis involved the metabolic path-
way, fatty acid pathway, and oxidative phosphorylation
(OXPHOS). Tan et al. reported that glycolysis is negatively
linked to trastuzumab sensitivity [8]. Yan et al. found that
OXPHOS enhancement is associated with trastuzumab
resistance [9]. Our work disclosed fatty acid pathway is
involved in trastuzumab resistance. Other studies also
reported that fatty acid metabolism-associated proteins
overexpressed in HER2-positive breast cancer cell lines and
tumor sample [8]. Still, the exact function and potential
molecular mechanisms of fatty acid contributing to trastuzu-
mab resistance are worth and necessary for profound
investigation.

Additionally, 10 hub DEGs were further determined.
DLD (dihydrolipoamide dehydrogenase) was negatively

associated with pCR rate in HER2+ patients receiving trastu-
zumab neoadjuvant therapy and DDES in HER2+ patients
receiving trastuzumab as postoperative adjuvant therapy.
So, DLD might be a trastuzumab resistance-related gene,
and its function and underlying mechanism in trastuzumab
resistance need further exploration. Besides, high DLD
expression could predict the shorter overall survival in
HER2+ breast cancer patients. The immune analysis also
revealed that the immune microenvironment is relevant to
DLD expression.

Based on these results, we speculate that DLD possibly
is the key regulated gene in HER2+ breast cancer patients.
DLD, a class-I pyridine nucleotide-disulfide oxidoreductase
family member, is a mitochondrial enzyme. It is responsible
for decarboxylating pyruvate to form acetyl-CoA during
glucose metabolism and the production of mitochondrial
adenine triphosphate (ATP) [10]. In eukaryotes, DLD plays
an essential role in energy metabolism. DLD variants could
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TCGA cohort. (g) The immune landscape of DLD in HER2+

BRCA based on EPIC immune algorithm. (h) The correlation between DLD expression and NK cells, CD4+ T cells, and CD8+ T
cells. IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; TPM: transcripts per million; ns: nonsense; #P < 0.05; #*P < 0.01;

and #** P <0.001.

cause dihydrolipoamide dehydrogenase deficiency (DLDD).
People who suffer from DLDD have lactic acidosis and
neurologic deterioration due to oxidative metabolism
defects [11]. There only exist a few studies about the super-
ficial effect of DLD in cancers. For example, downregula-
tion of DLD in melanoma could inhibit cell proliferation
by regulating energy metabolism [12], while DLD overex-
pression in head and neck cancer (HNC) cells could induce
ferroptosis [13]. However, in DLD, as a mitochondrial-
related gene, its roles in breast cancer are poorly under-
stood. Prior studies have noted that mitochondrial dysfunc-
tion and dynamics are closely correlated with breast cancer
progression and chemosensitivity [14-17]. A strong rela-
tionship between ATP synthase and resistance to HER2-
targeted antibody therapies has been reported [9]. However,

there is no research exploring the role of DLD in breast
cancer, let alone HER2+ breast cancer. Therefore, exploring
how DLD regulates mitochondrial energy metabolism to
mediate trastuzumab resistance in HER2+ patients is
meaningful.

To interpret our results, two limitations still need to be
considered. First, our study only enrolled one GEO dataset,
which includes HER2+ breast cancer patients receiving tras-
tuzumab as neoadjuvant therapy, and one GEO dataset,
which includes trastuzumab-resistant cells and normal cells.
We need to enroll more GEO datasets to dig trastuzumab-
resistant genes. Second, patients in the GEO dataset who
received postoperative adjuvant therapy did not receive tras-
tuzumab as a single therapeutic drug and lacked more
survival-related information.
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TaBLE 3: Correlation between the expression level of DLD and clinicopathological characteristics in BRCA.
Characteristic Low expression of DLD High expression of DLD P
n 541 542
T stage, n (%) 0.060
T1 135 (12.5%) 142 (13.1%)
T2 311 (28.8%) 318 (29.4%)
T3 83 (7.7%) 56 (5.2%)
T4 12 (1.1%) 23 (2.1%)
N stage, n (%) 0.541
NO 262 (24.6%) 252 (23.7%)
N1 168 (15.8%) 190 (17.9%)
N2 60 (5.6%) 56 (5.3%)
N3 41 (3.9%) 35 (3.3%)
M stage, n (%) 0.019
MO 436 (47.3%) 466 (50.5%)
Ml 8 (0.9%) 12 (1.3%)
Pathologic stage, n (%) 0.540
Stage I 95 (9%) 86 (8.1%)
Stage II 301 (28.4%) 318 (30%)
Stage III 129 (12.2%) 113 (10.7%)
Stage IV 8 (0.8%) 10 (0.9%)
Histological type, n (%) < 0.001
Infiltrating ductal carcinoma 355 (36.3%) 417 (42.7%)
Infiltrating lobular carcinoma 130 (13.3%) 75 (7.7%)
ER status, n (%) 0.204
Negative 110 (10.6%) 130 (12.6%)
Indeterminate 1 (0.1%) 1 (0.1%)
Positive 410 (39.6%) 383 (37%)
HER?2 status, n (%) 0.405
Negative 272 (37.4%) 286 (39.3%)
Indeterminate 8 (1.1%) 4 (0.6%)
Positive 81 (11.1%) 76 (10.5%)
PAMS50, 1 (%) 0.105
Normal 27 (2.5%) 13 (1.2%)
LumA 301 (27.8%) 261 (24.1%)
LumB 91 (8.4%) 113 (10.4%)
HER2 40 (3.7%) 42 (3.9%)
Basal 82 (7.6%) 113 (10.4%)
Menopause status, n (%) 0.154
Pre 103 (10.6%) 126 (13%)
Peri 19 (2%) 21 (2.2%)
Post 367 (37.8%) 336 (34.6%)
Age, median (IQR) 60 (50, 69) 56 (48, 65) 0.002

Taken together, our present work elucidates a novel gene
signature that can predict the pCR rate of HER2+ breast in
neoadjuvant therapy and the prognosis of HER2+ breast
cancer in adjuvant treatment simultaneously. These hub genes
may influence trastuzumab resistance by regulating
mitochondrial-related metabolism. Moreover, our study high-
lighted the gene DLD as a diagnostic and prognostic factor and
a potential target for HER2+ breast cancer treatments.
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