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Simple Summary: Lichens are a symbiotic association of fungi and algae. As few lichen species can
tolerate high levels of pollution, they are widely used for air-quality monitoring. In this study, we used
the Lichen Diversity Value (LDV), an index based on the diversity of lichens living on trees, to evaluate
the effects of the reconstruction activities occurring in the city of L’Aquila after the 2009 earthquake
that largely destroyed the city centre. We tested if the values of the LDV index changed along the
urban–rural gradient in response to the presence of air pollutants produced by reconstruction works.
We also used a rapid analytical technique (Energy-Dispersive X-ray Spectroscopy—EDS) to detect the
main pollutants accumulated in the lichens. We found that the LDVs increased from the city centre
towards suburban areas. The EDS analysis revealed a massive presence of aluminium and silicon
(used in the manufacture of concrete) in the more central areas. Our study suggests that the LDV
index can be profitably used to monitor air quality in urban areas subject to building demolition and
reconstruction, and that EDS may be applied to lichen samples for the rapid detection of the main
pollutants associated with these activities.

Abstract: Lichens are widely used as bioindicators of air quality because of their ability to absorb
chemical pollutants. We used the Lichen Diversity Value (LDV) index to assess the effects of the
urban reconstruction activities in the city of L’Aquila ten years after the 2009 earthquake on air
quality. Sampling was conducted from the city centre (still mostly under reconstruction and closed to
traffic) to suburban areas (where reconstruction is minimal). We tested if the LDV index varied with
distance from the city centre because of the presence of air pollutants produced by reconstruction
works. We also used Energy-Dispersive X-ray Spectroscopy (EDS) to detect the main pollutants
accumulated in the sampled lichens. The LDV increased from the city centre towards suburban areas.
EDS revealed high concentrations of pollutants related to demolition and reconstruction activities,
such as aluminium and silicon (used in the manufacture of concrete), in the more central areas. These
results suggest that the LDV index can be a useful tool to monitor air quality, even on a small scale,
and in urban environments subject to building demolition and reconstruction. Moreover, EDS could
represent a good preliminary analytical technique to identify the air pollutants associated with all of
these activities.

Keywords: biomonitoring; cities; demolition; ecological indicators; Italy; lichen diversity value;
lichens; pollution; urban ecology; urban–rural gradient

1. Introduction

Lichens are a symbiotic association between a fungus, which absorbs water and
minerals from the colonized surface, and one or more partners (algae or cyanobacteria),
which contain chlorophyll and provide carbon compounds from photosynthesis [1–5].
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This association forms a perennial and long-living organism that maintains the same
morphology over time [6]. Lichens grow slowly and do not possess roots, stomas or a
well-developed cuticle [1,2,4,7]. Thus, lichens depend entirely on the deposition of mineral
nutrients on the surface they colonize. All of the elements and ions needed for growth,
but also the contaminants present in the surrounding environment, are passively absorbed
by the lichen’s surface year-round [7–9]. Most lichens are also characterized by a long
lifespan, which allows for the continuous deposition of atmospheric pollutants, making
them excellent organisms for long-term biomonitoring [5,6,9–11]. Owing to these biological
properties, coupled with their widespread presence in a large variety of environments and
the easiness and inexpensiveness of their sampling [12–14], lichens are among the most
studied and used bioindicators of air quality worldwide [5,15–17]. The use of lichens is even
recommended by official programs of pollution assessment in several countries [18,19].

As few lichen species can tolerate high levels of pollution, alterations in lichen as-
semblages, such as the gradual disappearance of a species over a certain time or from
certain sites, are considered indicators of the deterioration of air quality. Comparing lichen
assemblages from polluted sites with those of unaltered areas can provide useful infor-
mation regarding the nature and severity of the anthropogenic disturbance, especially
in urban environments [5,16,20,21]. Qualitative observations, simply based on species
presence/absence, can be improved using more quantitative information obtained by calcu-
lating indices specifically devised for the use of lichens as biological indicators [14,16,22]. In
addition, the analysis of the bioaccumulated substances absorbed and stored in the lichen
thalli can provide further information about the air contaminants [16,23].

On 6 April 2009, a severe earthquake (6.3 on the moment magnitude scale) occurred in
the area including the city of L’Aquila (Central Italy) and destroyed most of its historical
centre, with 67% of buildings declared too damaged to be used [24]. Immediately after
the earthquake, the city centre was forcibly closed to traffic, and residents moved from
their homes to temporary housing units or new towns around the city [25,26]. At the
same time, a program for the reconstruction of the city centre was developed, with the
expansion of some of the pre-existing outskirts and suburbs. The ordinary road system
was largely reorganized: new roads were built, old ones were expanded [26], and many
houses and public buildings were reconstructed. The associated activities of demolition
and reconstruction caused significant amounts of pollutants and dust to be generated by
the building sites nearby, leading to a rapid decrease in air quality [27].

In the present study, we aimed to use epiphytic lichens as a tool to monitor local air
quality degradation caused by building and demolition works ten years after the 2009
earthquake. For this purpose, we evaluated lichen assemblages (characterized by the
Lichen Diversity Value index [10,20]) along an urbanization gradient, from the city centre
(where most of the area is still under reconstruction and partially closed to traffic) to
suburban areas with a reduced degree of reconstruction and a more rural environment.
The almost complete absence of traffic in the city centre is an important characteristic of
this study system, because, under ordinary conditions, traffic is the main source of air
pollution in urban areas. Notably, previous observations in the city centre highlighted the
almost complete absence of lichens, which ensures that the current presence of lichens,
even in the city centre, is the result of a recent, post-earthquake colonization. In addition to
the application of the Lichen Diversity Value index for the assessment of air quality, we
investigated how different pollutants were accumulated along the gradient using Energy-
Dispersive X-ray Spectroscopy (EDS), an analytical technique that allows for the rapid
identification of the chemical elements (and their relative abundance) present in a sample.

Specifically, we tested the following hypotheses: (1) the Lichen Diversity Value index
increased along the urban–rural gradient, with low values in city centre areas strongly
impacted by reconstruction works; and (2) chemicals on lichen surfaces were indicative of
pollutants related to demolition and reconstruction activities.
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2. Materials and Methods

The study was conducted in the municipality of L’Aquila (Abruzzi Region;
70,000 people). The city of L’Aquila is located about 700 m above sea level, in the middle
of the Aterno river valley. Although the total area of L’Aquila municipality is 473.91 km2,
most of the territory is occupied by rural and natural areas, and the urban area is much
smaller, covering less than 15 km2.

L’Aquila is surrounded by the Gran Sasso massif (with average elevations around
2000 m and the highest peak (Corno Grande) reaching 2912 m), the Sirente–Velino chain
(another high-altitude massif, with the highest elevation (M. Velino) at 2487 m) and
the mountain group of Monte Ocre–Monte Cagno (a short chain with the highest peak
(M. Ocre) reaching 2204 m). L’Aquila has a temperate climate influenced by its high
altitude, belonging to the Cfb (temperate oceanic climate) type according to the Köppen–
Geiger classification [28,29]. The average annual temperature is 11.9 ◦C, with a minimum
average annual temperature of 6.5 ◦C and a maximum average annual temperature of
17.3 ◦C; the annual precipitation is 713 mm (data for the period 1951–2000 [30]). From a
bioclimatic point of view, L’Aquila belongs to the oceanic bioclimate [31] (Biondi e Bal-
doni 1995). More specifically, the phyoclimate of L’Aquila is represented by a transitional
oceanic–semicontinental bioclimate with the subhumid hombrotype [32].

For large-scale monitoring programs, ANPA guidelines [33] suggest a sampling design
based on a regular grid of primary and secondary units. Because of the small scale of our
sampling and the constraints of the urban environment, the sampling sites could not be
organized in a regular grid, but followed the urban development of the city. We chose nine
sites along an urban–rural gradient of about 7.2 km from the city centre towards the more
rural suburban areas, passing through areas with high population densities. Sites were
selected at random, with the obvious constraint of the presence of trees. To reduce the
influence of traffic as a pollution source as much as possible, we also avoided sites too close
to very busy roads. The sites were numbered from 1 to 9 according to their distance from
the city centre (corresponding to Site 1). The coordinates of the sites and their distance from
the city centre are given in Table 1. The sites’ locations are shown in Figure S1. Landscape
pictures showing the sites are provided in Figure S2.

Table 1. Geographic location, distance from city centre, Lichen Diversity Value and environmen-
tal quality of the nine sites investigated along the urban–rural gradient in the city of L’Aquila
(Central Italy).

Site Geographic
Location

Distance from
City Centre

(Piazza Palazzo) (m)

Lichen Diversity
Value (LDVS) Environmental Quality Sampled Tree

1 Piazza Palazzo 42.351185 N
13.398683 E 0 27.000 Low naturalness Tilia platyphyllos Scop.

2 Piazza dei Nove Martiri 42.349842 N
13.400554 E 218 0.000 Very high alteration Quercus ilex L.

3 Giovanni XXIII 42.351226 N
13.392293 E 527 34.333 Average naturalness Tilia platyphyllos Scop.

4 Via dei Giardini 42.346035 N
13.398791 E 572 30.000 Low naturalness Cercis siliquastrum L.

5 Via XXIV Maggio 42.341733 N
13.395884 E 1072 33.667 Average naturalness Tilia platyphyllos Scop.

6 Via Colagrande 42.360944 N
13.406858 E 1293 36.333 Average naturalness Aesculus hippocastanum

L.

7 Via Mariana di Poggio di Roio 42.336272 N
13.384677 E 2022 54.667 Very high naturalness Quercus pubescens Will.

8 Via Amiternum 42.366085 N
13.377949 E 2382 18.000 Average alteration Juglans regia L.

9 Doline Monticchio/Ocre 42.312348 N
13.469104 E 7225 52.667 Very high naturalness Ostrya carpinifolia Scop.

Sites 1, 2, 4 and 5 were located in the historical centre, where a consistent number
of buildings have been under restoration and traffic has been virtually absent from the
occurrence of the earthquake to the sampling period. Site 3 was located in a liminal zone,
between the city centre and the immediate outskirts. From site 6 to site 9, sampling was
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conducted in areas open to vehicular traffic. Sites 7 and 9, however, were characterized by
limited anthropic disturbance, being located in countryside areas almost without paved
roads, far from the city centre and scarcely or completely not affected by reconstruction
works. Site 8 was close to a very busy highway. Sampling was conducted between
December 2019 and February 2020.

Lichen sampling was conducted following the general guidelines suggested by ANPA [33].
At each site, epiphytic lichens were sampled from three random trees of the same species
using 50 × 10 cm vertical grids, split up into five 10 cm × 10 cm squares. On each tree,
we positioned four vertical grids, one for each cardinal point, at a height of 100 cm above
the ground. We discarded trees with damaged trunks or irregularities on their surfaces.
Trees were chosen to be as similar as possible in terms of trunk inclination and diame-
ter. With regards to the species (Table 1), we ensured that we used species with similar
bark characteristics (especially pH) among those present in the sampling sites as best as
we could.

Then, we determined and counted the lichen species in each 10 cm × 10 cm square
to calculate the lichen species frequencies, i.e., the number of squares in which a given
species was found (maximum of 20 and minimum of 1). Lichens were identified in the
field using a magnifying lens. Lichens that could not be identified with certainty in the
field were collected and identified in the laboratory using a microscope. Identification was
based on different keys [34–36] and re-checked with ITALIC 7.0 [37]. The nomenclature
follows Nimis and Martellos [37].

For each sampled tree, a Lichen Diversity Value (LDVT) was calculated as the sum of
the average frequencies (number of 10 cm × 10 cm squares occupied) of all lichen species
at each cardinal point [38–40]. The lichen frequencies are given in Table S1.

Additionally, to express the naturalness of each site, we calculated an index of lichen
diversity at the site level (LDVS) as the average of the three LDVTs of the same site [38],
and used the following categories proposed by Nimis [20]:

• LDVS > 50: very high naturalness
• 41 < LDVS ≤ 50: high naturalness
• 31 < LDVS ≤ 40: average naturalness
• 21 < LDVS ≤ 30: low naturalness
• 11 < LDVS ≤ 20: average alteration
• 1 ≤ LDVS ≤ 10: high alteration
• LDVS < 1: very high alteration

We tested if the values of the LDVT and LDVS indices, as well as the number of species
recorded at each site, increased with distance from the city centre as a consequence of the
decrease in air pollution due to reconstruction works using one-tailed Spearman’s rank
correlation tests with α = 0.05. Because of the peculiar characteristics of site 8 (which was
far from the city centre, but close to very busy highways), correlations were calculated both
including and excluding this site.

We investigated whether the species distribution was nested across sites, i.e., the
degree to which lichen assemblages of sites with fewer species were subsets of successively
larger assemblages. Nestedness can be viewed as the spatial outcome of a species pool being
“filtered” by local (site-specific) environmental constraints, with each species’ distribution
among sites determined by its ability to overcome the constraints [41]. Environmental
gradients can generate nested subset patterns if the species with the broadest tolerance
persist throughout the gradient, while others with more limited tolerance are restricted to
one end of it [41]. To assess nestedness, we compiled a presence/absence matrix of species
(rows) per site (columns) and measured the nestedness of this matrix using the spectral
radius [42,43]. Significance was assessed with 100 null matrices using the “proportional
row and column totals” algorithm to calculate the Z-value.

We also took samples of Xanthoria parietina (L.) Th. Fr. and analysed each sample with
a Scanning Electron Microscope with Energy-Dispersive X-ray Spectroscopy (SEM/EDS) to
detect the main elements accumulated on the lichen’s surface. We used this lichen species
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as it is very tolerant to air pollution, and it was found at all sites except for site 2 (where no
lichen was found).

As we preferred to reduce the removal of lichens as much as possible, especially to
not compromise future monitoring, we limited this analysis to a selection of sites represen-
tative of the gradient, and in which Xanthoria parietina was relatively abundant. For these
reasons, this analysis was conducted only for five sites out of the nine sites investigated in
this study.

For this analysis, a Zeiss Gemini 500 Scanning Electron Microscope was used, equipped
with an Oxford Instruments Ultim Max detector for Energy-Dispersive X-ray Spectroscopy.
From each sample of Xanthoria parietina, we took 7–11 measurements of the element percent-
ages depending on the morphology of the observed lichen’s surface. Measurements from
the same sample were averaged prior to analyses. Special attention was paid to searching
for particles of asbestos. SEM/EDS analyses were conducted at the Microscopy Centre
of L’Aquila University, which is included in the Ministry of Health’s list of laboratories
qualified to carry out analyses on asbestos pursuant to Ministerial Decree 14/05/96 within
the “2018–2019 Qualification Program of Asbestos Laboratories”.

To investigate the relationships between the percentages of detected elements and
sites, Principal Components Analysis (PCA) was conducted with the average percentages
of elements as variables and sites as objects. PCA was performed using a singular value
decomposition approach.

Spearman’s rank correlations were calculated with the function cor.test in R 4.1.3
software, whereas PCA was conducted with the function prcomp [44]. Nestedness analysis
was conducted using the software NeD [45,46].

3. Results

A total of seven species of lichens (Table S2) were recorded. The correlation between
the number of lichen species found at each site and the distance from the city centre was
significant (rs = 0.661, p = 0.026).

The Lichen Diversity Values at tree level (LDVTs) increased significantly with distance
from the city centre (rs = 0.505, p = 0.004) (Figure 1a). If site 8 (“Via Amiternum”) was
omitted from the analysis, the correlation became even stronger (rs = 0.790, p < 0.000001).

The Values of Naturalness (LDVSs) increased from the city centre to the rural areas,
although the correlation was marginally non-significant (rs = 0.533, p = 0.074) (Figure 1b, Table 1).
If site 8 was omitted from the analysis, the correlation became significant (rs = 0.881,
p = 0.002).

Out of the nine sampling sites, only two (sites 7 and 9) reached the maximum level
of environmental quality (very high naturalness); the remaining sites showed either aver-
age/low naturality (sites 1, 3, 4, 5 and 6) or average/very high alteration (sites 2 and 8)
(Table 1).

The two sites with very high naturalness were characterized by the presence of all of
the species found at the other sites. Overall, the species distribution across sites (Table S2)
was significantly nested (Spectral Radius = 5.386, Z-score = 3, p < 0.001).

No particles of asbestos were found on the Xanthoria parietina samples examined by
Scanning Electron Microscopy. The chemical analyses of the Xanthoria parietina samples
through Energy-Dispersive X-ray Spectroscopy highlighted the presence of 14 elements
(Figure S3, Table S3), with different proportions between sites. Most of them (C, O, K, S,
Si, Mg, Al, Fe and Ca) were ubiquitous, although their proportions varied between sites
(Figure 2). A few elements (P, Cl, Na, Ti and Br) were not detected at certain sites. C and O
were the most abundant elements everywhere (Figure 2). C accounted for 35.4% to 52.1%
of all detected elements (with an average of 42.7%). Similarly, O accounted for 40.8% to
46.8% of all detected elements (with an average of 43.3%). While C was distinctly more
abundant at site 9, the values of O were more uniformly distributed (Figure 2). Ca and Fe
were most abundant at Sites 1 and 4, while Si prevailed at Sites 6 and 8.
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Figure 1. Relationship between Lichen Diversity Values and distance from the city centre along an
urban–rural gradient in the city of L’Aquila (Central Italy). Lichen Diversity Values were calculated
at: (a) tree level and (b) site level.

The PCA extracted five principal components, with the first two explaining more than
93% of the variance (Table 2).

Table 2. Eigenvalues and percentages of explained variance for the Principal Components (PC)
extracted for the distribution of chemical elements (in percentages) found on samples of the lichen
Xanthoria parietina collected along an urban–rural gradient in the city of L’Aquila (Central Italy).

PC Location Eigenvalue Percentage of
Explained Variance

Percentage of
Cumulative Variance

1 45.091 69.448 69.448
2 15.552 23.953 93.401
3 2.85773 4.401 97.802
4 1.42676 2.198 100.000
5 4.30 × 10−31 6.62 × 10−33 100.000

The examination of the Principal Component loadings (Table 3) and the correlation
coefficients between the original variables and the Principal Component scores (Table 4)
indicated that the first component was positively correlated with the concentrations of Fe
and Ca (and negatively with the concentration of C), whereas the second component was
positively correlated with Si and, to a lesser extent, O.
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Figure 2. Averages weight percentages (Wt%) and standard errors of chemical elements found
on samples of the lichen Xanthoria parietina obtained at sites along an urban–rural gradient in the
city of L’Aquila (Central Italy): (a) carbonium; (b) oxygen; (c) potassium; (d) sulphur; (e) sili-
con; (f) magnesium; (g) aluminium; (h) phosphorus; (i) iron; (j) chlorine; (k) calcium; (l) sodium;
(m) titanium; (n) bromine.

Overall, the PCA results (Figure 3) indicated a distinct separation of sites located in the
most interior part of the urban areas (influenced by high concentrations of Ca and Fe) from
the others, which were mostly aligned along PC1, reflecting the urban–rural gradient. Site 6
was characterized by a high concentration of Si, while site 8 was characterized by O. Site 9,
isolated at the other extreme of the gradient, was characterized by a high concentration of C.



Biology 2022, 11, 1199 8 of 14

Table 3. Loadings of the Principal Components extracted for the chemical elements (in percentages)
found on samples of the lichen Xanthoria parietina collected along an urban–rural gradient in the city
of L’Aquila (Central Italy).

Element PC1 PC2 PC3 PC4 PC5

C −0.903 −0.109 0.044 −0.028 −0.356
O 0.048 0.474 −0.675 0.441 −0.341
K 0.049 −0.100 0.082 0.046 −0.353
S −0.012 0.003 0.044 −0.076 −0.275
Si 0.212 0.547 0.466 −0.295 −0.470

Mg 0.045 0.045 0.147 0.016 −0.216
Al 0.043 0.116 0.079 −0.034 0.113
P 0.004 −0.021 0.010 −0.002 −0.047
Fe 0.277 −0.519 0.251 0.568 −0.374
Cl 0.002 −0.012 −0.023 −0.074 −0.047
Ca 0.233 −0.410 −0.471 −0.615 −0.353
Na 0.000 0.000 0.001 −0.013 −0.013
Ti 0.006 −0.020 0.060 0.045 −0.082
Br 0.000 −0.002 −0.005 −0.006 −5.605 × 10−5

Table 4. Correlations for the Principal Components extracted for the chemical elements (in percent-
ages) found on samples of the lichen Xanthoria parietina collected along an urban–rural gradient in
the city of L’Aquila (Central Italy).

Element PC1 PC2 PC3 PC4 PC5

C −0.997 −0.071 0.012 −0.005 0.103
O 0.142 0.821 −0.501 0.232 0.267
K 0.614 −0.739 0.258 0.103 −0.406
S −0.559 0.095 0.524 −0.635 0.147
Si 0.523 0.792 0.289 −0.129 −0.086

Mg 0.703 0.411 0.579 0.044 −0.473
Al 0.519 0.817 0.238 −0.072 0.087
P 0.299 −0.935 0.191 −0.020 −0.260
Fe 0.646 −0.711 0.147 0.236 −0.421
Cl 0.096 −0.446 −0.358 −0.815 0.755
Ca 0.627 −0.647 −0.319 −0.294 0.282
Na 0.001 −0.073 0.105 −0.992 0.605
Ti 0.275 −0.551 0.695 0.371 −0.839
Br 0.102 −0.492 −0.625 −0.597 0.787

Figure 3. Biplot showing the position of samples of the lichen Xanthoria parietina collected along an
urban–rural gradient in the city of L’Aquila (Central Italy) and analysed for the presence of chemical
elements according to the results of Principal Components Analysis. The biplot shows the position of
each sample in the space defined by the first two Principal Components (93.4% of variance). Arrows
indicate the correlations between the Principal Components and element percentages.
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4. Discussion

Lichens are among the most commonly used bioindicators for monitoring atmospheric
quality because they include many species particularly sensitive to chemical pollution [47–49].
In particular, it is well known that air pollution in urban areas has detrimental effects on
lichen diversity and abundance [50–55], to the point that lichens disappeared from most
polluted cities in the 19th century [56,57].

The most common sources of pollution affecting the air quality of urban areas are
industries, house heating and vehicular traffic [58–61]. Urban areas are, however, highly
dynamic systems because they are subject to the continuous reshaping of buildings and
infrastructure [58,60,62,63]. Urbanization, and particularly urban sprawl, imply not only
the continuous construction of new buildings and streets, but also the demolition of
former ones. These activities are obvious sources of air pollution [64–67]. In general,
construction and demolition activities usually do not occur simultaneously across whole
urban areas, but involve different sectors at different times, so their impacts might be
relatively diluted. However, after catastrophic events (such as natural disasters or wars)
that suddenly destroy large sectors of urban areas, reconstruction works will involve the
virtually synchronous demolition and construction of large portions of the involved areas.
Under such circumstances, massive amounts of pollutants are expected to be emitted to the
atmosphere. This is the case of the city of L’Aquila.

L’Aquila was very severely damaged by an earthquake that occurred in 2009, which
damaged thousands of buildings and rendered homeless around 30,000 people [68]. After
more than ten years, large sectors of the city are still under reconstruction. Because of the
demolition and reconstruction works, the city centre of L’Aquila has remained virtually
inaccessible for this time. This has had two effects on air quality. While former sources
of pollution, represented by vehicular traffic and house heating, virtually disappeared
from many areas (especially the city centre), the same areas were obviously affected by the
substances produced by the reconstruction works.

We found that lichens were very sensitive to these processes. While the disappearance
of former sources of pollution allowed lichens to recolonize the city centre, the current
reconstruction works have had profound impacts on the lichen assemblages. As our study is
retrospective, we do not have specific data regarding the presence of lichens throughout the
urban area of L’Aquila before the earthquake, but anecdotal observations conducted before
the earthquake indicated their almost complete absence (L. Pace, personal observations).

In accordance with our first hypothesis that lichen biodiversity increases along the
urban–rural gradient, we found that both the Lichen Diversity Values (LDVTs) and Values
of Naturalness (LDVSs) increased from the city centre to the rural areas, a result also
paralleled by the variation in lichen species richness. This pattern is consistent with
previous research showing that lichen diversity increases along urban–rural gradients in
response to increasing air quality [69–71]. Notably, we recorded the maximum levels of
environmental quality at only two rural sites far from the city centre, whereas the air quality
in the city centre was relatively poor.

According to a recent study based on lichen sampling on a regional scale, the envi-
ronmental quality of the city of L’Aquila as a whole is between “high naturalness” and
“average naturalness” [72]. Our study substantially confirms this general result, but high-
lights important differences between different sectors of the city.

Nestedness analysis revealed that the species distribution across sites was significantly
nested, which indicated that lichens of assemblages with fewer species were subsamples of
those with more species, and hence that the assemblages found in the city centre (in which
only the most resistant species were present) tended to be subsamples of those of rural
areas. Thus, the main effect of urban pollution is that of filtering species according to their
ability to survive under increasing levels of air pollution. For example, Xanthoria parietina,
Physconia distorta (With.) J.R. Laundon and Physcia adscendens H. Olivier, three species
poorly tolerant to anthropic disturbance [73], were only found at suburban sites, while
more tolerant species (Evernia prunastri (L.) Ach., Melanelixia glabra (Schaer.) O. Blanco, A.
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Crespo, Divakar, Essl., D. Hawksw. and Lumbsch and Pleurosticta acetabulum (Neck.) Elix
and Lumbsch) [73] were widely distributed.

Interestingly, despite its not particularly high quality class, site 5 was characterized
by the presence of the species Parmelina tiliacea (Hoffm.) Hale, Melanelixia glabra and
Pleurosticta acetabulum (otherwise found only at the sites with the highest naturalness). This
site was close to relatively large green spaces, which supports the importance of habitat
characteristics in shaping lichen assemblages [74] and suggests a positive role of urban
green spaces in ameliorating air quality.

The relatively poor quality of air in urban L’Aquila can only be associated with
pollution from vehicular traffic in the case of site 8 (“Via Amiternum”), because all other
sites were in places closed to traffic. The relatively low air quality in areas closed to traffic
can be explained by the presence of pollutants from reconstruction activities, as shown by
the chemical analyses.

Lichens are frequently used as ecological indicators in urban areas, especially to moni-
tor the effects of pollutants produced by industrial activities and vehicular
traffic [49,53,55,75]. However, to the best of our knowledge, our study is the first to
involve the use of lichens to investigate the impact of reconstruction works.

In accordance with our second hypothesis that chemicals on lichen surfaces are in-
dicative of pollution related to reconstruction works, the chemical analyses of samples
of Xanthoria parietina showed the presence of certain elements associated with construc-
tion materials. Namely, the ordination analysis (PCA) clearly separated city centre sites
(Sites 1 and 4), characterized by the presence of Ca and Fe, from more peripherical ones.
CaO represents 63% by mass of Portland cement, and Fe is not only present in cement itself,
but it is also the material of the rebars used in reinforced concrete. Fortunately, scanning
electron microscopy imaging did not reveal the presence of asbestos. Asbestos is an impor-
tant contaminant of urban air [76–78], and we were concerned about the possibility of high
levels of asbestos emitted by demolition and reconstruction works. The absence of asbestos
in our samples might be due to the fact that the majority of the most severely damaged
buildings were constructed before the widespread use of asbestos.

5. Conclusions

Urban areas are subject to various forms of chemical pollution that decrease air quality
with detrimental effects on the most sensitive organisms, such as lichens. We found that the
reconstruction works following the earthquake that hit the city of L’Aquila had important
effects on lichen assemblages. The traffic restrictions imposed by reconstruction works
have allowed lichens to recolonize the city centre. However, at the same time, substances
emitted into the atmosphere by reconstruction works represent a new source of air pollution
with negative effects on lichens. Our study demonstrated the ability of lichens to capture
these phenomena. Although catastrophic events, such as the earthquake of L’Aquila,
are fortunately rare, urban areas are subject to continuous processes of construction and
demolition, and air pollution associated with these activities should be taken into serious
consideration, also for human health.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biology11081199/s1, Figure S1. Location of the sampling
sites (map from Google Earth). The inset shows the position of the city of L’Aquila (red dot) within the
Abruzzi Region (in blue); Figure S2: Street views of the nine investigated sites along the urban–rural
gradient in the city of L’Aquila (Central Italy); Figure S3: Scanning Electron Microscope photographs
and associated Energy-Dispersive X-ray Spectroscopy results for Xanthoria parietina samples collected
at five sites along the urban–rural gradient in the city of L’Aquila (Central Italy). For each site,
microphotographs and spectra of all examined samples are shown in sequence. Sites are numbered
as in Table 1. Table S1: Number of lichen species recorded in each of the five quadrats of the vertical
grids used to sample epiphytic lichens at nine sites (Sites, numbered from 1 to 9) in the city of L’Aquila
(Central Italy). At each site, three trees (numbered from 1 to 3) were sampled, and the grid was placed
at the four cardinal points. Site numbers as in Table 1. Table S2: Presence/absence of lichen species
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recorded at nine sites (Site, numbered from 1 to 9) in the city of L’Aquila (Central Italy). Table S3.
Weight percentages of chemical elements found on samples of the lichen Xanthoria parietina sampled
at five sites along an urban–rural gradient in the city of L’Aquila (Central Italy). Site numbers as in
Table 1. Spectra are given in Figure S1.
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