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Abstract
Purpose The effect of bone marrow mesenchymal stromal cells (BMSCs) and platelet-rich plasma (PRP) on tendon allograft 
maturation in a large animal anterior cruciate ligament (ACL) reconstruction model was reported for the first time. It was 
hypothesised that compared with non-augmented ACL reconstruction, BMSCs and PRP would enhance graft maturation 
after 12 weeks and this would be detected using magnetic resonance imaging (MRI).
Methods Fifteen sheep underwent unilateral tendon allograft ACL reconstruction using aperture fixation and were ran-
domised into three groups (n = 5). Group 1 received 10 million allogeneic BMSCs in 2 ml fibrin sealant; Group 2 received 
12 ml PRP in a plasma clot injected into the graft and bone tunnels; and Group 3 (control) received no adjunctive treatment. 
At autopsy at 12 weeks, a graft maturation score was determined by the sum for graft integrity, synovial coverage and vas-
cularisation, graft thickness and apparent tension, and synovial sealing at tunnel apertures. MRI analysis (n = 2 animals per 
group) of the signal–noise quotient (SNQ) and fibrous interzone (FIZ) was used to evaluate intra-articular graft maturation 
and tendon–bone healing, respectively. Spearman’s rank correlation coefficient (r) of SNQ, autopsy graft maturation score 
and bone tunnel diameter were analysed.
Results The BMSC group (p = 0.01) and PRP group (p = 0.03) had a significantly higher graft maturation score compared 
with the control group. The BMSC group scored significantly higher for synovial sealing at tunnel apertures (p = 0.03) 
compared with the control group. The graft maturation score at autopsy significantly correlated with the SNQ (r = − 0.83, 
p < 0.01). The tunnel diameter of the femoral tunnel at the aperture (r = 0.883, p = 0.03) and mid-portion (r = 0.941, p = 0.02) 
positively correlated with the SNQ.
Conclusions BMSCs and PRP significantly enhanced graft maturation, which indicates that orthobiologics can accelerate 
the biologic events in tendon allograft incorporation. Femoral tunnel expansion significantly correlated with inferior matu-
ration of the intra-articular graft. The clinical relevance of this study is that BMSCs and PRP enhance allograft healing in a 
translational model, and biological modulation of graft healing can be evaluated non-invasively using MRI.
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Introduction

Graft healing after ACL reconstruction consists of ten-
don–bone healing and matrix remodelling (“ligamentisa-
tion”) of the intra-articular graft [13, 15]. Graft remodeling 
can be measured non-invasively using MRI by measuring 
signal intensity of the intra-articular graft (signal–noise 
quotient, SNQ) [7]. Similarly, healing at the tendon–bone 
interface can be evaluated at fibrous interzone (FIZ) on MRI 
[13]. Bone tunnel widening is a concern [27] and allografts 
might be associated with increased tunnel widening [3].

There is a growing body of literature exploring biological 
modulation of graft healing [6]. Mesenchymal stromal cells 
(MSCs) can enhance tissue regeneration by differentiation, 
paracrine effects, or via immunomodulatory activity [1]. 
Platelet-rich plasma (PRP) is a blood derivative that can 
deliver supraphysiologic doses of cytokines and growth fac-
tors [17]. Bone marrow mesenchymal stromal cells (BMSCs) 
[12, 22] and PRP [24] have shown positive effects on graft 
healing in small animals. Evaluation in a large animal is an 
important translational step because it permits human-sized 
grafts and fixation systems to be used [16].

The clinical relevance of this study is that it represents 
the first large animal ACL reconstruction study to report the 
effects of BMSCs and PRP on allograft healing. The purpose 
of this study was to compare the effect of BMSCs and PRP 
on tendon allograft maturation in a large animal model, and 
to determine if MRI can be used to identify biological mod-
ulation of graft healing. The hypothesis was that BMSCs 
and PRP would enhance graft maturation after 12 weeks, 
and graft maturation at autopsy would correlate with graft 
maturation on MRI.

Materials and methods

The research was conducted in accordance with a Project 
License protocol accepted under the UK Home Office Ani-
mals (Scientific Procedures) Act 1986 (licence number 
PF16F4AA0A). This study was approved by the animal war-
fare review board at the Royal Veterinary College. Fifteen 
full-mouthed female lowland Mule sheep (age, 2–3 years; 
weight, 60–75 kg) were included. Animals were randomised 
into three groups (n = 5 animals per group). In group 1, 10 
million allogeneic BMSCs in fibrin sealant (Baxter, Vienna, 
Austria) were applied to the graft (2 million) and bone tun-
nels (4 million per tunnel). In group 2, 12 ml of PRP was 
injected into the graft (4 ml) and the bone tunnels (4 ml 
per tunnel). The control animals in Group 3 received no 
treatment. Post-operatively animals were euthanised after 
12 weeks. Graft maturation was examined using MRI and a 
macroscopic scoring system at autopsy.

PRP preparation

Autologous PRP was prepared using the Endoret®(prgf®) 
Technology (BTI System IV/V; BTI Biotechnology Insti-
tute, Vitoria, Spain). 72 ml of venous blood was obtained 
in 9 ml tubes containing 3.8% (wt/vol) sodium citrate. The 
tubes were centrifuged twice for 8 min at 580 G (1902 rpm) 
at room temperature. The 2 ml of plasma located above the 
buffy coat was collected, with a total PRP volume of 16 ml 
per animal (Fig. 1a, b). The PRP was activated by adding 
calcium chloride (10% wt/vol), which led to gel-like trans-
formation within 5 min. The time between venipuncture and 
surgical delivery was 30 min. In sheep, this technique has 

Fig. 1  a Fibrin sealant at femoral aperture (arrow). b SDFT allograft soaking in PRP. c Intra-osseous injection of PRP into tibia



3680 Knee Surgery, Sports Traumatology, Arthroscopy (2021) 29:3678–3688

1 3

been shown to yield PRP enriched in platelets and reduced 
in leucocytes [21].

BMSC harvest

Bone marrow was aspirated from an adult sheep (age 
2 years). 10 ml of bone marrow was aspirated from two 
regions of the iliac crest into a 20 ml polypropylene tube 
containing 10,000 International Units (IU) heparin sodium 
(Wockhardt UK Ltd, Wrexham, UK). The aspirate was com-
bined with standard growth media, which was high glucose 
Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, 
Paisley, UK), 10% FCS (ThermoFisher, Hemel Hempstead, 
UK) and 1% penicillin–streptomycin (ThermoFisher). The 
aspirate was plated onto T-150 culture flasks and cultured 
at 37 °C in a 5% carbon dioxide  (CO2) incubator. After 
72 h, the media was discarded, and fresh growth media was 
added to supplement the cells that had attached to the flask. 
The cells were detached with 0.25% trypsin–EDTA (Gibco, 
Carlsbad, CA) when they had reached 90% confluence. 
The BMSCs were sub-cultured and the growth media was 
changed every 3 days. 10 million, passage 3–4 cells were 
used in each surgical procedure. Tri-lineage potential—adi-
pogenesis, osteogenesis, and chondrogenesis—of the cells 
was confirmed in vitro prior to surgery.

Superficial digital flexor tendon (SDFT) allograft 
preparation

SDFT were harvested from sheep (age 2–3 years) using a 
previously described technique [8]. The grafts measured 
75–85 mm in length and 7.5–8 mm in diameter and were 
sterilised by gamma irradiation at a dose of 25 kGy (Iso-
tron, Reading, UK). The samples were stored at – 20 °C 
and thawed at room temperature 30 min before use. The 
ends of the graft were prepared with a whipstitch using no. 
2 Ethibond (Ethicon Inc, Johnson & Johnson, New Jersey).

Surgical technique

The right stifle joint was exposed via a medial arthrotomy 
and the fat pad and ACL were excised. Femoral and tibial 

bone tunnels (7.8 mm diameter) were drilled from the ACL 
footprints through the lateral femoral condyle and anterome-
dial tibia, respectively. Femoral fixation was achieved using 
an 8 × 20 mm Biosure (Polyether ether ketone, PEEK) inter-
ference screw (Smith & Nephew Endoscopy, Andover, MA). 
The stifle joint was taken through ten full ranges of motion. 
Tibial fixation was achieved with the stifle joint in full exten-
sion with an 8 × 25 mm Biosure PEEK interference screw 
(Smith & Nephew Endoscopy, Andover, MA). A tension 
of 40 N was applied because this tension has been used in 
previous ovine studies [10, 11, 30]. In Group 1, 1 h before 
surgery, the BMSCs were loaded into 2 ml pre-filled Two-
Component Fibrin Sealant (Baxter, Vienna, Austria). 0.8 ml 
of fibrin sealant (4 million BMSCs) was added to each bone 
tunnel and 0.4 ml of fibrin sealant (2 million BMSCs) cov-
ered the intra-articular graft (Fig. 1a). In group 2, the graft 
was infiltrated with 4 ml of activated PRP and left soaking 
in activated PRP liquid until implantation (Fig. 1b). The 
interference screws were immersed in 4 ml of activated PRP 
until implantation. Before graft insertion, the bone in the 
tunnels was infiltrated with 1 ml PRP at four intervals along 
the tunnel wall. In total, 4 ml was injected in the femoral 
tunnel and 4 ml in the tibial tunnel (Fig. 1c). In the control 
group, the procedure was performed without application of 
fibrin sealant, BMSCs or PRP. Joint stability was confirmed 
using an anterior drawer test and the incision was closed in 
layers. The animals freely mobilised in individual pens for 
7 days and thereafter were house as a flock.

Autopsy assessment

After euthanasia, the joint stability was checked using an 
anterior drawer test. The hind limb was dissected to examine 
graft maturation. A scoring system was devised based on 
parameters used at second-look arthroscopy [9]. A category 
for synovial sealing at the tunnel apertures was added based 
on a previously reported scoring system [25]. The scor-
ing system consisted of four main criteria: graft integrity, 
synovial coverage and vascularisation, graft thickness and 
apparent tension, and synovial sealing at the tunnel aper-
tures (Table 1). For graft integrity, a complete rupture was 
defined as complete loss of continuity of all fibres, a “partial 

Table 1  Criteria for the Autopsy Graft Maturation Score (out of 9)

Score Graft integrity Synovial coverage and vascularisation Graft thickness and apparent tension Synovial sealing at tunnel apertures

3.0 – ≥ 75% with abundant vascularisation – –
2.0 No rupture ≥ 75% without vascularisation No elongation of a sufficiently thick 

graft
Circumferential sealing (> 75%)

1.0 Partial rupture 25–74% Partial elongation of a sufficiently 
thick graft or no elongation of a 
relatively thin graft

Moderate synovial sealing (25–75%)

0 Complete rupture ≤ 25% Obvious elongation of a thin graft Low synovial sealing (< 25%)
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rupture” was defined as a loss of continuity of some fibres, 
and “no rupture” was defined as no loss of fibre continuity. 
Synovial coverage and vascularisation were assessed by the 
percentage surface area of the intra-articular graft covered 
by vascularised synovium. For graft thickness and apparent 
tension, the highest score was for a thick graft (similar to 
the ovine ACL) which was not elongated. The second high-
est mark was for a graft that was either a similar thickness 
to the ACL and elongated, or not elongated but the graft 
itself was thin relative to the ACL. The lowest mark was for 
elongated and thin grafts. For synovial sealing at the tunnel 
apertures, the highest mark was for circumferential sealing 
at the aperture (> 75% circumference), the second highest 
mark was for a partial sealing (25–75% circumference) and 
the lowest mark was for low sealing (< 25% circumference). 
The overall graft maturation score was calculated from the 
sum of the separate scores (range 4.0–9.0). Two independent 
researchers blinded to the treatment group scored the grafts.

MRI assessment

Two animals per group were randomly selected to have 
MRI scans after post-mortem but before autopsy. The MRI 
scans were performed using a superconducting 1.5T magnet 
(Intera Pulsar System, Philips Medical Systems, UK). The 
stifles were positioned in lateral recumbency with the joint at 
90 degrees of flexion. Sequences performed included three-
dimensional T1 weighted FFE (T1 3D FFE) imaging and fat-
saturated proton density (PD-SPIR). Two blinded veterinary 
radiologists assessed the scans independently using a PACS 
workstation DICOM viewer (Osirix Imaging Software, ver-
sion 3.9.2, Bernex, Switzerland).

Radiological assessment of the intra-articular graft 
was via a scoring system based on the score reported by 
Howell et al. [7] (Fig. 2) and the signal-to-noise quotient 
(SNQ). Grade 1 consisted of a graft of homogeneously 

low signal intensity which was intermediate between the 
intensity of skeletal muscle and the posterior cruciate liga-
ment (PCL). Grade 2 consisted of a graft of homogene-
ously low signal intensity in greater than 50% of the graft, 
with the remainder of increased signal intensity. Grade 
3 was a graft of homogeneously low signal intensity in 
less than 50% of the graft with the remainder of increased 
signal intensity. Grade 4 consisted of a graft of diffusely 
increased signal intensity. A low graft signal denotes supe-
rior graft maturation and, therefore, a lower score denotes 
better graft healing.

Measurement of the SNQ was performed using a sagit-
tal oblique PD-STIR image. A region of interest (ROI) 
was placed within the intra-articular graft and within the 
PCL. For measurement of background signal intensity, a 
5 mm2 circular ROI was placed 5 mm cranial to the skin 
edge and the mean signal intensity was noted (Fig. 3). The 
SNQ was measured as follows: SNQ = (mean graft signal 
intensity—mean PCL signal intensity)/mean background 
signal intensity. A lower SNQ denotes more advanced 
graft maturation.

Graft width was measured on PD-SPIR images on coro-
nal and sagittal images and the average taken. Bone tun-
nel width was measured using axial slices at the aperture, 
mid-portion and exit. The precision of measurements was 
0.01 mm. Tunnel widening was calculated by subtracting the 
original drill diameter (7.8 mm) from the diameter measured 
after 12 weeks. Radiological assessment of the tendon–bone 
healing at the fibrous interzone was measured using a peer-
reviewed three-grade scoring system (Fig. 4) [5]. Grade 1 
consisted of a low-intensity signal band in the bone tunnel 
with no hyper-intense tissue at the tendon–bone interface. 
Grade 2 consisted of a low-intensity signal band with a par-
tial high-intensity signal band at the interface. In grade 3, the 
interface was filled with a continuous high-intensity signal 
band.

Fig. 2  Scoring grades for intra-articular graft maturity described by Howell et al. [7]. a Grade 1 b Grade 2 c Grade 3 d Grade 4
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Fig. 3  Regions of interest 
(ROIs) for SNQ Calculation. 
Blue shows the graft ROI; green 
circle shows the PCL ROI; and 
orange shows the background 
signal

Fig. 4  Scoring grades for tendon–bone healing using femoral tunnel as an example. a Grade 1 b Grade 2 c Grade 3
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Statistical analysis

IBM SPSS Statistics for Windows, version 26 (IBM Corp., 
Armonk, N.Y., USA) was used. Data was not normally dis-
tributed and reported as medians and interquartile ranges. 
Mann–Whitney U tests were used to compare treatment 
groups with the control. Inter-rater reliability as assessed 
using Kappa statistics. The interpretation was as fol-
lows: < 0.40 was poor, 0.40–0.59 was fair, 0.60–0.74 was 
good, and ≥ 0.74 was excellent [4]. Correlations between the 
SNQ, maturation scores and tunnel diameters were examined 
using Spearman’s rank correlation coefficient (r). Signifi-
cance was assumed at the 0.05 level. Previous animal stud-
ies of ACL reconstruction similar to this have used a n = 5 
[6]. Taking a difference in the median average of 15% and a 
standard deviation of 10% with a power of 0.8 and p value of 
0.05, a n = 5 has been shown to produce significant results.

Results

Autopsy assessment

There was no evidence of joint instability or an adverse 
effect to the treatments. Minimal chondral degeneration 
and mild synovial inflammation was observed. All the grafts 
were intact at the time of dissection. The PRP and BMSC 
treated grafts had remodelled into ACL-like structures. In 
contrast, grafts from the control group appeared atrophic 
with minimal vascularisation (Fig. 5).

The kappa score was 0.81 (95% confidence interval, 
0.71–0.91), which is considered excellent. In terms of the 
overall graft maturation score, the BMSC group (p = 0.01) 
and PRP control (p = 0.03) had a significantly higher scores 
on average compared with the control group (Table  2) 
(Fig. 6).

Fig. 5  Autopsy photographs and corresponding sagittal MRI images 
of control (a, d), PRP (b, e), and BMSC (c, f) group. Autopsy scores, 
respectively, for graft integrity: synovial coverage: graft thickness/
tension: incorporation at tunnel apertures. a = 2:2:0:1; b = 2:2:2:1; 
c = 2:3:2:2. In the control group inflammatory tissue is seen between 

split graft fibres (black arrow). In the PRP group the aperture is not 
sealed (black arrow) but the aperture is sealed in the BMSC group 
(black arrow). Regions of the graft appears to be more hypointense 
in the control and BMSC group (white arrow) but the graft is more 
homogenous hyperintense in the PRP group
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In terms of synovial sealing at tunnel apertures, only the 
BMSC group had a significantly higher score on average 
than the control group (p = 0.03) (Fig. 7d). No statisti-
cally significant differences were seen between the PRP 
and BMSC groups for the individual variables and total 
maturation scores.

MRI assessment

Intra‑articular graft

Graft maturation was higher in BMSC and PRP groups as 
evidenced by MRI maturation score and SNQ. The aver-
age graft diameters in the BMSC and PRP groups were 
higher than the control group. The intra-articular graft 
demonstrated higher signal intensity in the control group 
compared to the PRP and BMSC group.

Tendon–bone healing

Tendon–bone healing next to the screws was superior to 
healing at the apertures in all cases in the femur. In the 
tibia, tendon–bone healing next to the screws was supe-
rior to healing at the apertures in all cases except the PRP 
group where healing was the same at the aperture and 
adjacent to the screw.

Tunnel widening

The apertures in the control group were wider than seen 
in the other two experimental groups, and were filled with 
hyperintense material (Fig. 3d) (Table 3).

Table 2  Graft Maturation Score 
shown as median average (IQR)

Criteria Control (n = 5) BMSC (n = 5) PRP (n = 5)

Graft integrity 2.0 (1.5–2.0) 2.0 (2.0–2.0) 2.0 (1.5–2.0)
Synovial coverage and vascularisation 1.0 (1.0–2.0) 2.0 (2.0–2.8) 2.5 (1.8–2.8)
Graft thickness and apparent tension 0.5 (0.0–1.0) 1.0 (1.0–2.0) 2.0 (1.0–2.0)
Sealing at bone tunnel apertures 1.0 (0.0–1.0) 2.0 (1.5–2.0) 1.0 (1.0–1.5)
Overall Graft Maturation Score 5.0 (3.0–5.3) 7.0 (7.0–8.3) 6.5 (5.8–8.3)

Fig. 6  A box and whisker plots 
showing scores for each variable 
(showing median and IQR). 
n = 5, Mann–Whitney test
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Fig. 7  Dot plots showing scores for each variable. a Graft integrity. b Synovial coverage and vascularisation. c Graft thickness and apparent 
length. d Incorporation at tunnel apertures. n = 5, Mann–Whitney test

Table 3  Tunnel widening data (mm)

Tunnel segment Control (n = 2) BMSC (n = 2) PRP (n = 2)

Femoral aperture 3.7 (3.2–4.2) 2.7 (2.2–3.2) 2.7 (2.2–3.2)
Femoral mid-portion 1.7 (1.2–2.2) 2.7 (2.2–3.2) 1.7 (1.2–2.2)
Femoral exit 3.2 (3.2–3.2) 1.7 (1.2–2.2) 2.7 (2.2–3.2)
Tibial aperture 3.7 (2.2–5.2) 1.7 (1.2–2.2) 1.7 (1.2–2.2)
Tibial mid-portion 3.2 (2.2–4.2) 2.2 (2.2–2.2) 2.2 (2.2–2.2
Tibial exit 1.7 (1.2–2.2) 2.2 (2.2–2.2 1.2 (1.2–1.2)

Table 4  Correlation analysis of tunnel diameter and signal noise quo-
tient

*p  <  0.05

Diameter of tunnel 
segment (mm)

Signal–noise quotient 
(SNQ)

Graft Maturation 
Score (0–9)

r value p value r value p value

Tibia aperture 0.34 0.50 − 0.02 0.98
Tibia mid-portion 0.74 0.13 − 0.22 0.60
Tibia exit 0.50 0.21 − 0.36 0.39
Femoral aperture 0.88 0.03* − 0.70 0.08
Femoral midportion 0.94 0.02* − 0.65 0.12
Femoral exit 0.44 0.40 − 0.34 0.20
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Correlation between autopsy and MRI graft 
maturations score

The autopsy graft maturation scores and the MRI graft 
maturation score were significantly inversely correlated 
(r = − 0.83, p ≤ 0.01).

Correlation between SNQ and Tunnel Segment 
Diameter.

The SNQ was positively correlated with the femoral bone 
tunnel diameter at the aperture (r = 0.88, p = 0.03) and mid-
portion (r = 0.94, p = 0.02). No significant correlations were 
seen between the tibial tunnel diameter and SNQ (Table 4).

Discussion

Our first hypothesis that BMSCs and PRP would enhance 
graft maturation after 12 weeks was verified through signifi-
cant improvements in autopsy graft maturation scores. Our 
second hypothesis that graft maturation at autopsy would 
correlate with graft maturation measured on magnetic reso-
nance imaging (MRI) was also verified.

BMSCs have potential to modulate graft healing because 
of their capacity for multi-lineage differentiation and diverse 
paracrine effects [6]. This study supports evidence from 
small animals that BMSCs can enhance ACL graft healing 
[14, 22]. The manner by which BMSCs exert their effect on 
graft healing remains unknown, and future studies that tracks 
the cells after implantation will help reveal the mechanism. 
The decision to use allogeneic cells in this study rather than 
autologous cells was because allogeneic therapy is a more 
scalable treatment option due to lower processing costs [18]. 
A disadvantage of allogeneic cells is a higher risk of immune 
rejection but in this study no signs of adverse inflammatory 
effects were seen in this study, which is an important find-
ing. Tunnel widening at the aperture [27] is common and 
is associated with synovial fluid influx [23]. An important 
finding of our study was that BMSCs were associated with 
higher level of sealing at the tunnel apertures, which might 
in turn reduce synovial fluid influx.

The effect of local PRP application from coated sutures 
has been reported in sheep [28] but to our knowledge no 
study has examined the effect of intra-tendinous and intra-
osseous injection of PRP on tendon allograft healing. In 
this study, PRP treatment led to significantly enhanced graft 
maturation of allografts at autopsy and MRI. Nevertheless, 
currently there is no level 1 evidence that shows a benefit of 
PRP in ACL reconstruction [2]. One reason for this could 
be the wide variation in the PRP administration techniques 
because some studies inject PRP just into the graft [19], 

whereas others inject into the bone tunnels. To maximise 
exposure of the tendon–bone interface to the PRP, we rec-
ommend both intra-osseous and intra-tendinous injection 
[20].

MRI is a popular technique to evaluate ACL graft matu-
rity after surgical reconstruction [26]. We demonstrated that 
MRI is a useful tool to measure biological modulation of 
graft healing because autopsy graft maturation scores cor-
related with MRI graft maturity scores. Zhang et al. [31] 
showed for the first time that graft signal intensity corre-
lates with radius of the femoral tunnel aperture. This study 
corroborate these findings because we observed that SNQ 
correlated with the diameter of the femoral tunnel aperture 
and mid-portion. There is growing evidence that maturation 
of the intra-articular graft is related to tunnel widening in 
the femoral tunnel.

This study has several limitations. First, graft healing is a 
complex process that occurs over many months [29] but our 
analysis was at a single time point. Second, the number of 
animals included in the study was small, especially for the 
MRI analysis. Nevertheless, the purpose of this proof-of-
concept study was to determine if MRI can detect biologi-
cal modulation of graft healing and future MRI studies are 
now required with larger sample sizes that permit statistical 
comparisons. Third, histological analysis was not reported 
and therefore correlation of histological findings with MRI is 
an important area of future research. Fourth, the joint stabil-
ity was not quantified using a rolimeter and biomechanical 
testing was not performed. Finally, fibrin sealant alone might 
have a positive effect by sealing the aperture at the time of 
surgery [23] and a better study design would have included 
an additional group that received fibrin sealant alone.

Conclusion

BMSCs and PRP significantly enhanced tendon allograft 
maturation after 12 weeks in a translational large animal 
model compared to an untreated control. MRI could be used 
to non-invasively examine biological augmentation of ACL 
graft healing in clinical practice.
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