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Fluorescence in Situ Hybridization (FISH) is a technique for macromolecule identification that utilizes 
the complementarity of DNA or DNA/RNA double strands. Probes, crafted from selected DNA strands 
tagged with fluorophore-coupled nucleotides, hybridize to complementary sequences within the cells 
and tissues under examination. These are subsequently visualized through fluorescence microscopy or 
imaging systems. However, the vast number of cells and disorganized nucleic acid sequences in FISH 
images present significant challenges. The manual processing and analysis of these images are not only 
time-consuming but also prone to human error due to visual fatigue. To overcome these challenges, 
we propose the integration of medical imaging with deep learning to develop an automated detection 
system for FISH images. This system features an algorithm capable of quickly detecting fluorescent 
spots and capturing their coordinates, which is crucial for evaluating cellular characteristics in cancer 
diagnosis. Traditional models struggle with the small size, low resolution, and noise prevalent 
in fluorescent points, leading to significant performance declines. This paper offers a detailed 
examination of these issues, providing insights into why traditional models falter. Comparative 
tests between the YOLO series models and our proposed method affirm the superior accuracy of our 
approach in identifying fluorescent dots in FISH images.
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Fluorescence in situ hybridization (FISH) identifies and maps specific DNA sequences or RNA molecules 
within cells or tissues through staining techniques1,2. This method aids in elucidating cytogenetic variations, 
gene rearrangements, chromosomal abnormalities, and localization. FISH is utilized extensively in medical 
diagnostics, encompassing genetic disease screening, tumor identification, and embryonic genome assessment. 
It holds significant potential for the early detection, prognosis, and management of cancers, including leukemia, 
breast cancer, and gastric cancer3–5. By quantifying and pinpointing specific genes, FISH provides vital data 
for diagnosing and treating diseases. Recently, the convergence of medical imaging and computer science has 
deepened. Techniques for detecting medical images through deep learning have gained traction6–11. However, 
the vast and complex nature of medical imaging data, coupled with a shortage of labeled data, complicates the 
training of deep learning models. The sensitivity of patient information in FISH images further hinders data set 
collection.

Object detection in medical images involves the localization and classification of lesions and other entities. 
Prominent algorithms encompass R-CNN, Fast R-CNN, Faster R-CNN, PFN, PSPNet, SSD, YOLO, CenterNet, 
and EfficientNet12–19. This process unfolds in two primary phases: (1) target feature extraction and (2) 
classification and localization of objects. Feature extraction utilizes CNNs. Object detection frameworks are 
categorized into two types: two-stage and single-stage. Two-stage frameworks initially engage in preprocessing 
to generate a detection scheme, followed by the detection process. They first extract CNN features from image 
regions devoid of category information, then classify these using category-specific classifiers. In contrast, 
single-stage frameworks, which include SSD, YOLO, CenterNet, and EfficientNet families, utilize a priori frame 
techniques to generate initial prediction frames, subsequently refining these through parameter adjustments to 
finalize the prediction. While two-stage frameworks perform excellently in object detection tasks, particularly in 
complex scenarios where they can provide high accuracy, they also have some significant drawbacks, especially 
regarding their high computational demands. Experimental environments require an efficient method to 
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process images to ensure timely and accurate results in time-sensitive situations. In this context, the YOLO 
architecture, designed for real-time detection, is more suitable. In FISH, the target DNA or RNA sequences 
are marked by their small size, large quantity, and high density. These characteristics make them small targets, 
which are notoriously difficult to detect. While many models excel with medium to large objects, they often 
underperform on datasets comprised of such small targets. Challenges in detecting small objects arise primarily 
from two factors. Firstly, small objects often lack sufficient appearance information to differentiate them from 
backgrounds or similar entities. Additionally, their positional data is uncertain, necessitating higher precision 
for accurate localization. Furthermore, the field has accumulated limited expertise and knowledge concerning 
small object detection, with predominant research focusing on large or medium-sized targets. To enhance the 
detection of FISH fluorescent dot images, Xu et al.9 introduced a lightweight deep learning model utilizing a 
rotated Gaussian kernel, achieving an analysis time of approximately 0.31 s per frame—about 800 times faster 
than traditional pathologist methods. T. LES et al.20 developed a method for localizing fluorescent dots in FISH 
images using 3D shape analysis, with results showing less than a 3% discrepancy compared to expert evaluations 
across several thousand cells. Further, Chao Xu et al.21 implemented a multiscale MobileNetYOLO-V4 network, 
achieving high precision detection at a fast pace. Bouilhol E et al.22 proposed the DeepSpot model, which 
incorporates dilated convolutions into a module specifically designed for small object context aggregation, 
and uses residual convolutions to propagate this information throughout the network. This allows DeepSpot 
to enhance all RNA spots to the same intensity, thus eliminating the need for parameter tuning. Nevertheless, 
the efficacy of traditional methods significantly declines with blurred and noisy images. Consequently, we have 
enhanced the YOLO series by developing YOLOv8, significantly improving model accuracy for detecting FISH 
fluorescent spots.

The principal contributions of this study are outlined below:

 (1)  The integration of the space-to-depth module into YOLOv8 has mitigated the loss of fine-grained infor-
mation, enhancing both the learning efficiency of feature representation and the accuracy of YOLOv8 in 
small object detection. To enhance low-level feature extraction, the stride of the Conv module in YOLOv8 
has been reduced to 1. This adjustment aids in the precise identification of image structures and minimizes 
downsampling, preserving the original spatial resolution of the input data. Reflecting the characteristics of 
the fluorescent point dataset, the large object detection head in YOLOv8 was replaced with a small object 
detection head, thereby boosting small object detection performance.

 (2)  A novel module named CE, which merges the C2f module from YOLOv8 with the efficient channel at-
tention (ECA) module, has been introduced, yielding significant performance enhancements with only a 
minimal increase in C2f parameters.

 (3)  The original loss function has been substituted with LMPDIoU, encompassing all pertinent factors of com-
monly utilized loss functions. This replacement addresses issues when the bounding box shares the aspect 
ratio of the true value bounding box, yet the width and height differ substantially, hindering effective opti-
mization.

Materials and methods
Sample preparation
We conducted experiments on the patient’s leukocytes using the AML1/ETO fusion gene detection kit. In the 
FISH experiment, whole blood preprocessing is performed first by adding a lysis buffer to induce hemolysis, 
followed by immersion in KCl solution and fixation using methanol-acetic acid. Next, phosphate-buffered 
saline (PBS) is used for sample loading and washing. Then, denaturation and hybridization are conducted by 
adding probe buffer, AML1/ETO probe, and mineral oil, completing the hybridization at specific temperatures 
and pressures. After hybridization, samples are washed sequentially with sodium citrate buffer (SSC), post-
hybridization wash solution, and deionized (DI) water. Finally, DAPI is used for staining to facilitate the 
observation of cell nuclei. The ETO probe was labeled with an orange-red fluorophore, and the AML1 probe 
was labeled with a green fluorophore. The probes were hybridized to the target detection sites using in situ 
hybridization technology. Green light (with a wavelength in the range of 500–550 nm) is used to excite the ETO 
probe, while blue light (with a wavelength in the range of 450–490 nm) is used to excite the AML1 probe. Since 
the fluorescent spots formed by the two probes have different colors but nearly identical shapes, we obtain their 
grayscale images for model training.

Collection of FISH images
The inverted fluorescence microscope used was an OLYMPUS IX83, equipped with a fluorescence illumination 
system and widefield imaging modality. The objective lens was an OLYMPUS LUCPLFLN 60X with a numerical 
aperture (N.A) of 0.7 and a magnification of 60. The detector used for image acquisition was a QIMAGING 
optiMOS camera, which is a type of sCMOS. This combination of camera and objective lens is designed to 
balance imaging resolution, the requirements of the detection task, and the availability of equipment under the 
current experimental conditions. All FISH images and biological experiments in this study were conducted and 
provided by professionals from our laboratory. Each pixel corresponds to an actual distance of approximately 
0.1 μm, and each FISH spot is about 5 pixels in size. Figure 1 shows representative images along with their 
scalebars.

We annotated 199 FISH fluorescent spot images, each with a size of 1920 × 1080, using Labelme software. The 
annotation process is illustrated in Fig. 2.

To address the limited number of images, we expanded the dataset to increase the diversity of training 
samples, reduce overfitting, and enhance the generalization capability of the network. Various augmentation 
techniques were employed, such as rotation, cropping, mirror symmetry, and the addition of Gaussian noise. 
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Fig. 2. Labeling process.

 

Fig. 1. Examples of data sets.
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Consequently, we generated 995 images of fluorescent spots, each with a size of 1920 × 1080 pixels, containing 
100 to 200 spots. The dataset was split into a training set and a validation set with a ratio of 9:1, comprising 895 
and 100 images, respectively.

Proposed method for fluorescent spot detection
To this date, YOLOv10 represents the latest advancement in the YOLO series23,24. However, we have chosen 
to utilize YOLOv8 for our analysis. The rationale for this selection will be provided in the subsequent 
sections, where we will discuss its suitability for our specific application, including considerations related to 
processing efficiency and performance in the context of FISH data analysis. The official YOLOv8 code offers 
several networks; however, this article focuses primarily on YOLOv8, YOLOv8-P2, and YOLOv8-P6 for object 
detection tasks. YOLOv8-P2 and YOLOv8-P6 are distinguished by the inclusion of an additional small object 
detection head and a large object detection head, respectively, enhancing their detection capabilities. Specifically, 
the enhanced ability of YOLOv8-P2 to detect small objects, such as fluorescent spots, significantly improves 
accuracy in scenarios where detection of small objects is critical.

The YOLOv8 model comprises several modules, including C2f (Convolution to Fully Connected), Bottleneck, 
SPPF (Spatial Pyramid Pooling-Fast), Detect, and Conv. The C2f module utilizes cross-stage partial feature 
fusion to integrate low-level and high-level feature maps. This integration significantly increases the model 
detection precision and processing speed. The Bottleneck architecture reduces feature map channels, decreasing 
the computational burden. It incorporates residual connections to mitigate vanishing gradients and includes 
a 3 × 3 convolutional layer to expand the receptive field. SPPF, a crucial component, features Spatial Pyramid 
Pooling, enabling the model to process various object sizes within a single image by aggregating features from 
multiple receptive fields. The Detect module processes the outputs from the Neck module, which integrates 
inputs from the C2f, Bottleneck, SPPF, Detect, and Conv modules, as depicted in Fig. 3.

YOLO-SEM (YOLO-small object enhancement model) network framework
Inspired by the referenced models, we introduce YOLO-SEM, consisting of a backbone, neck, and head 
components. The backbone serves to extract relevant image information for use in subsequent network layers. 
This component enhances efficiency and performance, while simultaneously lowering the computational 
complexity involved in feature extraction. Positioned between the backbone and the head, the neck optimizes 
the use of extracted features and aids in feature fusion. The head utilizes these features to improve recognition 
capabilities.

The input image, featuring fluorescent dots, is segmented into an N × N grid structure by the network with the 
grid partitioning automatically performed using the k-means algorithm25. Although this grid-based approach 
may encounter some disadvantages when handling multiple adjacent spots, it also offers several key advantages. 
By processing the entire image in a single forward pass, this method allows the model to consider the global 
context, which helps reduce the effect of background noise and improves target localization. Understanding the 
global context is crucial for overall accurate detection. Additionally, this approach is very fast, enabling real-time 
or near-real-time analysis, which is particularly beneficial in high-throughput scenarios or when processing 
large datasets. Each cell within this grid undergoes examination to detect targets. Responsibility for detection 
is assigned to a cell if the target’s center intersects with it. Subsequently, the network forecasts bounding boxes 
for each cell and allocates a confidence score to them. The computation of the confidence score is defined by the 
following formula (1):

 Conf = P × IoUpred
truth, P ∈ [0, 1] (1)

The variable P is set to 1 when objects are present within the mesh; otherwise, it remains 0. The IoU quantifies 
the overlap between the predicted and actual bounding boxes. The confidence level measures the precision 
of a bounding box that contains an object and indicates the presence or absence of an object in the mesh. 
When multiple bounding boxes identify the same target, the YOLO network employs non-maximal suppression 
(NMS) to select the optimal box. This technique is essential for eliminating redundant detection frames, 
ensuring only the most representative frame is retained. Detection frames are organized in descending order by 
their confidence levels. Starting with the highest confidence frame, the NMS algorithm calculates its IoU against 
other frames. Frames exceeding a predefined IoU threshold with the baseline frame are discarded. This iterative 
selection process continues, using one highest confidence frame as the reference each time, until all frames are 
evaluated. NMS guarantees that only one representative frame per target appears in the final results.

In object detection tasks, detection heads are classified by the size of their corresponding feature maps. Larger 
detection heads are associated with feature maps of lower resolution, while smaller detection heads are linked 
to feature maps of higher resolution. To improve the management of small objects in object detection tasks, we 
have chosen to replace the large object detection head with a smaller one specifically designed for small objects, 
as shown in Fig. 4. This modification allows the model to concentrate more effectively on small objects, thereby 
improving their detection rates and contributing to targeted optimization. In the YOLO-SEM model, four feature 
map sizes are organized in descending order with varying resolutions, labeled as P1, P2, P3, and P4. Employing 
multi-scale feature maps and different sizes of detection heads enables YOLO-SEM to comprehensively detect a 
wide range of objects, thus enhancing overall detection performance.

Our experiments have demonstrated that the P2 and P3 detection heads significantly influence the accuracy 
of fluorescent point detection. To mitigate risks of model overfitting, diminished generalization capability, 
increased computational demands, and longer training and inference times associated with an excess of attention 
mechanisms, we have implemented the ECA mechanism exclusively on feature maps of corresponding sizes in 
P2 and P3. This strategy ensures precise control over the application levels of the attention mechanism, balancing 
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the model performance and complexity. Furthermore, this method enhances the model robustness, making it 
more viable for real-world applications. The model structure is depicted in Fig. 5.

SPD module
The YOLO series of architectures excels in various computer vision tasks, including object detection and image 
classification26–29. However, it exhibits a notable decline in performance when processing low-resolution images 
or detecting small objects30,31. This decrease can be attributed to the use of stride convolution and pooling layers, 

Fig. 3. YOLO-SEM network module structure diagram.
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prevalent in YOLO architectures, which lead to reduced feature representation and a loss of precision. Typically, 
these adverse effects are mitigated because the images analyzed generally possess high resolution and contain 
large objects, allowing the model to skip redundant pixel information while still effectively learning features. 
However, this assumption of redundancy fails in the case of the FISH image dataset, where images are blurry, and 
objects are small, resulting in the loss of fine-grained information, insufficient feature learning, and a marked 
reduction in the model’s detection capability.

To resolve this challenge, we integrated the SPD module32 into YOLO-SEM. This module employs a spatial-
depth layer to downsample feature maps, ensuring the retention of information across channel dimensions and 
minimizing data loss. Furthermore, the Conv module in YOLO-SEM employs a step size of 1, which eliminates 
additional downsampling and reduces the total downsampling instances within the model, thereby maintaining 
the spatial resolution of the input data. Figure 6 depicts the SPD module.

Assuming that each feature map F is of size W × H × C, the feature map is sliced into sub-feature sequences 
Fm, n, As shown in Eq. (2):

 Fm,n = F[m : H : Step, n : H ;Step] (2)

Next, these sub-feature sequences are concatenated along the channel dimensions to obtain a feature mapF ′ of 
size W

step ×
H
step × (C × step2), and this new feature map is then passed to the next layer.

CE module
The attention mechanism has gained significant attention in recent years due to its outstanding performance 
across various applications33–36. While current approaches often aim to improve overall model effectiveness by 
designing increasingly complex attention modules, this usually results in higher model complexity. In contrast, 
the ECA module37 enhances model performance with only a slight increase in computational cost and facilitates 
cross-channel interactions in learning channel attention without reducing channel dimensionality, as depicted 
in Fig. 7.

Global average pooling (GAP) is used to obtained aggregated features map Box1, which is then extracted as 
a single real value to obtain feature χavg ∈ R(W×H×C), as shown in Eq. (3):

 

{
χavg = GAP (χ)

GAP (χ) = 1
W×H

∑W,H
i=1,j=1 χi,j

 (3)

ECA generates channel weights through a rapid one-dimensional convolution of size k, which is adaptively 
determined by mapping the channel dimension, C. The extent of interaction, indicated by k, the size of the 
convolution kernel, correlates directly with the channel dimension through a mapping ϕ, as shown in Eq. (4):

Fig. 4. Comparison of YOLO-SEM and YOLOv8-P2 models.
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 C = ϕ(k) (4)

If the mapping is represented by the linear function ϕ(k) = λ× k − b,its capacity to depict feature relationships 
is notably restricted. Consequently, this linear function is expanded to a nonlinear function to enhance its 
representational capability. Typically, the channel dimension C (number of filters) is set at 2. The relationship 
between these parameters is defined in Eq. (5):

Fig. 5. YOLO-SEM model.
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 C = ϕ(k) = 2γ×K−b (5)

The adaptive method for the kernel size K can then be determined as follows:

 
K = ψ(C) =

∣∣∣∣
log2(C)

γ
+

b

γ

∣∣∣∣
odd

 (6)

Where |t|oddrepresents the nearest odd integer to t. Activation values for one-dimensional convolutional outputs 
are derived using the Sigmoid function. The ECA algorithm preserves channel dimensions and assesses inter-
channel relationships to address noise-induced disturbances, thereby enhancing the model’s noise reduction 
capabilities.

Fig. 7. ECA module.

 

Fig. 6. Space-to-depth when step = 2.
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To enhance the inter-channel correlation, the ECA module has been integrated into the C2f module. The 
C2f module, comprising multiple convolutional layers and complex feature transformations, facilitates this 
enhancement by leveraging the ECA module. This integration fosters richer and more discriminative feature 
representations, thereby improving the performance and generalization capabilities of complex networks, 
ultimately resulting in higher accuracy.

The Bottleneck, a critical component of C2f, primarily operates on local feature maps. Enhanced by the 
incorporation of ECA, the Bottleneck selectively augments task-specific channels, thereby improving the capture 
of essential object features. The configuration of Bottleneck, denoted by ‘n’, facilitates the adjustment of ECA 
implementations, depending on the task requirements and available computational resources. The Bottleneck 
structure comprises two convolutional modules tasked with feature extraction and transformation. Positioned 
between these convolutional layers, the ECA module optimizes channel attention weighting on the outputs 
from the initial convolution. This arrangement allows the weighted features to undergo further transformation 
in the subsequent convolutional layer, thus enabling the attention mechanism of the ECA module to influence 
the entire feature map comprehensively. Figure 8 illustrates the configuration of the Bottleneck with the ECA 
module.

LMPDIoU loss function
Bounding box regression is extensively used in object detection and instance segmentation, serving as a critical 
step for target localization38–40. The original IoU is calculated as the ratio of the intersection area between the 
predicted bounding box and the ground truth bounding box to their combined union area, as delineated in 
Eq. (7):

 
IoU =

Bgt ∩ Bprd

Bgt ∪ Bprd
 (7)

The distance dc between the center coordinates of the predicted box and the ground truth box can be expressed 
using Eq. (8).

 d2c = (xprdc − xgtc )
2 × (yprdc − ygtc )

2 (8)

Where (xprdc , yprdc ) and (xgtc , ygtc ) represent the center coordinates of the predicted box and the ground truth box, 
respectively.

Let wc and hc be the width and height of the minimum enclosing box, then its area c can be expressed by 
Eq. (9).

 c2 = w2
c + h2

c  (9)

Fig. 8. CE module.
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V is the aspect ratio consistency measure between the predicted box and the ground truth box, defined by 
Eq. (10).

 
V =

4

π2

(
arctan

wgt

hgt
− arctan

wprd

hprd

)2

 (10)

wgt  and hgt  are the width and height of the ground truth box, while wprd  and hprd  are the width and height of 
the predicted box. By calculating the arctan difference of the aspect ratios, V reflects the aspect ratio discrepancy 
between the predicted box and the ground truth box.

The initial bounding box regression loss function in YOLOv8-p2 is CIoU which is also used in most YOLO 
models. It can be described by Eq. (11).

 
CIoU = IoU − d2c

c2
− α · V  (11)

Where α is a weighting factor used to balance the importance between IoU and the center point distance, 
typically ranging between 0 and 1. However, CIoU face challenges in optimizing effectively when the predicted 
bounding box maintains the aspect ratio of the true bounding box but differs in size. To address this issue, a 
novel bounding box similarity metric, Minimum Point Distance-based Intersection over Union (MPDIoU), has 
been introduced. This metric leverages the geometric characteristics of horizontal rectangles and incorporates 
all pertinent factors considered in existing loss functions, such as overlapping or non-overlapping areas, center 
distance, and width and height deviations. Moreover, it simplifies the computational process. The loss function, 
LMPDIoU, is derived from MPDIoU.

Assuming that Bprd = (xprd1 , yprd1 , xprd2 , yprd2 )andBgt = (xgt1 , y
gt
1 , x

gt
2 , y

gt
2 ),where the coordinates of the top-left 

(xprd1 , yprd1 ), (xgt1 , y
gt
1 ) and bottom-right (xprd2 , yprd2 ), (xgt2 , y

gt
2 ) points are given, the width and height of the image 

are denoted as w and h respectively, as shown in Eq. (12):

 

d21 = (xprd1 − xgt1 )
2 × (yprd1 − ygt1 )

2

d22 = (xprd2 − xgt2 )
2 × (yprd2 − ygt2 )

2
 (12)

Then MPDIoU for Eq. (13):

 
MPDIoU = IoU − d21

h2 + w2
− d22

h2 + w2
 (13)

The LMPDIoU for Eq. (14):

 LMPDIoU = 1−MPDIoU  (14)

MPDIoU is suitable for multiple object detection contexts because it evaluates not only the overlap between two 
bounding boxes but also their spatial relationships. This enhances the accuracy in depicting the relative positions 
of objects within an image, especially when objects are occluded or partially visible.

Results
Evaluation indexes
Key metrics for assessing the effectiveness of the neural network model include precision, recall, mAP50, 
mAP50-95, and IoU. Binary classification categorizes samples into four groups: True Positive (TP), False Positive 
(FP), True Negative (TN), and False Negative (FN), based on the alignment of actual and predicted categories. 
Table 1 presents the confusion matrix of these classification outcomes.

Precision and Recall are defined as Eqs. (15) and (16):

 
Precision =

TP

TP + FP
 (15)

 
Recall =

TP

TP + FN
 (16)

Label Predict Confusion matrix

Positive Positive TP

Positive Negative FN

Negative Positive FP

Negative Negative TP

Table 1. Confusion matrix of classification results.
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For each category, average accuracy was determined by calculating the area under the Precision-Recall curve 
with the IoU threshold set at or above 0.5, as detailed in Eqs. (17) and (18).

 
AP50 =

n∑
k=1

(Rk −Rk−1)Pk (17)

 
mAP50 =

1

N

n∑
i=1

AP50i (18)

Where n is the total number of Recalls, Rk is the kth value of the Recall at the level and Pk is the Precision 
value at the corresponding Recall. Averaging the AP50 across all categories gives mAP50. And mAP50-95 is 
the calculation of Precision and Recall at different confidence thresholds for each category, over a range of IoU 
thresholds from 0.5 to 0.95, as shown in Eqs. (19) and (20).

 
AP50−95 =

1

11

n∑
i=0

AP(t+5)/10 (19)

 
mAP50−95 =

1

N

N∑
i=1

AP50−95i (20)

Where ap is the AP(t+5)/10 at an IoU threshold of t+5
10 . The mAP50-95 metric is derived by evaluating the model 

across a spectrum of IoU thresholds from 0.5 to 0.95, segmented into eleven equal intervals. This approach 
provides a thorough assessment of the model performance in object detection at various IoU thresholds, thereby 
furnishing a more detailed insight.

Experiments
The optimization of hyperparameters for YOLO-SEM was conducted using stochastic gradient descent (SGD) 
with an initial learning rate set at 0.01, momentum at 0.937, and a weight decay of 0.0005. The training was 
divided into two distinct phases. In the initial phase, YOLOv8-p2 underwent training over 300 epochs with a 
batch size of 2. Subsequently, the second phase applied the outcomes from the initial phase to facilitate transfer 
learning for YOLO-SEM, maintaining the same epoch count and batch size. The experimental setup is detailed 
in Table 2.

To assess the performance of our proposed model, we conducted a comparative analysis of YOLO-SEM 
against LOG (Laplacian of Gaussian filter), YOLOv8-P2, Multi-scale MobileNet-YOLO-V4 proposed by Chao 
Xu21 and several conventional YOLO series models. These models were trained using the FISH fluorescent 
point dataset across 300 iterations. The peak results are documented in Table 3, and the training data trends 
are depicted in Fig. 9 (Since the LOG is not a deep learning method, there is no training process data available).

Based on the above results, the YOLO-SEM model employed in this study demonstrates the best accuracy in 
detecting fluorescent spots among all the compared models. First, its mAP50 score of 70.21% indicates that the 

Model mAP50 (%) mAP50-95 (%) Precision (%) Recall (%) Time (ms)

LOG 22.49 14.23 44.03 51.08 0.3

YOLOv3 37.06 13.27 40.42 34.98 1.3

YOLOv5 36.20 12.61 39.22 35.26 1.4

YOLOv8 36.80 12.95 39.88 35.68 1.7

YOLOv9 39.01 14.62 45.25 36.39 1.6

YOLOv10 39.59 15.27 47.26 35.99 0.9

Chao Xu`s 37.66 13.73 44.45 35.43 1.4

YOLOv8-p2 59.29 23.17 65.57 55.48 2.2

YOLO-SEM 70.21 29.40 74.97 61.84 1.5

Table 3. Comparison of detection result data.

 

Name Parameter

CPU Intel Xeon Gold 5318Y

GPU NVIDIA A100

Programming Language Python 3.8.17

Deep learning framework Pytorch 1.8.0

Table 2. Experimental configuration.
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model can accurately locate most targets under noisy conditions and when the targets are small, even at an IoU 
threshold of 0.5. Additionally, with an mAP50-95 score of 29.40%, the model demonstrates strong performance 
across various IoU thresholds (from 0.5 to 0.95), showcasing its robustness in handling complex scenarios. In 
terms of precision, YOLO-SEM achieves 74.97%, meaning that the majority of detected targets are true positives, 
highlighting the model’s effectiveness in reducing false alarms. A recall rate of 61.84% further emphasizes YOLO-
SEM’s reliability in detecting most of the actual targets present. The effectiveness of fluorescent point detection 
is illustrated in Fig. 10.

However, due to the small size of fluorescent spots, low image resolution, and the presence of noise, YOLO 
models not optimized for small object detection exhibit a noticeable drop in performance when faced with these 
challenges. Although YOLOv8-P2 introduced a small object detection head and made some improvements in 
detecting smaller objects, it still suffers from a significant number of missed detections, failing to meet the 
high-precision demands of these tasks. While the Laplacian of Gaussian (LOG) filter is fast, its poor detection 
performance and need for manual adjustments limit its practicality. In contrast, the YOLO-SEM model has been 
specifically optimized to address these challenges, proving more effective in handling small fluorescent spots, 
low-resolution images, and noise interference. It not only excels in detecting tiny fluorescent spots but also 
maintains high accuracy and recall rates even under these difficult conditions, demonstrating its adaptability 
and reliability. The model’s inference time is only 1.5 milliseconds, providing rapid processing speed while 
maintaining high detection performance. This makes it suitable for real-time or near-real-time detection tasks 
and capable of meeting the requirements of clinical experiments.

To ascertain the impact of individual modules on model performance, each module was integrated 
sequentially with YOLOv8-P2. The outcomes of these integrations are presented in Table 4. The results indicate 
that each module contributed to the enhancement of the network detection capabilities to varying degrees.

Discussion
The global cancer incidence has remained alarmingly high in recent years, leading to millions of fatalities 
annually41. Cancer diagnosis currently relies heavily on diagnostic imaging and pathological assessments42,43. 
Early detection is critical for improving patient survival rates, making non-invasive, efficient screening methods 
a focal point of research. Deep learning, a branch of machine learning, uses simulated neural networks to 
extract features from data. Applying deep learning to medical imaging can aid in lesion localization, facilitate 
diagnoses, reduce physician workload, minimize errors, and improve the accuracy and reliability of prognosis 
and diagnostic outcomes. Demonstrating robust capabilities, deep learning models excel in tasks such as 
medical image classification, segmentation, lesion detection, and alignment44–46. These models process various 
medical imaging modalities, including X-rays, MRIs, CT scans, and cytofluorograms, aiding in the diagnosis of 
conditions such as breast and blood cancers. This paper proposes a novel automatic disease detection approach 
using the discussed model.

Fig. 9. Comparison charts of the models on different metrics.
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Model SPD MPDIoU CE mAP50 (%) mAP (%) Precision (%) Recall (%)

YOLOv8-P2 × × × 59.29 23.17 65.57 55.48

YOLO-SEM √ × × 62.53 25.07 68.39 56.29

YOLO-SEM √ √ × 66.96 27.53 72.30 58.48

YOLO-SEM √ √ √ 70.21 29.40 74.97 61.84

Table 4. Ablation experiment.

 

Fig. 10. Comparison of detection results.
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FISH staining generally involves using DAPI dye to stain cell nuclei and base-pairing dyes for RNA/DNA 
(such as the AML1/ETO fusion gene probes used in this study’s dataset). FISH result analysis involves two main 
steps. First, obtain images of cell outlines stained with DAPI. Then, image segmentation algorithms such as 
Unet47 and Unet++48, which have been shown to be effective49, were utilized to segment individual cell outlines. 
Subsequently, locate the fluorescent probes stained with the fusion gene dye within the nucleus of each cell. The 
evaluation of each cell is based on the distribution of probes within it. However, in practical applications, the 
image localization of fluorescent probes often faces challenges such as noise and low resolution. The YOLO-
SEM algorithm, introduced in this study, is utilized for detection, addressing challenges such as the small size of 
fluorescent spots and image resolution that typically hinder traditional models.

Conclusion
In this study, we introduce the YOLO-SEM network, which augments the widely adopted and robust YOLOv8 
framework. YOLO-SEM, an object detection model, is specifically designed for detecting small objects at low 
resolutions and incorporates several innovative modules and techniques. The model addresses the issue of 
detail loss in downsampled feature maps with the introduction of the SPD module, a space-to-depth layer that 
preserves important information and fine structural details of small objects. Furthermore, YOLO-SEM improves 
sensitivity to small objects by replacing the large object detection head with a smaller, specialized detection head. 
The model feature representation is enhanced through the integration of C2f and the ECA attention mechanism, 
which processes channel information and captures essential object features more effectively. Additionally, the 
MPDIoU loss function refines model parameters by incorporating object location data, thereby increasing the 
accuracy of localization for small objects. Comparative experiments have shown that YOLO-SEM outperforms 
other models, including YOLOv8 and YOLOv5, particularly in detecting fluorescent points in FISH images. 
However, despite its superior performance, YOLO-SEM still exhibits limitations in the precise detection of 
fluorescent spots.

Future work will focus on broadening the application of current models in medical image processing beyond 
FISH images. This expansion will include assessing and improving the performance of deep learning models 
across various types of medical images, including cardiac ultrasound and CT scans.

Data availability
The dataset that supports the findings and conclusion of this study are available from the corresponding author 
on reasonable request. The data are not publicly available due to privacy.
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