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Abstract
Despite the progress made bymodern medicine, infectious diseases remain one of the most

important threats to human health. Vaccination against pathogens is one of the primary meth-

ods used to prevent and treat infectious diseases that cause illness and death. Vaccines

administered by the mucosal route are potentially a promising strategy to combat infectious

diseases since mucosal surfaces are a major route of entry for most pathogens. However,

this route of vaccination is not widely used in the clinic due to the lack of a safe and effective

mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key

to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this

study, we show that intranasal administration of a cationic liposome composed of 1,2-dio-

leoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-car-

bamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice.

Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes

induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels,

suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune

response. Additionally, nasal-associated lymphoid tissue and splenocytes frommice treated

with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/

DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated

lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune

responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes

merit further development as a mucosal adjuvant for vaccination against infectious diseases.
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Introduction
Globally, infectious diseases are still one of the most important risk factors for human disease
and the second leading cause of death [1, 2]. Despite the progress modern medicine has made
to date, successful prevention and control of life-threatening infections remain a significant
challenge. In the past two decades, there has been an increase in the number of infectious dis-
eases worldwide due to the increased use of immunosuppressive therapies and the emergence
of antibiotic-resistant microbes [3]. Therefore, there is a great need for the development of
novel antimicrobial agents or anti-infective strategies.

Vaccination is a key approach to preventing illness and death caused by infectious dis-
ease. Mucosal vaccines are a promising strategy for preventing infectious diseases since
mucosal surfaces are a major route of entry for most pathogens and mucosal adjuvants are
known to induce potent systemic and mucosal antigen-specific immune responses [4–6].
Recent vaccine research has focused on the production of antibodies at mucosal sites to pre-
vent pathogen entry into the host [7–9]. However, such approaches have proven impractical
for clinical use due to safety and efficacy concerns. The majority of approved vaccines world-
wide are administered by subcutaneous or intramuscular injection and induce systemic
immune responses but not mucosal immune responses. To solve this problem, the develop-
ment of mucosal vaccines is essential. To attain that goal, an appropriate mucosal adjuvant is
needed because of the inherently poor immunogenicity of protein antigens when adminis-
tered by the mucosal route [10]. Recently, intranasal injection of pathogenic microbe-
derived antigens combined with a potent mucosal adjuvant was shown to be effective against
infections such as influenza [11]. The advantages of intranasal administration are as follows:
(a) it is a non-invasive (and painless) route of antigen delivery, resulting in improved patient
compliance, and (b) rapid absorption into systemic circulation via the epithelial layer allows
induction of a systemic effect [12–14]. However, the agents used as adjuvants, such as chol-
era toxin [15] and heat-labile enterotoxin [16], which are produced by pathogenic strains of
Vibrio cholera and Escherichia coli, respectively, can have unexpected adverse effects due to
their toxicity and antigenicity. Therefore, the development of safe and effective mucosal
adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in
the clinic.

Recent advances have shown that cationic substances and nanoparticles possess adjuvant
properties when combined with antigens in vaccines [17–20]. Our laboratory has carried out
extensive studies on liposomes with respect to their effects on immunological responses [21–
25]. Liposomes are lipid-based membranous vesicles used for drug delivery [26] and can
serve as immunomodulators [27–29]. Cationic liposomes deliver molecules (including
nucleic acids [30–33], and proteins [34]) into various cells such as antigen-presenting cells
(APCs), therefore we hypothesized that they may have potential use as safe and effective
mucosal adjuvants. We evaluated intranasal administration of liposomes composed of cat-
ionic lipids combined with ovalbumin (OVA) as a model antigen to determine if this combi-
nation could induce antigen-specific mucosal and systemic humoral immune responses in
mice. We also evaluated the T helper (Th) response, in terms of IgG1/IgG2a balance and the
expression of Th1/Th2 cytokines, in order to further characterize the mucosal adjuvant
effects of cationic liposomes. Additionally, we examined whether cationic liposomes
enhanced antigen uptake by dendritic cells (DCs) in nasal-associated lymphoid tissues
(NALTs), in order to better understand the underlying mechanisms of the mucosal adjuvant
effects of cationic liposomes.
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Materials and Methods

Ethics statement
All animal experiments were performed in accordance with the guidelines for laboratory ani-
mal experiments of the Tokyo University of Pharmacy and Life Sciences. The institution’s
committee for laboratory animal experiments approved each experimental protocol (P13-22
and P14-31).

Animals and materials
Female BALB/c mice (6 weeks old) were purchased from Japan SLC (Shizuoka, Japan) and
housed in a specific pathogen-free environment. 1,2-Dioleoyl-3-trimethylammonium-propane
(DOTAP), 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol), L-α-phosphatidylser-
ine from porcine brains (PS), and L-α-phosphatidylcholine from chicken eggs (PC) were pur-
chased from Avanti Polar Lipids (Alabaster, AL, USA). Cholesterol (Chol) was obtained from
Sigma-Aldrich (St. Louis, MO, USA) and cholera toxin (CT) was purchased fromWako Pure
Chemical Industries (Osaka, Japan). Egg white ovalbumin (OVA) was obtained from Sigma-
Aldrich, and endotoxin contaminants were removed by a phase separation technique as
described previously [35].

Preparation of liposomes
Liposomes were prepared as described previously [36]. Briefly, 10 μmol of total lipid (DOTAP:
DC-chol at 1:1, DOTAP:chol at 1:1, PS: PC:chol at 2:1:1, or PC:chol at 3:1 mol ratios) was evap-
orated to dryness in a glass tube and desiccated for at least 1 h in vacuo. The lipid films that
were generated were then hydrated by the addition of 250 μl of phosphate-buffered saline
(PBS) and vortexed at room temperature for 5 min. The multilamellar vesicles were extruded
10 times by passage through a polycarbonate membrane with appropriate pore size (ADVAN-
TEC, Tokyo, Japan) and sterilized by filtration through 0.45-μm filter membranes. The particle
size and zeta (z)-potential of the liposomes were measured by NICOMP 380 ZLS (Particle Siz-
ing Systems, Port Richey, FL, USA).

Immunization and sampling schedule
Mice were divided into four treatment groups and immunized intranasally as follows: 1) PBS,
2) liposomes alone, 3) OVA alone, or 4) OVA in combination with liposomes (unless otherwise
indicated, we used liposomes with 100 μm diameter). Each group of mice was immunized once
weekly. To monitor the induction of serum antigen-specific IgG, blood samples were collected
at various time points via the tail vein. The blood was allowed to clot at 25°C for 30 min, fol-
lowed by incubation at 4°C for 60 min, and then serum was separated by centrifugation at 1200
g for 30 min and stored at -80°C until analysis by ELISA. To monitor the induction of antigen-
specific IgA in nasal washes, nasal wash samples were collected immediately after the mice
were sacrificed by cervical dislocation, as previously described [17].

ELISA for detecting anti-OVA antibody in serum and nasal wash
A 96-well Nunc MaxiSorp plate (Thermo Scientific, Waltham, MA, USA) was coated with
1.25 μg OVA dissolved in 0.1 M carbonate buffer (pH 9.5) and was incubated overnight at 4°C.
The plate was then washed with PBS containing 0.05% Tween 20 (PBST) and blocked with 1%
bovine serum albumin (BSA; Roche Applied Science, Penzberg, Germany) containing PBST
(BPBST) at 37°C for 60 min. The plate was washed and incubated with serum samples for 60
min at 37°C. For detection of anti-OVA IgG antibody, plates were washed with PBST, treated
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with peroxidase-conjugated anti-mouse IgG secondary antibody (Sigma-Aldrich) in BPBST,
and developed using a tetramethylbenzidine (TMB) substrate system (KPL, Gaithersburg, MD,
USA). For the detection of other antibody isotypes, plates were washed with PBST, treated with
biotin-conjugated anti-mouse IgA, IgG1, or IgG2a secondary antibodies (BioLegend, San
Diego, CA, USA) in BPBST, followed by addition of avidin-HRP (BioLegend) in PBST to each
well. Plates were developed using a TMB substrate system (KPL). Colour development was ter-
minated using 1N phosphoric acid, and the optical density was measured at 450 nm (reference
filter, 650 nm). The endpoint titres were expressed as the reciprocal of the last dilution, reach-
ing a cut-off value set to two times the mean optical density of a negative control sample [37,
38].

Splenocyte preparation for cell culture
Splenocytes were prepared as described previously [39–41]. Briefly, immediately following sac-
rifice of the mice by cervical dislocation, spleens from BALB/c female mice were excised, teased
apart in RPMI 1640 medium (Wako Pure Chemical Industries), and centrifuged. The single-
cell suspension obtained was treated with ACK lysis buffer to lyse the red blood cells. After cen-
trifugation, splenocytes were maintained in RPMI 1640 medium supplemented with 10% heat-
inactivated fetal bovine serum (FBS; Biowest, Nuaillé, France), 100 μg/mL of streptomycin sul-
phate salt (Sigma-Aldrich), and 100 U/mL of penicillin G potassium salt (Sigma-Aldrich). The
cells were cultured at a density of 2 × 106 cells/well in a media volume of 0.5 mL in 48-well flat-
bottom plates (IWAKI, Tokyo, Japan) and re-stimulated with OVA for the indicated time at
37°C in 5% CO2.

Cytokine assay
Cytokine concentrations in the samples were determined using ELISA MAXTM Standard Sets
(BioLegend) according to the manufacturer’s instructions. The data are expressed as
mean ± standard deviation for the samples, which were assayed in triplicate. At least 3 indepen-
dent experiments were conducted.

RNA extraction and reverse transcription-polymerase chain reaction
(RT-PCR)
Semi-quantitative RT-PCR was performed as follows [42]: Total RNA from spleen and NALTs
was extracted with the RNAiso Plus reagent (TAKARA BIO Inc, Tokyo, Japan) and quantified
by spectrophotometric measurements. cDNA was synthesized from 1 μg of total RNA using
ReverTra Ace (TOYOBO, Tokyo, Japan) according to the manufacturer’s instructions. cDNA
was amplified with primers specific for interferon-γ (IFN-γ), interleukin–4 (IL–4), tumour
necrosis factor-α (TNF-α), and β-actin, as an internal standard. The primers used for PCR
were as follows: IFN-γ, forward, 50-AGGCCATCAGCAACAACATAAG–30 and reverse, 50-
TAGACATCTCCTCCCATCAGC–30; IL–4, forward, 50-GTTGTCATCCTGCTCTTCTTTCTCG–
30 and reverse, 50-GGACTTGGACTCATTCATGGTGC–30; TNF-α, forward, 50-TGCCTATG
TCTCAGCCTCTTCTC–30 and reverse, 50-CCTATGTCTCAGCCTCTCCACTTGGTGGTTTGC
TACG–30; β-actin, forward, 50-GCACCACACCTTCTACAATGAG–30 and reverse, 50-GCACC
ACACCTTCTACAATGAG–30. PCR was performed using appropriate conditions that were
determined in preliminary experiments, and the PCR products were analysed on 2% agarose
gels stained and visualized with GelRed nucleic acid gel stain (Wako Pure Chemical
Industries).
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Flow cytometric analysis of antigen uptake
Alexa Fluor 488-OVA uptake was analysed with single cell suspensions isolated from NALTs
of BALB/c female mice 1 h after intranasal administration of Alexa Fluor 488-OVA (5 μg/
mouse; Life Technologies, Carlsbad, CA, USA) plus DiI-labelled DOTAP/DC-chol liposomes
(0.4 μmol/mouse). Cells were then blocked with rat anti-mouse CD16/CD32 (Fc block; BD
Biosciences, San Jose, CA, USA) and stained with PE anti-mouse CD11c (BD Biosciences) or
the respective isotype control. The samples were analysed using a FACS Canto instrument (BD
Biosciences).

Fluorescence microscopy analysis of antigen localization in NALTs
To determine whether the cationic liposomes promoted antigen uptake by DCs in NALTs,
BALB/c female mice were administered Alexa Fluor 488-OVA (5 μg/mouse; Life technologies)
intranasally in combination with DiI-labelled DOTAP/DC-chol liposomes or DOTAP/chol
liposomes (0.4 μmol/mouse). One hour after administration, the mice were euthanized and
samples of NALT were excised and frozen in O.C.T. (Sakura Finetek Japan, Tokyo, Japan) on
dry ice. Cryosections (8 μm thick) were cut, fixed in 4% paraformaldehyde (PFA) for 10 min at
room temperature, washed with PBS, and incubated in blocking buffer for 30 min. After block-
ing, the sections were stained with anti-CD11c antibody (BD Biosciences) and examined with a
BZ–8100 fluorescent microscope (KEYENCE, Tokyo, Japan).

Statistical analysis
Statistical differences were assessed using the Kruskal–Wallis with Dunn’s post–hoc test and t-
test with Welch correction for antibody and cytokine production, respectively. A two-way
ANOVA with Bonferroni post–hoc test was used for body weight loss. P values less than 0.05
were considered significant.

Results

Physicochemical properties of the liposomes
We first evaluated the particle size and z–potential of the liposomes prepared in this study. The
particle size and z–potential of the liposomes are listed in Table 1. We also examined the stabil-
ity of cationic liposomes composed of DOTAP and DC-cholesterol (DOTAP/DC-chol lipo-
somes) as well as DOTAP and cholesterol (DOTAP/chol liposomes). The results demonstrated
that the DOTAP/DC-chol liposome was exceptionally stable compared to the DOTAP/chol
liposome, as seen in S1 Fig.

Table 1. Physicochemical Properties of the Liposomes used in this Study.

Liposomes Particle size (nm) ζ potential (mV)

DOTAP/DC-chol (50 nm) 57.2 ± 1.9 9.32

DOTAP/DC-chol (100 nm) 88.6 ± 2.5 11.82

DOTAP/DC-chol (1000 nm) 846.2 ± 10.5 11.18

DOTAP/chol 86.2 ± 28.7 6.49

PS 106.4 ± 18.5 -6.05

PC 121.9 ± 9.2 -0.14

doi:10.1371/journal.pone.0139785.t001
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Induction of antigen-specific serum IgG and nasal tissue IgA after
administration of OVA with the cationic liposomes
We examined whether intranasal administration of the cationic liposomes acts as a mucosal
adjuvant in BALB/c female mice. Mice were immunized intranasally twice weekly with OVA
alone or combined with the cationic liposomes (DOTAP/DC-chol or DOTAP/chol liposomes).
Intranasal vaccination with OVA and the cationic liposomes induced expression of OVA-spe-
cific IgA in nasal tissue and IgG in serum. Intranasal immunization with PBS or OVA alone
did not induce OVA-specific immunoglobulin expression in nasal tissue or serum in this
experiment (Fig 1).

DOTAP/DC-chol liposomes induced potent antigen-specific IgG serum responses that
were superior to DOTAP/chol liposomes. DOTAP/DC-chol liposomes also induced significant
antigen-specific IgG production in serum when compared to the other liposomes used in this
study. In addition, DOTAP/DC-chol liposomes showed higher levels of IgA expression
(median value: 213.0) in nasal washes than DOTAP/chol liposomes (median value: 83.6), but
the differences were not significant (Fig 1). Taken together, DOTAP/DC-chol liposomes dem-
onstrated potent mucosal adjuvant activity.

Since murine serum IgG subclasses have been used to assess the type of immune responses
induced by immunization, we investigated the production of serum IgG1 and IgG2a after intrana-
sal immunization with OVA and the cationic liposomes. The results demonstrated that an IgG1
response rather than IgG2a was elicited by intranasal treatment with OVA and the cationic lipo-
somes (Fig 1), indicating that the cationic liposomes induced a Th2-biased immune response.

We also evaluated the effect of various concentrations of the antigen and liposome on the
production of nasal tissue IgA and serum IgG using DOTAP/DC-chol liposomes, which pos-
sess a higher mucosal adjuvant effect (Fig 1). Fig 2 shows that OVA-specific antibody responses
were augmented in a dose-dependent manner for both antigen (Fig 2A) and liposome (Fig 2B)
concentrations. The kinetics of antigen-specific IgG production was evaluated in sera collected
at different time points from mice immunized once weekly (Fig 3).

On day 14 post the first immunization, OVA-specific serum IgG, IgG1, and IgG2a were
detectable in sera from OVA plus DOTAP/DC-chol liposome-immunized mice, with increas-
ing titres observed at later time points. In contrast, OVA-specific serum IgG, IgG1, and IgG2a
levels from mice immunized with OVA alone demonstrated a weak level of expression on day
21- post immunization. These results show that intranasal administration of DOTAP/DC-chol
liposomes markedly enhance antigen-specific mucosal and systemic immune responses in
mice.

Influence of particle size of DOTAP/DC-chol liposomes on mucosal
adjuvant activity
Particle size is one of the key factors related to the biological effects of nanoparticles [43–45].
To investigate the influence of DOTAP/DC-chol liposome size on mucosal adjuvant activity,
we prepared liposomes of various sizes and evaluated their mucosal adjuvant activity. The
results indicated that changes in particle size did not affect DOTAP/DC-chol liposome muco-
sal adjuvant activity (Fig 4).

Comparison of the mucosal adjuvant activity of DOTAP/DC-chol
liposomes with a well-known potent mucosal adjuvant, CT
Currently, experimental mucosal adjuvants are almost all pathogenic microbe-derived toxins,
such as CT. Therefore, we next examined the mucosal adjuvant effect of DOTAP/DC-chol
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Fig 1. Induction of OVA-specific serum IgG and nasal tissue IgA responses in BALB/c mice immunized intranasally with OVA and cationic
liposomes. BALB/c female mice were immunized intranasally with PBS, OVA (5 μg/mouse) alone, or OVA (5 μg/mouse) plus various cationic liposomes
(0.4 μmol/mouse) on days 0 and 7. Serum and nasal washes were collected on day 14. The anti-OVA IgG, IgG1, and IgG2a levels in serum and anti-OVA IgA
level in nasal washes were detected by ELISA assay as described in the “Materials and Methods” section. The data were obtained from at least three
independent experiments. The box-plot shows the median value with the 25th-75th percentiles and the error bars indicate the 5th-95th percentiles.
Significance was assessed using the Kruskal–Wallis with Dunn’s post–hoc test: *p < 0.05, **p < 0.01, NS: not significant.

doi:10.1371/journal.pone.0139785.g001
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Fig 2. Cationic DOTAP/DC-chol liposome elicits dose-dependent OVA-specific antibody production
depending on antigen (A) and liposome (B) concentrations. BALB/c female mice were immunized
intranasally with various doses of OVA plus DOTAP/DC-chol liposomes on days 0 and 7. Serum was
collected on day 14. The anti-OVA IgG, IgG1, and IgG2a levels in serum and anti-OVA IgA level in nasal
washes were detected by ELISA assay. The data are obtained from at least three independent experiments
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liposomes with CT, which resulted in comparable serum IgG titres (Fig 5). In addition, the pro-
duction of IgA in the nasal area induced by DOTAP/DC-chol liposomes was lower compared
to that induced by CT (median value: 135.1 vs 497.3).

In vivo toxicity study of the intranasal administration of DOTAP/DC-chol
liposomes
Since it has been reported that cationic liposomes show toxicity in mice [46, 47], we next exam-
ined the safety of DOTAP/DC-chol liposomes in vivo. To evaluate the toxicity induced by
intranasal administration of DOTAP/DC-chol liposomes, we performed the following two
experiments: 1) body weight loss during the course of the immunization process and 2) gene
expression of an inflammatory cytokine, TNF-α, in the nasal area 16 hours after liposome
administration. There were no changes in weight loss observed in the mice immunized with
cationic liposomes compared to the control group (Fig 6A). Moreover, the intranasal adminis-
tration of DOTAP/DC-chol liposomes did not exert TNF-α expression in the nasal area (Fig
6B). These data clearly demonstrate that, in these experimental conditions, the cationic lipo-
somes do not result in toxicity in mice. Together with the comparison with the mucosal adju-
vant CT, DOTAP/DC-chol liposomes possess the characteristics of a safe and effective
mucosal adjuvant in mice.

Effect of liposome surface charge on mucosal adjuvant activity
Since the cationic charge of DOTAP/DC-chol liposomes seem to play a key role on mucosal
adjuvant activity, antigen-specific systemic IgG and mucosal IgA responses were examined
using anionic PS liposomes and neutral PC liposomes. The results showed that only cationic
liposomes induced antigen-specific antibody production, while anionic and neutral liposomes
did not have any adjuvant effects, demonstrating the importance of liposome surface charge
(Fig 7).

Antigen-specific IFN-γ and IL–4 production by splenocytes from
vaccinated mice in vitro
Vaccination with DOTAP/DC-chol preferentially induced IgG1 production in serum, suggest-
ing that intranasal immunization with cationic liposomes may enhance Th2 immune responses
(Fig 1). To characterize the type of immune response elicited by cationic liposomes, we exam-
ined IFN-γ and IL–4 secretion by splenocytes re-stimulated with OVA in vitro. Compared with
splenocytes from mice vaccinated with either PBS, OVA alone, or liposome alone, splenocytes
from OVA plus DOTAP/DC-chol liposome-vaccinated mice induced high levels of IL–4 pro-
duction, while low IFN-γ levels were detected (Fig 8). These results along with the serum IgG1
results indicate that DOTAP/DC-chol liposomes can elicit immune responses utilizing anti-
gen-specific Th2 activity.

Gene expression profiles of cytokines related to Th1/Th2 immune
responses in nasal tissues from vaccinated mice
The immune response elicited by mucosal vaccination with cationic liposomes was further
characterized by assessing the expression of cytokines involved with Th1/Th2 responses. The

and are expressed as the mean ± the standard error. Significance was assessed with the Kruskal–Wallis with
Dunn’s post–hoc test: *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0139785.g002
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Fig 3. Kinetics of the appearance of OVA-specific serum IgG in BALB/c female mice immunized
intranasally with OVA and DOTAP/DC-chol liposomes. BALB/c female mice were immunized intranasally
with PBS alone, DOTAP/DC-chol liposomes (0.4 μmol/mouse) alone, OVA (5 μg/mouse) alone, or OVA
(5 μg/mouse) plus DOTAP/DC-chol liposomes (0.4 μmol/mouse) once weekly (days 0, 7, 14, 21, and 28).
Serum was collected every week immediately prior to immunization (days 0, 7, 14, 21, 28, and 35). Anti-OVA
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results showed that vaccination with OVA and DOTAP/DC-chol liposomes induced the
expression of IL–4, a Th2 related cytokine, in nasal tissue samples (Fig 9). These results demon-
strate that DOTAP/DC-chol liposomes exert a Th2 immune response when administered as a
mucosal adjuvant.

Cationic liposomes enhance OVA-uptake into dendritic cells in NALT
Because effective delivery of antigens into APCs is crucial for the induction of a mucosal
immune response [48], we examined whether the cationic liposomes promote antigen uptake
into DCs of NALTs as a possible mechanism supporting the adjuvant effects observed. Fig 10
shows that Alexa Fluor 488+ cells (OVA+ cells) in the DC population were more in NALTs
obtained from mice administered Alexa Fluor 488-OVA plus DOTAP/DC-chol liposomes
intranasally than in mice administered Alexa Fluor 488-OVA alone. Additionally, we found
that DOTAP/DC-chol liposomes more effectively enhanced antigen uptake compared to
DOTAP/chol liposomes, implying that this may be a possible reason for the strong mucosal
adjuvant effect of DOTAP/DC-chol liposomes.

Discussion
Vaccination is one of the most powerful tools in the prevention and/or treatment of fatal infec-
tious diseases. In this context, the induction of both mucosal and systemic immune responses
would be essential to block the initial infection and prevent further invasion of infections.
Therefore, the development of safe and effective mucosal adjuvants is a major goal in vaccine
therapy. In the present study, we demonstrate that intranasal administration of OVA with cat-
ionic liposomes composed of DOTAP and DC-cholesterol induced antigen-specific mucosal
and systemic antibody responses, indicating that this cationic liposome is a potent and safe
mucosal adjuvant in mice. The mucosal adjuvant activity of DOTAP/DC-chol liposomes
shown here may provide a novel mucosal vaccine therapy approach for the prevention and
treatment of various infectious diseases, including fungal and bacterial pathogens.

We demonstrate for the first time that intranasal vaccination with cationic liposomes elicits
antigen-specific antibody production in nasal mucosal tissue and serum in a dose-dependent
manner (Fig 2), as well as enhances the kinetics of antibody expression in serum and mucosal
tissues (Figs 1 and 3). This liposomal activity was dependent on surface charge (Fig 7), but
independent of particle size (Fig 4). There are many reports in the literature of the potential
toxicity associated with cationic liposomes [46, 47]. However, we have successfully demon-
strated the safety of the DOTAP/DC-chol liposomes used in this study. In particularly, they
did not show any toxicity in vivo, having no effect on body weight (Fig 6A) or the induction of
an inflammatory cytokine in mice (Fig 6B).

While the precise molecular mechanisms of mucosal adjuvant effects induced by cationic
liposomes are not known, it is clear that a cationic charge is required for this activity. Generally,
adjuvants employ the following mechanisms to elicit their adjuvant effects: (1) sustained
release of antigen at the site of injection, which is referred to as the ‘depot effect’, (2) increased
antigen uptake and presentation to APCs, including DCs, and (3) activation of the innate
immune system [48]. Here we demonstrated that DOTAP/DC-chol liposomes promote anti-
gen uptake into the DCs of NALTs (Fig 10).

IgG, IgG1, and IgG2a levels in serum were determined by ELISA assay. The data are obtained from at least
three independent experiments and are expressed as the mean ± the standard error. Significance was
assessed with the Kruskal–Wallis with Dunn’s post–hoc test: *p<0.05, **p<0.0001.

doi:10.1371/journal.pone.0139785.g003
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Fig 4. Influence of DOTAP/DC-chol liposome particle size on the mucosal adjuvant effect. BALB/c female mice were immunized intranasally with PBS,
and treated with DOTAP/DC-chol liposomes of various particle sizes (0.4 μmol/mouse) alone, OVA (5 μg/mouse) alone, or OVA (5 μg/mouse) plus DOTAP/
DC-chol liposomes of various particle sizes (0.4 μmol/mouse) on days 0 and 7. Serum and nasal washes were collected on day 14. The anti-OVA IgG, IgG1,
and IgG2a levels in serum and anti-OVA IgA level in nasal washes were detected by ELISA assay. The data are obtained from at least three independent
experiments. The box-plot shows the median value with the 25th-75th percentiles and the error bars indicate the 5th-95th percentiles. NS: not significant as
assessed by the Kruskal–Wallis with Dunn’s post–hoc test.

doi:10.1371/journal.pone.0139785.g004
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Recent studies have shown that cationic molecules, such as polyethyleneimine (PEI) [19]
and a nanoparticle composed of poly-γ-glutamic acid (γ-PGA) and chitosan [11], have muco-
sal adjuvant effects. Other possible modes of action for adjuvants are through activation of
innate immune responses that serve as a bridge to adaptive immunity. A recent study reported
that alum, an aluminium adjuvant, causes cell death and the release of cellular DNA, which
acts as an immunostimulatory signal mediating alum adjuvant activity [49]. The adjuvant
activity of PEI requires the release of host double-stranded DNA (dsDNA) to trigger an innate
immune response [19]. Previously, we found that cationic liposomes can induce mitochondrial
oxidative stress-mediated cell death of macrophages in vitro [36, 50–53]. Cationic liposomes
may elicit a danger signal by in vivo release of damage-associated molecular pattern molecules

Fig 5. Comparison of the mucosal adjuvant activity of DOTAP/DC-chol liposomes with CT. BALB/c female mice were immunized intranasally with
PBS, OVA (5 μg/mouse) alone, OVA (5 μg/mouse) plus DOTAP/DC-chol liposomes (0.4 μmol/mouse), or OVA (5 μg/mouse) plus CT (1 μg/mouse) on days 0
and 7. Serum and nasal washes were collected on day 14. The anti-OVA IgG, IgG1, and IgG2a levels in serum and anti-OVA IgA level in nasal washes were
detected by ELISA assay as described in the “Materials and Methods” section. The data were obtained from at least three independent experiments. The
box-plot shows the median value with the 25th-75th percentiles and the error bars indicate the 5th-95th percentiles. Significance was assessed using the
Kruskal–Wallis with Dunn’s post–hoc test: *p < 0.05, NS: not significant.

doi:10.1371/journal.pone.0139785.g005
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(DAMPs) such as dsDNA, uric acid crystals, adenosine triphosphate (ATP), and high mobility
group box–1 (HMGB1) protein [18, 54], which triggers an innate immune response that can
induce a humoral immune response. This possibility will need to be clarified in future
experiments.

We further characterized the type of immune response triggered by cationic liposomes by
assessing the production of cytokines and serum IgG subclass responses. Cationic liposomes
preferentially induced Th2 responses based on the following study observations: (1) DOTAP/
DC-chol preferentially induced IgG1 production in serum (Fig 1), and (2) NALTs and spleno-
cytes from OVA plus DOTAP/DC-chol liposome treated mice had increased IL–4 expression

Fig 6. Assessment of the in vivo safety of DOTAP/DC-chol liposomes in mice by body weight loss and
gene expression of an inflammatory cytokine, TNF-α, at the site of delivery. (A) BALB/c female mice
were immunized intranasally with PBS, DOTAP/DC-chol liposomes (0.4 μmol/mouse) alone, or OVA (5 μg/
mouse) plus DOTAP/DC-chol liposomes (0.4 μmol/mouse) once per week. Body weight was recorded over
21 days. Significance was assessed using a two-way repeated measures ANOVA with Bonferroni post–hoc
test: NS: not significant, (B) Sixteen hours after the immunization, nasal tissues were collected and the
expression of TNF-αmRNA was quantified by semi-quantitative RT-PCR. Densitometry values for mRNA
were normalized to β-actin as an internal standard. The data are expressed as the mean ± standard deviation
for samples assayed in triplicate. Significance was assessed using t-test with Welch correction: NS: not
significant.

doi:10.1371/journal.pone.0139785.g006
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(Figs 8 and 9). The mucosal adjuvant activity of the different cationic liposomes varied depend-
ing on the lipid formulation. The combination of DOTAP and DC-cholesterol was most active
in this study (Fig 1). However, it may be possible to develop even more potent and safe cationic
liposomes by evaluating other lipids, and we are currently investigating this possibility.

Fig 7. Role of liposome surface charge on the mucosal adjuvant effect. BALB/c female mice were immunized intranasally with PBS, OVA (5 μg/mouse)
alone, OVA (5 μg/mouse) plus DOTAP/DC-chol liposomes (0.4 μmol/mouse), anionic PS liposomes (0.4 μmol/mouse), or neutral PC liposomes (0.4 μmol/
mouse) on days 0 and 7. Serum and nasal washes were collected on day 14. The anti-OVA IgG, IgG1, and IgG2a levels in serum and anti-OVA IgA level in
nasal washes were detected by ELISA assay. The data are obtained from at least three independent experiments. The box-plot shows the median value with
the 25th-75th percentiles and the error bars indicate the 5th-95th percentiles. Significance was assessed using the Kruskal–Wallis with Dunn’s post–hoc test:
*p<0.01.

doi:10.1371/journal.pone.0139785.g007
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Fig 8. In vitro antigen-specific production of IFN-γ and IL–4 in splenocytes and nasal passages from BALB/c mice immunized intranasally with
OVA and DOTAP/DC-chol liposomes. Splenocytes from vaccinated BALB/c mice were cultured for 72 h in the presence of OVA (0, 1, 10, or 100 μg/ml).
After culture, the supernatants were collected, and concentrations of IFN-γ and IL–4 in the culture supernatants were determined by ELISA assay. The data
are representative of at least three independent experiments and are expressed as the mean ± standard deviation for samples assayed in triplicate.
Significance was assessed with the t-test with Welch correction: *p<0.05.

doi:10.1371/journal.pone.0139785.g008

Fig 9. mRNA levels of Th1/Th2 cytokines in vaccinatedmice.One hour after the last immunization, spleen and nasal tissues were collected and the
expression of mRNAs was quantified by semi-quantitative RT-PCR. Densitometry values for mRNA were normalized to β-actin as an internal standard. The
data were representative of at least three independent experiments and are expressed as the mean ± standard deviation for samples assayed in triplicate.
Significant difference was assessed using t-test with Welch correction: *p<0.05.

doi:10.1371/journal.pone.0139785.g009
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Fig 10. Antigen uptake by CD11c+ DCs in NALTs following intranasal administration of Alexa Fluor-
labelled OVA plus the cationic liposomes. BALB/c female mice were intranasally administered Alexa Fluor
488-OVA (5 μg/mouse) alone, or Alexa Fluor 488-OVA (5 μg/mouse) plus DOTAP/DC-chol liposomes, or
DOTAP/chol liposomes. NALTs were collected 1 h after administration. (A) The NALT cells obtained were
stained with anti-mouse CD11c mAb. Alexa Fluor 488-OVA uptake by DCs (based on CD11c+ gating) was
analysed by flow cytometry, and (B) 8-μm frozen sections of NALTs were stained with antibodies against
CD11c (DCs are depicted in blue). Co-localization of OVA, DOTAP/DC-chol liposomes or DOTAP/chol
liposomes, and DCs in the cryosections was observed by fluorescence microscopy.

doi:10.1371/journal.pone.0139785.g010
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Conclusions
In this study, intranasal vaccination with cationic liposomes and protein antigen elicited anti-
gen-specific antibody responses in mucosal tissues and in systemic circulation. While the
underlying mechanisms of the mucosal adjuvant effect that were observed are not yet under-
stood, these findings demonstrate that this approach can be used for the development of muco-
sal vaccines to combat infectious diseases caused by pathogenic microbes. Studies are in
progress for developing a mucosal vaccine for bacterial and fungal infections by using cationic
liposomes as a mucosal adjuvant.
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